

Briones Reservoir - Inlet/Outlet Tower: Evaluation of Retrofit Options Final Report

Prepared for

East Bay Municipal Utility District

by

TABLE OF CONTENTS

1.		INTRODUCTION
	1.1.	Description of the Tower
	1.2.	Seismic Hazard
	1.3.	Scope of Report
2.		RETROFIT OPTIONS CONSIDERED
	2.1.	General6
	2.2.	Option 1: Guyed Cables7
	2.3.	Option 2: External Supporting Piers and Frame
	2.4.	Option 3: Reinforced Tower and Strengthened Foundation
	2.5.	Option 4: New Connecting Tunnel and Sloping Inlet/Outlet 10
	2.6.	Option 5: New Posttensioned Precast Tower
	2.7.	Option 6: Partial Demolition of the Existing Tower
3.		PRELIMINARY DESIGNS
	3.1.	Option 1: Guyed Cables
	3.2.	Option 2: External Supporting Piers and Frame
	3.3.	Option 3: Reinforced Tower and Strengthened Foundation
	3.4.	Option 4: New Connecting Tunnel and Sloping Inlet 14
	3.5.	Option 5: New Posttensioned Precast Tower14
	3.6.	Option 6: Partial Demolition of the Existing Tower
4.		COST ANALYSIS AND COMPARISON 15
	4.1.	General15
	4.2.	Constructability Review15
	4.3.	Discussion16
5.		CONCLUSIONS17
6.		REFERENCES
App	endix	A: Drawings
App	endix	A B1: Seismic Evaluation of Retrofit Options for Briones Outlet Tower
App	endix	A B2: Seismic Evaluation of Option-6 Alternative Briones Outlet Tower 20
App	endix	x B3: Seismic Evaluation of Guy-Wires with Two Support Levels
App	endix	C: Preliminary Cost Estimates
Figu	re 1.	MDE Acceleration Response Spectra at 5% Damping
		84th Percentile MCE Acceleration Response Spectra at 5% Damping
1.50		o and creening meet recording in response opeening of Dumping minimum o
Tabl	le 1: 1	MDE Response Spectra at 5% Damping4
		MCE Response Spectra at 5% Damping
		Summary of Estimated Construction Cost for Retrofit Alternatives

1. INTRODUCTION

This report presents the conceptual retrofit design of the Briones Reservoir Inlet/Outlet Tower (Tower). The work was performed for the East Bay Municipal Utility District (the District) as a subconsultant to Geomatrix Consultants of Oakland. As a prior part of the study, the seismic performance of the existing Tower was evaluated by Quest Structures, Inc. (Quest) and presented in a separate report. The dynamic analyses performed by Quest showed that the existing Tower is structurally deficient and could suffer significant damage during a major earthquake. The proposed retrofit alternatives for the existing Tower and possible new designs are discussed and evaluated in this report. Preliminary cost estimates were performed and cost comparisons of the most feasible alternatives are also presented.

1.1. Description of the Tower

The Briones Tower is located approximately two hundred and fifty yards upstream of the embankment of the Briones Reservoir and was constructed in 1965. The Briones Reservoir is one of the essential storage elements of the District water supply system. The Tower is used to feed water intermittently to the Orinda water treatment plant and used mainly as a backup reservoir.

The inlet-outlet works consist of the Tower and the inlet-outlet tunnel connected to its base. The Tower is a freestanding, vertical reinforced concrete structure located upstream of the toe of the dam embankment. The Tower is 230 feet high with 60-inch butterfly valves at 7 levels operated by hydraulic lines from a platform at the top of the Tower. The internal diameter of the Tower varies from 20 feet at the base to 10 feet at the top while the wall thickness varies from 16 inches at the base to 9 inches at the top. The Tower is founded on claystone, silty claystone, and minor sandstone of an unnamed sedimentary and volcanic rock unit (Tus). Several short, minor fractures or zones of sheared and crushed rock were observed in the Tower foundation excavation that range from ½ to 3 inches thick. Most of these shears were healed or filled with calcite, and none were observed to cross the entire width of the foundation (Marliave, 1964).

During normal operations, only certain of the Tower valves and the vault shut-off valve are open with the outflow in the tunnel being controlled by the Briones draft valve at the Briones Center. The inlet-outlet works are generally operated by drafting up to 85 MGD (132 cfs) from the reservoir or pumping up to 45 MGD (70 cfs) into the reservoir. Under emergency conditions the flow could be as high as 521 cfs, which translates into a flow velocity of 11.8 feet per second (fps) in the tunnel that frames into the base of the Tower. The tunnel is lined with a reinforced concrete final lining except for the section through the embankment, which is reinforced with a steel lining to prevent leakage of water due to the weak rock encountered in this reach.

1.2. Seismic Hazard

The Tower was analyzed by Quest for response to both the Maximum Credible Earthquake (MCE) and Maximum Design Earthquake (MDE) level ground motions – the response spectra are shown in Tables 1 and 2 and Figures 1 and 2 respectively.

The MCE corresponds to a 1000 year return period event. The District established the MDE as a ground motion having a 10 percent probability of exceedance in 50 years (a 475 year return period). Both the MDE and MCE were estimated by Geomatrix Consultants.

The US Army Corps of Engineers (USACE) Engineer Manual EM 1110-2-2400 recommends outlet works to be designed considering both the MDE and OBE (Operating Basis Earthquake). The OBE is defined as a ground motion having a 50 percent probability of exceedance in 100 years (a 144 year return period). The seismic forces calculated for each of the MDE and OBE ground motions have to be factored for design. Load factors recommended by EM 1110-2-2400 are 1.1 and 1.5 for the MDE and OBE respectively. Due to the smaller load factors used for the MDE (which is a more severe earthquake and therefore has higher seismic demands) the factored seismic demands for the MDE and OBE are generally close. For our preliminary design only the MDE with the associated load factors recommended by EM 1110-2-2400 were used. For the final design the response spectrum for an OBE level event should be established and the design verified for that level of design event.

Period	Spectral Acce	eleration, S _a (g)
(sec)	Fault Normal	Fault Parallel
PGA	0.697	0.697
0.075	1.184	1.184
0.100	1.390	1.390
0.200	1.648	1.648
0.300	1.474	1.474
0.500	1.076	1.076
1.000	0.589	0.562
1.500	0.393	0.360
2.000	0.299	0.261
3.000	0.197	0.148
4.000	0.141	0.096

 Table 1: MDE Response Spectra at 5% Damping

Period	Spectral Acc	eleration, S _a (g)
(sec)	Fault Normal	Fault Parallel
PGA	0.748	0.748
0.050	0.999	0.999
0.075	1.233	1.233
0.100	1.426	1.426
0.150	1.685	1.685
0.200	1.788	1.788
0.300	1.721	1.721
0.400	1.569	1.569
0.500	1.387	1.387
0.750	1.117	1.024
1.000	0.960	0.800
1.500	0.740	0.526
2.000	0.606	0.382
3.000	0.448	0.228
4.000	0.351	0.153

 Table 2: MCE Response Spectra at 5% Damping

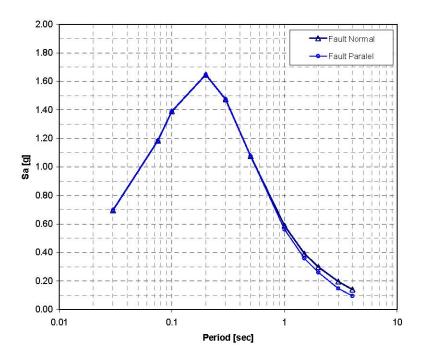


Figure 1: MDE Acceleration Response Spectra at 5% Damping

March 2009

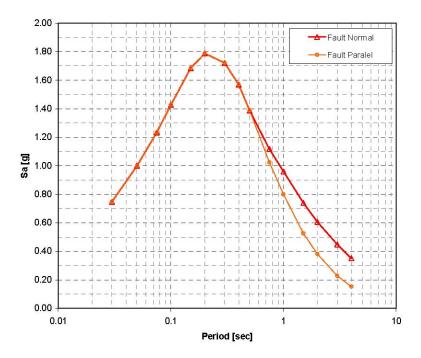


Figure 2: 84th Percentile MCE Acceleration Response Spectra at 5% Damping

1.3. Scope of Report

The retrofit evaluation of the Tower consisted of considering a range of possible retrofit options and performing conceptual design calculations to determine preliminary material properties and element sizes as discussed in Sections 2 and 3. The constructability of the alternatives was then evaluated and only those alternatives considered viable were selected for further preliminary design to provide enough information to do preliminary cost estimates as presented in Section 4.

2. RETROFIT OPTIONS CONSIDERED

2.1. General

Draining the reservoir was investigated (see the discussion at the end of this subsection), but it was concluded that it is not advisable to drain the reservoir for construction due to the role of the Briones Reservoir as a storage facility and operational considerations. This drastically limits the potential retrofit options that can be considered and practically rules out the option of using an external jacket for strengthening. To strengthen the existing Tower three possible designs were considered. Only one of these alternatives was considered a viable option. Two new inlet/outlet facilities were also investigated. Additionally, an alternative option of partially demolishing the existing Tower was investigated. The following potential retrofit and new options for the Briones Tower were considered:

- 1. Guyed Cables: Use guyed cables to stabilize the existing Tower.
- 2. External Supporting Piers and Frame: Buttressing of the Tower by addition of three external piers and supporting frames at three levels.
- 3. Reinforced Tower and Strengthened Foundation: Strengthening and stiffening of the base of the Tower, combined with internal strengthening of the Tower shaft.
- 4. New Connecting Tunnel and Sloping Inlet/Outlet: Replace the existing Tower with a new connecting tunnel and sloping inlet/outlet pipe. Connecting a new sloping inlet/outlet pipe into the existing tunnel was also investigated (4A).
- 5. New Posttensioned Precast Tower: Construct a new inlet/outlet tower over the existing tunnel consisting of a base structure and forming the tower with precast rings followed by vertical posttensioning.
- 6. Partial Demolition of Existing Tower: Demolishing the upper part of the existing Tower and replacing it with a steel shaft.

The feasibility of draining the Briones Reservoir to allow construction of a retrofit scheme in the dry was evaluated for Options 3 and 4 above, resulting in significant cost savings as shown in Table 3 (Options 3B and 4B) and discussed in Section 4 below. The cost of refilling the reservoir is estimated to be of the order of \$6 million. However, considering the risk of interruption to the District water supply system, without the availability of the backup storage provided by the Briones Reservoir and being dependent on supply through the pipelines, the potential cost saving is not considered relevant. Draining the reservoir is therefore not considered a realistic option and was not considered in any further detail.

2.2. Option 1: Guyed Cables

The initial scheme to retrofit the Tower was patterned after a guyed transmission tower utilizing a set of cables tied to one elevation of the Tower. The initial layout of the guy cables was based on 2 pairs of tethers with the tethers in each group separated by 60° and each set separated 180° on center from the other. Eventually, this pattern was rearranged such that each tether was 90° apart from the others. The location and angle of inclination of the tethers were positioned to avoid the outlet tunnel and the Tower's foundation. The cables would be anchored into the reservoir bed and attached to a collar which would be affixed to the exterior of the Tower at elevation 512 feet. The collar elevation was based on the practical limits of the bathysphere required to provide a working platform below the water level. The anchors would be located at a radius of 115 feet from the Tower centerline, resulting in a cable angle of 45 degrees. The normal operational level of the reservoir is 576 feet. See Appendix B1, Section 2 for further details of this scheme and the analyses performed to evaluate it.

A preliminary cost estimate indicated that the guyed cable scheme could be a cost effective option. Therefore, Option 1A with two levels of cables was investigated by Quest as documented in Appendix B3. This analysis showed that a retrofit scheme using two levels of cables would also not provide adequate support to the existing Tower.

The guyed cables approach would require a substantial amount of diving work. Alternatively, a bathysphere type structure would have to be built around the Tower and anchored into the reservoir bed to provide a dry work area for the construction of the collar and the anchoring of the tethers to the Tower. Several barges would be required for the installation of the bathysphere and tethers; including a barge capable of setting the anchors in the reservoir bed. Underwater work at depths of 200 feet by divers would be required to attach the tethers to the anchors in the reservoir bed.

This design scheme resulted in heavy cables which did not adequately stabilize the Tower and provide the required reduction in demand on the existing Tower structure. Due to the technical deficiency of the design, combined with concerns about constructability and long term durability and maintenance of the cables this option was not pursued further.

2.3. Option 2: External Supporting Piers and Frame

The second scheme was an attempt to buttress the Tower with three external support shafts connected to each other and the existing Tower with a steel framing system as shown in the sketches on Drawing SK-6, Appendix A. The support shafts consist of three 10-foot diameter drilled piers spaced 120° on a 37-foot radius. The piers were positioned to avoid the foundation and the outlet tunnel. The piers would be socketed into the reservoir floor and rise approximately 201 feet above the floor. Three levels of trusses at elevations 448, 523, and 572 feet were positioned to avoid the inlet valves. Each level of trusses consists of a horizontal steel truss, spanning between piers to buttress the Tower. A saddle would be required at each truss to Tower interface to distribute the forces encountered during a seismic event.

The buttress approach would require a casing oscillator deployed from a barge to socket the shafts into the rock of the reservoir floor. Each shaft would require permanent casing from the surface to facilitate the concreting operation and to serve as an attachment surface for steel framing. Significant underwater work performed by divers would be required to install the framing. The stiffness provided by the buttress structure, coupled with the added mass, was determined to be insufficient when compared to that of the Tower and consequently the embedment of the piers was not designed. This option was discarded not only because of its technical shortcomings, but also due to concerns about both constructability and cost.

2.4. Option 3: Reinforced Tower and Strengthened Foundation

A third scheme was developed to reinforce the Tower by adding an interior lining. However, due to the forces and reactions at the base of the Tower, the need to strengthen the foundation was apparent. To minimize the impact of the overturning moment, additional ballast was required. Dredging of the foundation's overburden and adding a 60-foot high tremie pour atop the existing foundation would provide the needed ballast and would at the same time stiffen the foundation and shorten part of the Tower shaft. Details of this option are shown on Drawing SK-1, Appendix A.

The valve aperture at elevation 382.5 feet would need to be extended through the tremie pour to maintain its functionality. The vertical opening of the Tower would be reduced by installing an 8-foot diameter pipe vertically throughout the height of the Tower. This vertical riser would be connected to the outlet tunnel as well as all of the valves along the height of the Tower. The riser would provide an unimpeded path for the water to flow from the reservoir into the outlet tunnel.

Vertical reinforcement as well as hoop steel would be placed within the annular space between the vertical pipe and the Tower's existing walls, which would be backfilled with concrete. An added benefit of the exterior tremie pour at the Tower base is raising the plane of the Tower/footing interface and encapsulating the lower part of the Tower shaft. This reduces the height of the shaft and therefore the bending moment and shear that the cantilevered Tower must resist. This also allows for the development of the vertical reinforcement in the concrete lining below the top of footing plane versus the anchoring of the vertical bars in the existing foundation. The design would need to accommodate the valve actuators that are currently supported on the interior face of the Tower wall. The pipe connecting the valve aperture to the vertical pipe could be sized to accommodate the valve's actuator.

During construction the contractor will need to develop his work process to allow for the District's emergency response efforts in the event of an emergency in the existing water supply network. This would entail opening the valves within 48 hours and providing a flow path from the inlet valves through the Tower to the outlet tunnel. The construction sequence is anticipated to be:

- Excavate the material backfilled over the existing foundation under water.
- Divers would be required to assemble and set the forms for the foundation tremie pour. A multi-plate corrugated pipe approximately 60 feet in diameter would serve as the form.
- Tremie the foundation concrete by using a floating slick line to deliver the concrete to the Tower which is approximately 250 yards from the shore.
- The existing valves would need to be temporarily sealed to provide a dry work area within the Tower for the installation of the interior pipe, reinforcement and other work.
- Remove platform at top of Tower, platforms and ladders.
- Install the reinforcing cage and interior pipe, which will act as the interior form, and pour new concrete inner lining in lifts.
- Reinstall ladders and other equipment.
- Reinstall the platform.

2.5. Option 4: New Connecting Tunnel and Sloping Inlet/Outlet

A fourth option that consists of replacing the existing Tower with a sloping inlet/outlet pipe embedded into the reservoir bank was investigated. In addition, a new tunnel would be required to connect the new sloping pipe with the existing tunnel. The new tunnel would be mined from an approximately 280-foot deep, 30-foot diameter access shaft on the south shore of the reservoir as shown on Drawing SK-2, Appendix A. A short tunnel would extend from the shaft to connect into the existing tunnel, while another tunnel would connect into a shaft below the sloping pipe. Additional details are shown on Drawings SK-3 and SK-4, Appendix A. The anticipated construction sequence would be:

- Assemble and weld together the sloping pipe including the inlets and valves on shore.
- Excavate the sloped trench in the reservoir bank under water and sink the shaft a minimum of 5 feet into competent rock. Grouting of the surrounding rock may be required to reduce the risk of water inflows when making the future connection from the tunnel.
- Float or barge the inlet pipe into position and sink it into the sloped trench.
- Tremie the concrete backfill around the sloping pipe and then dewater the pipe.
- In a parallel operation the access shaft would be excavated and the tunnels mined.
- Make the connection into the sloping pipe from the tunnel by raising the shaft into the concrete plug installed previously.
- The final approximately 20 feet of tunnel excavation and connection into the existing tunnel would be made during an outage where the existing Tower valves would be closed and the existing tunnel dewatered.
- Demolish the existing Tower in part or completely. The bottom inlet could be retained as part of a reduced existing Tower.

As an additional alternative, connecting the new sloping inlet/outlet pipe directly into the existing tunnel was suggested by the District. This option would consist of connecting the sloping inlet to the existing tunnel through a vertical shaft approximately 100 feet downstream of the existing Tower. The anticipated construction sequence for this revised Option 4 would be:

- On shore, assemble and weld together the sloping pipe, including the inlets, valves, and the first section of the shaft connection sealed with a blind flange.
- Excavate the sloped trench in the reservoir bank under water and excavate the shaft to expose the existing tunnel up to its invert slab. Grouting of the surrounding rock at this shaft area may be required to reduce the risk of water inflows when making the future connection from the tunnel.
- Float or barge the inlet pipe into position and sink it into the shaft and sloped trench.

- Tremie the concrete backfill by using a floating slick line to deliver the concrete into the shaft, creating a concrete plug between the existing tunnel and the shaft flange, and around the sloping pipe. The sloping pipe is then dewatered.
- During an outage where the existing Tower valves are closed and the existing tunnel dewatered, make the connection into the sloping pipe from the tunnel by raising the shaft into the concrete plug and shaft section installed previously.
- Demolish the existing Tower in part or completely. The bottom inlet could be retained as part of a reduced existing Tower

This revised Option 4, connecting directly into the existing tunnel, proved to be substantially less expensive than the original scheme and cost estimates for this option only is presented in Section 4.

2.6. Option 5: New Posttensioned Precast Tower

This option consists of constructing a new tower straddling the existing tunnel and is shown in Drawing SK-5, Appendix A. This new tower will use a foundation of the same size and construction as the retrofitted foundation of Option 3. The tower itself, with internal and external diameters of 10 and 18.67 feet respectively, would then be assembled from a series of 12-foot high precast rings. The valves will be built into each second ring. In the lower part of the tower all the cells in the rings will be filled with concrete. As the demands decrease towards the top of the tower the number of cells filled with concrete will decrease. Finally the assembled rings will be posttensioned to form the final tower shaft. The construction sequence would be:

- Excavate the in-situ material over the existing tunnel at the new tower location under water to width and depth required for the new foundation.
- Divers would be required to assemble and set the forms for the foundation tremie pour. A multi-plate corrugated pipe approximately 60 feet in diameter would serve as the form. Install the internal 10 foot diameter pipe and duct loops for the posttensioning cables.
- Tremie the foundation concrete by using a floating slick line to deliver the concrete to the new tower location, which would be approximately 240 yards from the shore.
- Precast the tower rings in a precast yard or on site and float or barge them out to the location of the new tower. Lower each ring down to assemble the tower shaft.
- Place reinforcing in cells and place concrete either under water or in the dry if cells can be adequately sealed to achieve that.
- Thread the cables through the ducts in the precast rings and looped through the foundation. Posttension both ends at the top of the tower.

- Dewater the interior of the tower and connect into the existing tunnel during an outage where the existing Tower valves can be closed and the existing tunnel is dewatered.
- Install valve actuators, ladders, and other equipment, including the platform and railing at the top of the tower.
- Demolish the existing Tower in part or completely. The bottom inlet could be retained as part of a reduced existing Tower.

2.7. Option 6: Partial Demolition of the Existing Tower

As an additional alternative it was considered to demolish the upper part of the existing Tower and replace it with a steel shaft as shown in the attached Drawing SK-7, Appendix A, to maintain current operational capacity. The analysis of this modified existing Tower was performed by Quest and is described in Appendix B2. The Tower height was reduced by approximately 88 feet and therefore there is a substantial reduction in mass. However, this also results in a relative stiffening the remaining part of the Tower, resulting in a shorter period of vibration for the system. The net result is that the response is moved up the response spectrum curve, resulting in higher accelerations and therefore almost the same level of shear and bending moment in the remaining part of the tower. Since the results indicated that the Tower would have to be strengthened this option was not investigated further.

During discussions with the District the option of demolishing the Tower to a level where the remaining section of the existing shaft would have adequate structural capacity was discussed as a minimum cost solution. This would entail demolishing the Tower and installing a closure slab to maintain the ability to shut the intake valves and dewater the Tower and tunnel. The hydraulic controls for the remaining valves would be rerouted along the reservoir bed to a location on shore. This option would limit the operational capacity of the Tower significantly. Demolishing the Tower to elevation 451 feet would mean that only the lowest 3 inlet valves will remain. Demolishing the Tower to elevation 426 feet, the most likely scenario, would mean that only the lowest 2 inlet valves will remain. Access to the interior of the Tower and valves would only be through the tunnel after valve closure, dewatering the tunnel and providing adequate ventilation for the confined area of tunnel and Tower. Access to the outside of the valves would be provided by diving deeper than 100 feet unless the reservoir is partly drained.

3. PRELIMINARY DESIGNS

Preliminary analysis and design calculations were performed for all of the retrofit and new concepts. The results of these investigations are summarized below

3.1. Option 1: Guyed Cables

One level of tethers

Several cable diameters were investigated, but a 4-inch diameter cable was the basis for the analysis performed by Quest. The analysis is explained and results are provided in the attached report, "Seismic Evaluation of Retrofit Options for Briones Outlet Tower", attached as Appendix B1.

A review of the results indicates that a 4-inch diameter cable is not sufficient to resist the tension loads. While larger diameter cable is available, the support provided by the cables is insufficient because of the limited moment capacity and shear capacity of the existing Tower. The anchoring of the guy cables at Elevation 512 feet results in a concentration of shear that exceeds the allowable capacity. As an example, at Elevation 540 feet, the shear demand is 1700 kips for the MCE, while the capacity is approximately 950 kips; reference page 21 of Quest's report. Moment capacity is consistently less than the demand for the MCE case as shown on page 20 of Quest's report.

Two levels of tethers

As discussed in the report by Quest, "Seismic Evaluation of Guy-Wires with Two Support Levels" attached in Appendix B3, adding another level of tethers did not support the Tower significantly better than the one level of tehers.

Based on the moment and shear demand, further strengthening of the Tower would be required, including the thickening of the Tower and the addition of reinforcement to resist shear and moment. The analyses performed have shown that using guyed cables to strengthen and support the existing Tower is not a feasible retrofit option.

3.2. Option 2: External Supporting Piers and Frame

The 10-foot diameter piers selected for the buttress shafts are considered the practical limits for this design concept due to availability of equipment and cost. A preliminary analysis was performed for the buttressed scheme as shown in Drawing SK-6, Appendix A. For design purposes, an arbitrary 1000 kip load was applied to each elevation of the buttressing frame. The preliminary analysis indicates that the vertical piers are too slender for their height. Based on the preliminary analysis, the Tower is stiffer than the pier framing system. The magnitude of the bending moment in the piers is such that the amount of reinforcement needed in the piers exceeds the maximum allowable percentage of steel for a reinforced beam/column. Therefore, this option was not pursued further in greater detail.

3.3. Option 3: Reinforced Tower and Strengthened Foundation

Details of this option are shown on Drawing SK-1, Appendix A. The ballasting of the foundation with the tremie concrete mitigates the overall flexural and shear demand on the Tower by reducing the cantilevered length of the Tower. In addition, the impact of the

overturning moment on the foundation is negated by the ballasting of the footing, resulting in a reduction of the eccentricity on the footing. A preliminary review of the outlet tunnel indicates that the additional ballast will not have a detrimental effect on its structural integrity.

Quest has performed an analysis of this proposal as presented in Appendix B1. Based on the retrofitted design, the retrofitted moment capacity of the structure will be greater than the bending moment acting on the structure from the maximum design earthquake (MDE). The MCE event results in a 40% overstress when the maximum moment is compared to the corresponding maximum capacity of the structure. For an MCE occurrence, the allowable Demand vs. Capacity ratio is 2, thus the retrofitted design has sufficient capacity for the estimated bending moments.

3.4. Option 4: New Connecting Tunnel and Sloping Inlet

The preliminary design of this option was based on the design for the new Lenihan Dam outlet tunnel in Santa Clara County, currently under construction. Since detailed contour information is not available the concept for the new sloping inlet/outlet, shafts and tunnel was laid out as shown in Drawings SK-2 to 4, Appendix A. Shaft and tunnel size and design, and steel tunnel lining thickness were based on similar projects Jacobs Associates have recently designed.

Connecting directly into the existing tunnel proved to be considerably less costly than a new shaft and tunnel. Therefore, only cost estimates for the revised Option 4, the alternative connecting directly into the existing tunnel, were developed.

3.5. Option 5: New Posttensioned Precast Tower

The concept for the new tower straddling the existing tunnel is shown in Drawing SK-5, Appendix A. Since it was not possible to perform a detailed analysis for this option an estimate was made based on the following: Both the mass and stiffness of the precast ring tower would fall somewhere in between that of the existing Tower and the reinforced Tower proposed for Option 3. The results from the analyses for the existing Tower model (Quest, 2006) and for the Option 3 retrofitted model (Appendix B1) for both shear and bending moment were averaged and used to perform the preliminary design. Providing the required shear capacity is one of the critical elements of tower design. The cells of the precast rings, which can be filled with concrete to provide continuity between the rings, play an important role to provide the required shear capacity. In the top rings this additional shear capacity is not required and the added mass of the concrete filled cells are therefore avoided. Benefits of the posttensioning is the added shear capacity due to the prestress of the shaft and the reduction in reinforcing steel because of the higher tensile strength of the tendons.

3.6. Option 6: Partial Demolition of the Existing Tower

The concept for this option consists of partial demolition of the existing Tower and is shown on Drawing SK-7, Appendix A. The analysis performed by Quest is documented in Appendix B2. Preliminary sizing of the steel shaft and platform was done, but no preliminary design or cost estimate was performed since the analysis showed that the option was not viable.

No analysis, design or cost estimates were performed for the more extensive demolition option discussed in the last paragraph of Section 2.7 above.

4. COST ANALYSIS AND COMPARISON

4.1. General

Preliminary cost estimates have been performed for the options that are considered viable and constructable and are summarized in Table 3. Details of the cost estimates for each option are presented in Appendix C. All of the cost estimates include an Owner's contingency of 40%, which is deemed appropriate for this preliminary level of design effort. For the cost estimates it has been assumed that the material excavated from the reservoir bottom by dredging and concrete resulting from demolition of the existing tower can be deposited on the reservoir floor. The estimated additional costs of hauling the dredged material off site were estimated and included for each option.

Retrofit/New Alternative	Estimated Preliminary Cost (million)
Option 3: Reinforced Tower and Foundation	\$29.9
Option 3A: Reinforced Tower and Foundation (partially drained)	\$25.2
Option 3B: Reinforced Tower and Foundation (drained)	\$15.8
Option 4: New Sloping Inlet into Existing Tunnel	\$39.1
Option 4A: New Sloping Inlet into Existing Tunnel (partially drained)	\$26.1
Option 4B: New Sloping Inlet into Existing Tunnel (drained)	\$17.3
Option 5: New Posttensioned Tower	\$41.9
Option 5A: New Posttensioned Tower (partially drained)	\$28.2

Table 3: Summary of	of Estimated Constr	ruction Cost for Ret	rofit Alternatives
---------------------	---------------------	----------------------	--------------------

4.2. Constructability Review

To aid in developing the preliminary cost estimates the District engaged the services of a local contractor, Vortex Marine Construction, Inc. (Vortex). Based on discussions with Vortex it became clear that there is a significant difference between underwater work in

water up to a depth of 100 feet versus working at depths beyond 100 feet and up to 230 feet, as would be required for this project. The rates for underwater work provided by Vortex are attached in Appendix C and were used to develop the cost estimates for the undrained (3, 4 and 5) and partially dewatered (3A, 4A and 5A) options.

4.3. Discussion

The original options, 3, 4 and 5 considered construction on the Tower with the reservoir full. Because of the high cost of the undrained underwater work additional options, 3A, 4A, and 5A were developed, assuming partial dewatering and refilling the reservoir to allow construction in water not exceeding 100 feet in depth.

Options 3B and 4B, considering the reservoir fully drained and including the cost of refilling the reservoir, were ruled out due to the unacceptably high risk to the District supply system and are shown for completeness only (see the discussion in Section 2.1).

Undrained Options

Option 3, strengthening of the existing Tower, is the lowest estimated cost option at a cost of \$29.9 million. The advantage of this option is that the work is fairly well defined since it consists of strengthening an existing structure and the risk is therefore also more limited. The disadvantage of this option is working around the existing valves and having to be able to provide the District with operational functionality at 48 hour notice during most of the construction period.

The estimated construction cost of the new sloping inlet pipe of Option 4 is approximately 31% higher than that of Option 3. The advantage of this option is that it is all new construction which can take place without interfering with the operation of the existing inlet/outlet works. The risk associated with this option is the shaft excavation up to the existing tunnel and the connection of the shaft to the existing tunnel. These activities will occur under the full reservoir head and the permeability of the rock mass and potential for groundwater inflows could require pre-excavation grouting and impact the work.

The estimated construction cost of the new posttensioned tower of Option 5 is approximately 40% higher than that of Option 3. The advantage of this option is that it is all new construction which can take place without interfering with the operation of the existing inlet/outlet works. The risk associated with this option is the under water excavation of the foundation around the existing tunnel.

Partially Dewatered Options

Option 3A, strengthening of the existing Tower, is again the lowest estimated cost option at a cost of \$25.2 million. The reduction in estimated cost due to partial dewatering is approximately 16% compared to Option 3.

The estimated construction cost of the new sloping inlet pipe of Option 4A is approximately 4% higher than that of Option 3A.

The estimated construction cost of the new posttensioned tower of Option 5A is approximately 12% higher than that of Option 3A.

When partial dewatering is considered the estimated cost of Options 3A and 4A are roughly equal. In this case the new sloping inlet would be the preferred choice since it provides a new inlet/outlet facility with very low seismic vulnerability.

5. CONCLUSIONS

Six potential retrofit options have been investigated and the three most viable conceptual designs for the retrofit or replacement of the Briones Outlet Tower have been identified. The three most feasible alternatives have been discussed; preliminary designs performed, and estimated construction cost comparisons presented. Since it is not considered advisable to drain the reservoir for Tower retrofit construction, work will be performed from barges and divers will have to be employed for all alternatives. If partially draining the reservoir is acceptable, the cost of underwater work is significantly reduced and more options are cost effective.

Based on the preliminary designs and cost estimates presented, the strengthening of the existing structure, Option 3, appears to be the most economical alternative to retrofit the Briones Tower. There are operational benefits to constructing new inlet/outlet works and if the replacement of the existing valves and actuators are considered, the difference in estimated cost between Options 3 and 4 would be significantly less.

Preliminary designs for the most feasible Options 3, 4 and 5 have been performed. During the final design all of these options should be analyzed and designed in more detail to optimize the designs and make a more detailed comparison of not only the cost, but also constructability, operational functionality, seismic vulnerability and long term performance issues.

6. **REFERENCES**

Quest Structures, Inc. (2007), "Seismic Evaluation of Briones Outlet Tower."

USACE (2003), EM 1110-2-2400 "Structural Design and Evaluation of Outlet Works."

APPENDIX A: DRAWINGS

As-Built Drawings

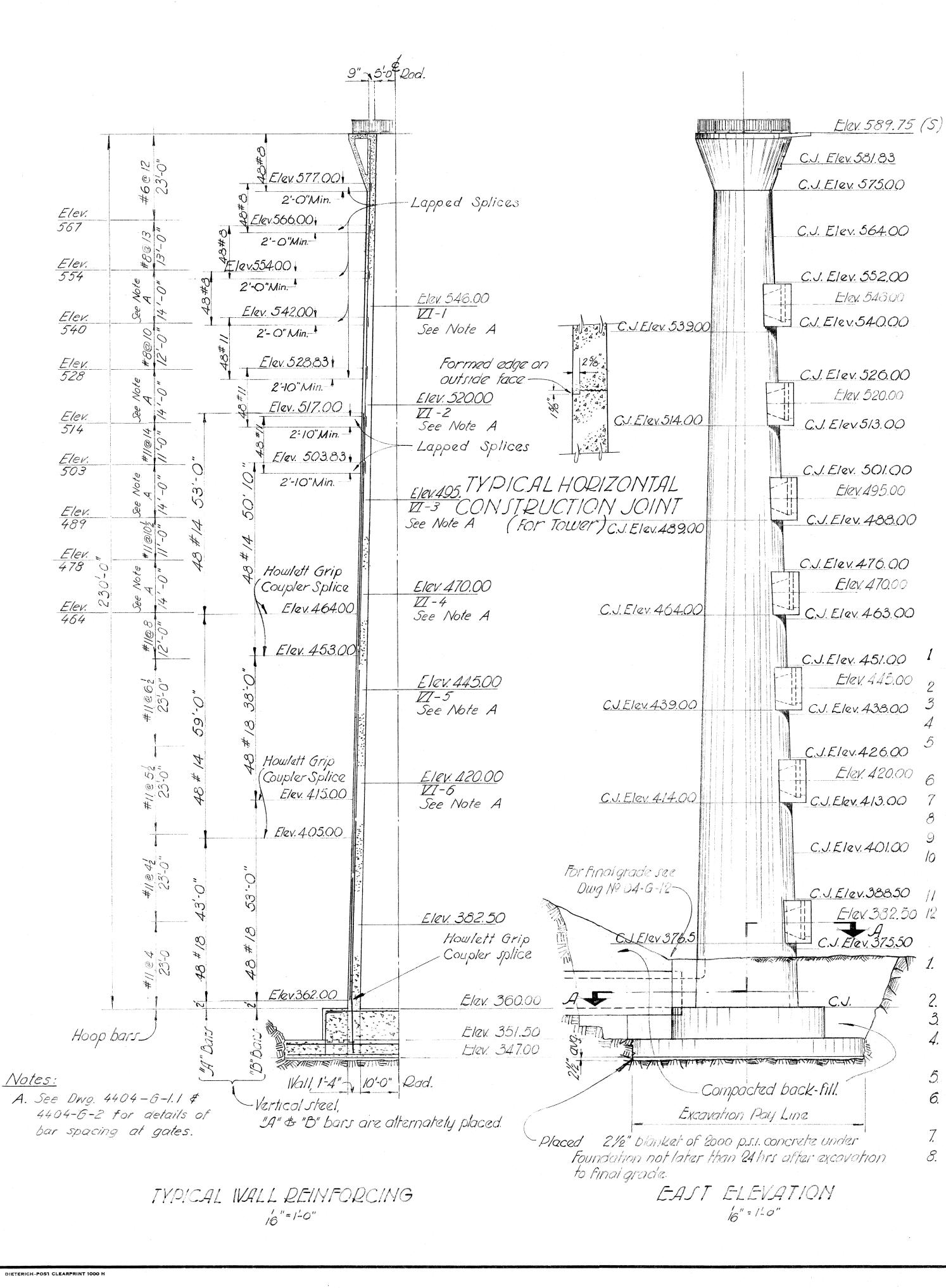
Drawing No. 4404-G-1: Outlet Tower Plan & Elevations

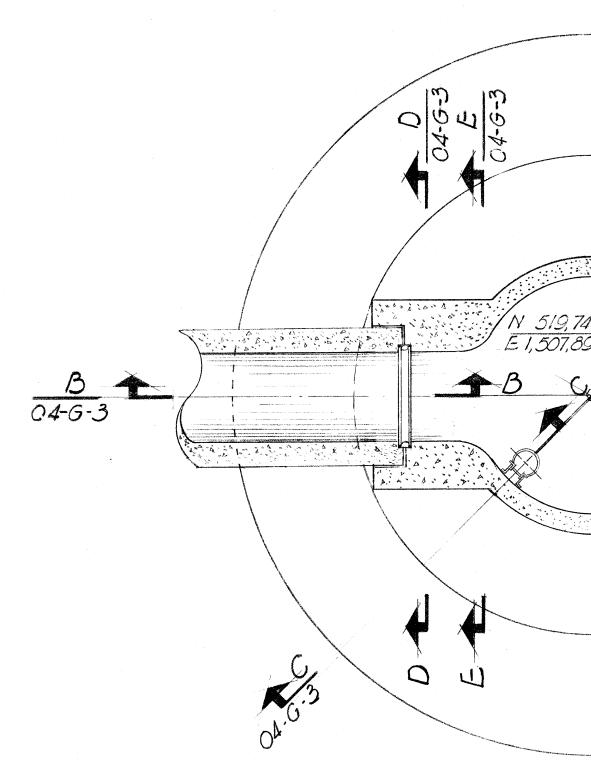
Drawing No. 4404-G-2: Outlet Tower Sections

Drawings Showing Retrofit Options

Drawing No. SK-1 Option 3: Elevations, Sections and Details

Drawing No. SK-2 Option 4: General Plan


Drawing No. SK-3 Option 4: Section along Inclined Pipe


Drawing No. SK-4 Option 4 Details

Drawing No. SK-5 Option 5: Elevation and Details

Drawing No. SK-6 Option 2: External Supporting Piers and Frame

Drawing No. SK-7 Option 6: Partial Demolition of Existing Tower

GENERAL N

1 Unless otherwise noted, all ferro coated with tarset. Coating sha 2 All reinforced concrete construction Concrete shall have a minimum

4 Reinforcing steel shall be deforme

5 Reinforcing bars in unformed su hove 2"cover unless noted of

6 Spliced bars shall lap a minimu Right angled hooks shall have a 8 All exposed corners shall be cl

9 All structural steel shall be in a

10 All exposed structural steel & specifications unless other

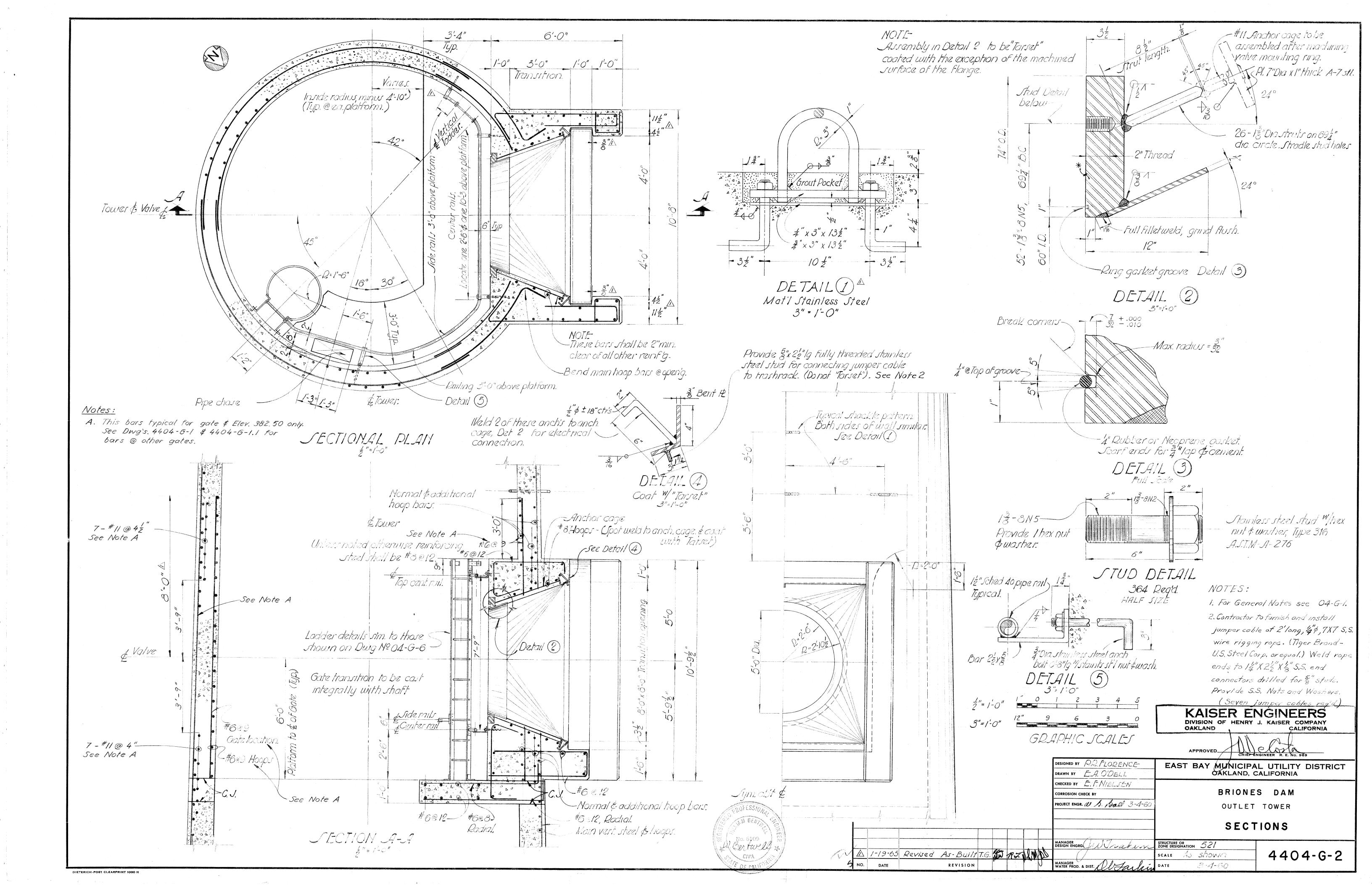
II For water-stops see specifica Elev. 332.50 12 Verify all equipment dimension A C.J. Elev. 375.50 OUTLET TOIVEL

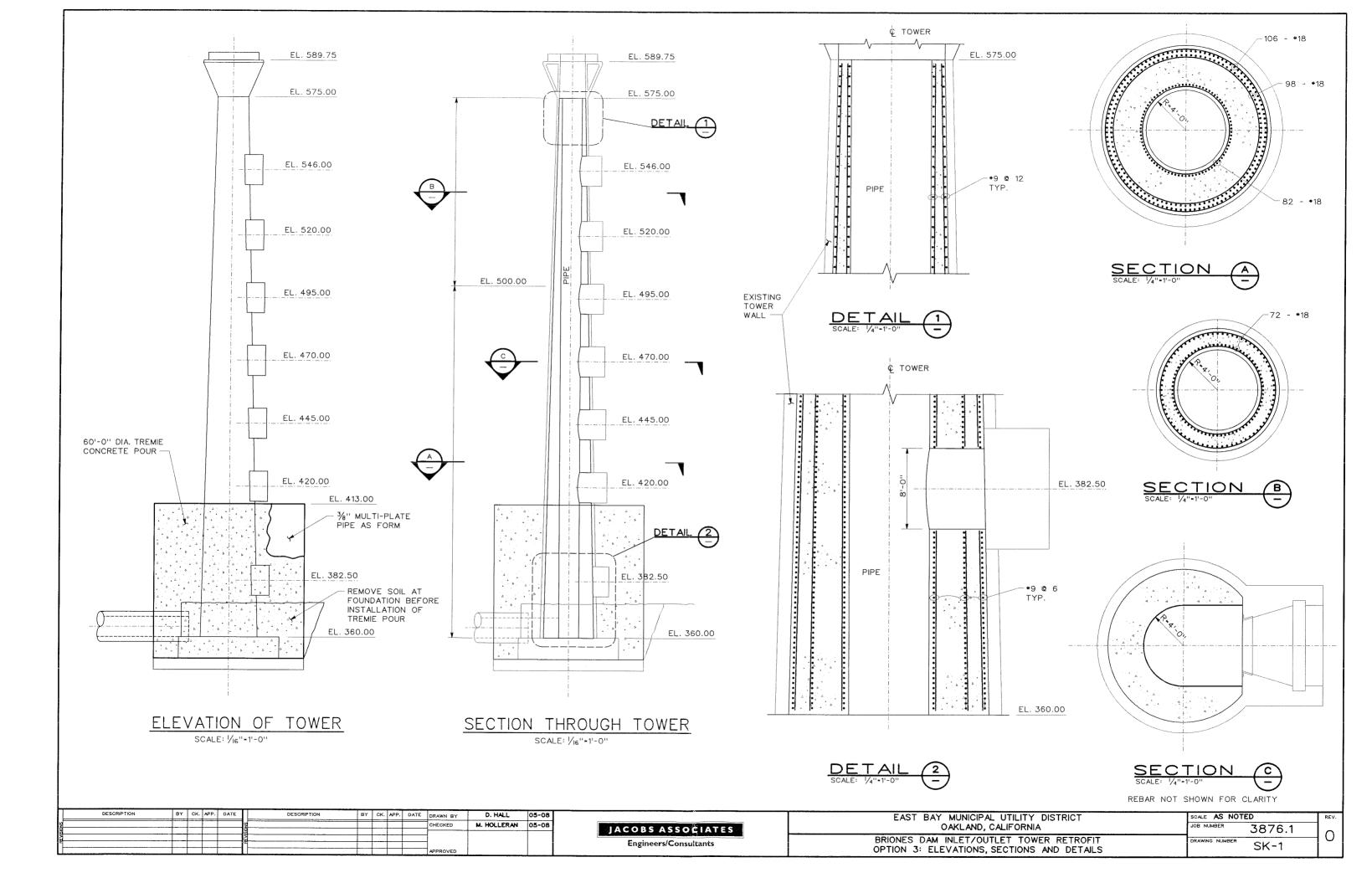
All concrete above elevation 36 shall develop for of 3000 p.s.r.

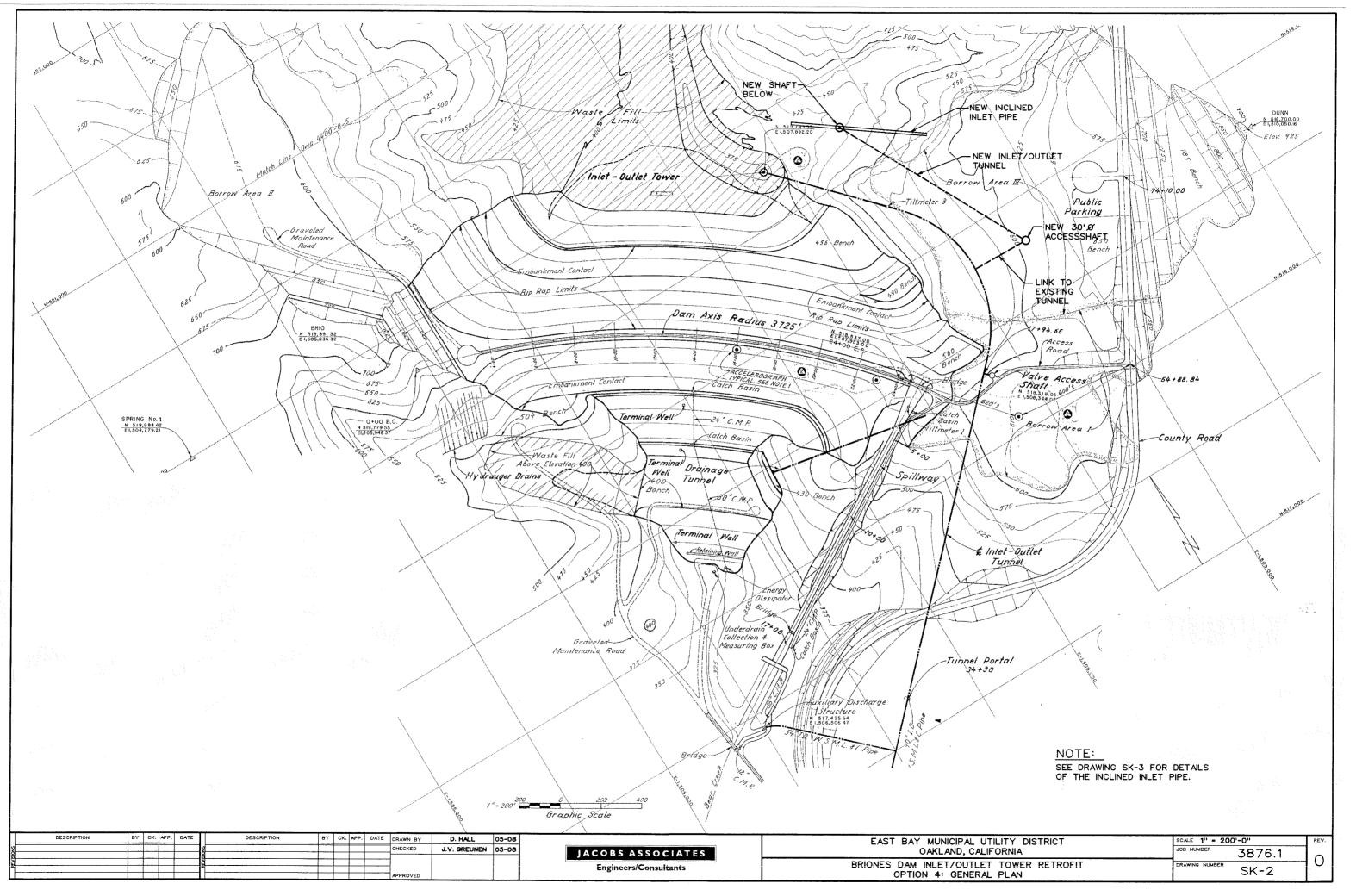
2. All splices in hoop bars shall be

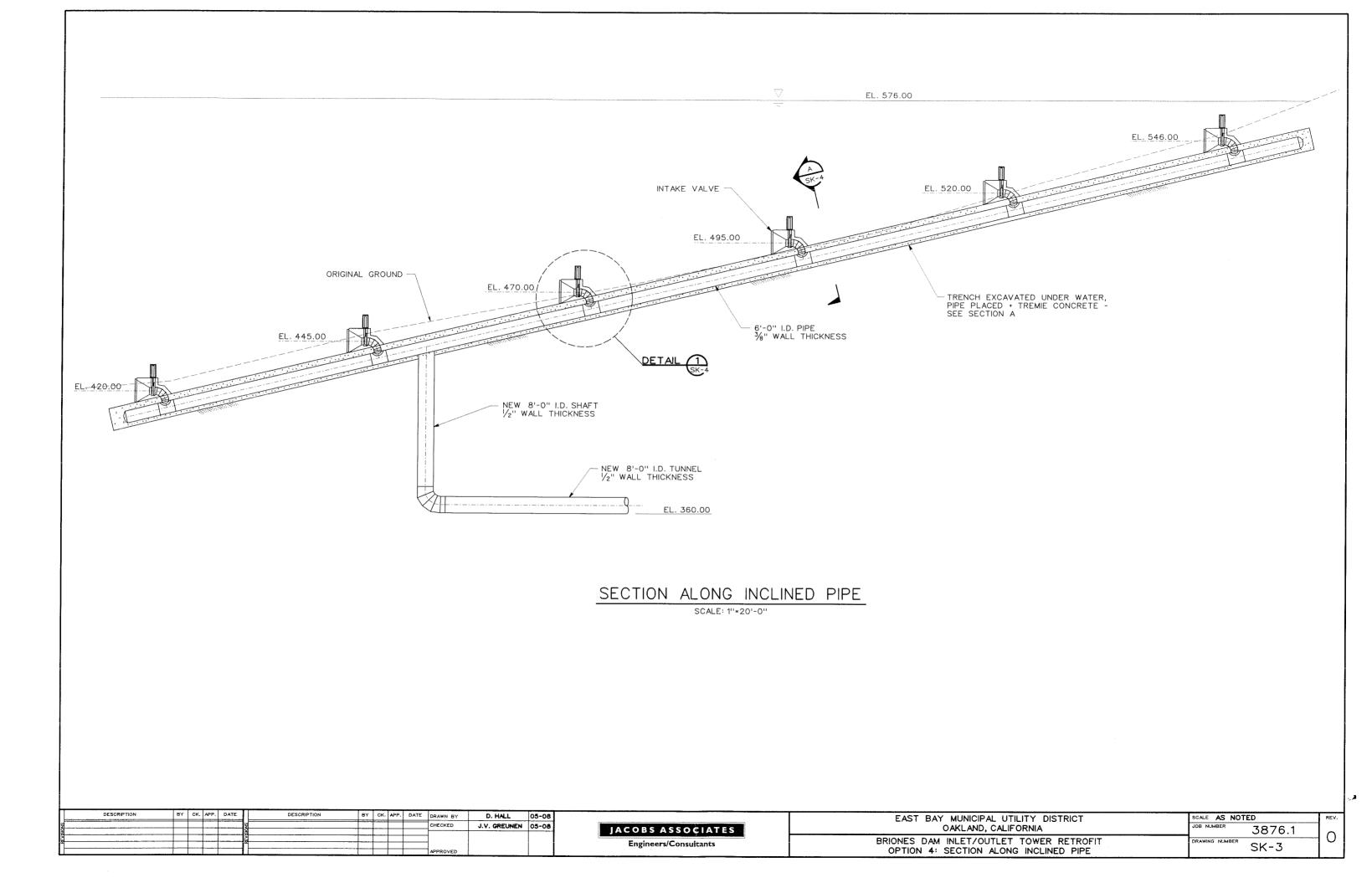
AN BERTS

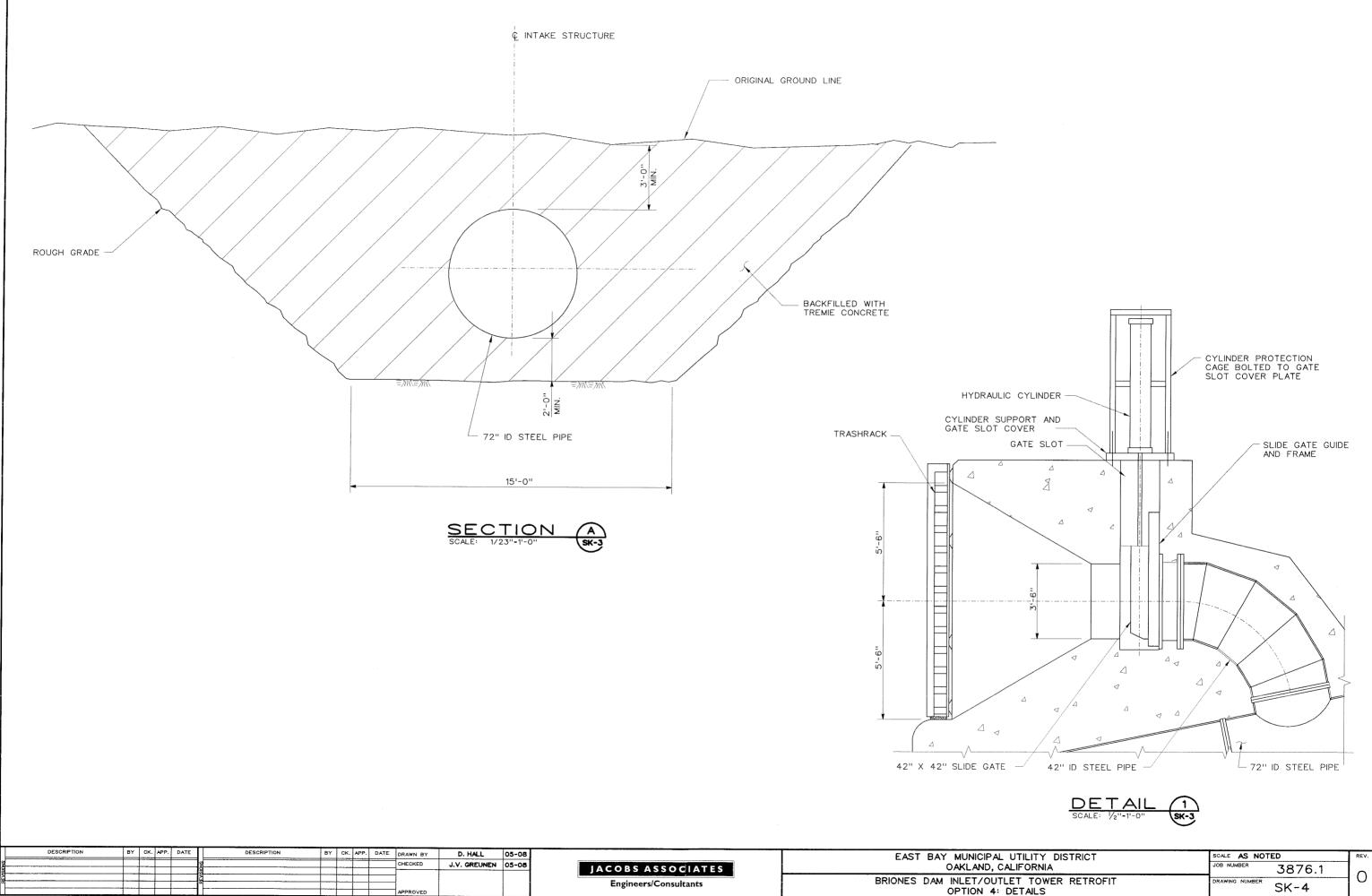
No. 6109

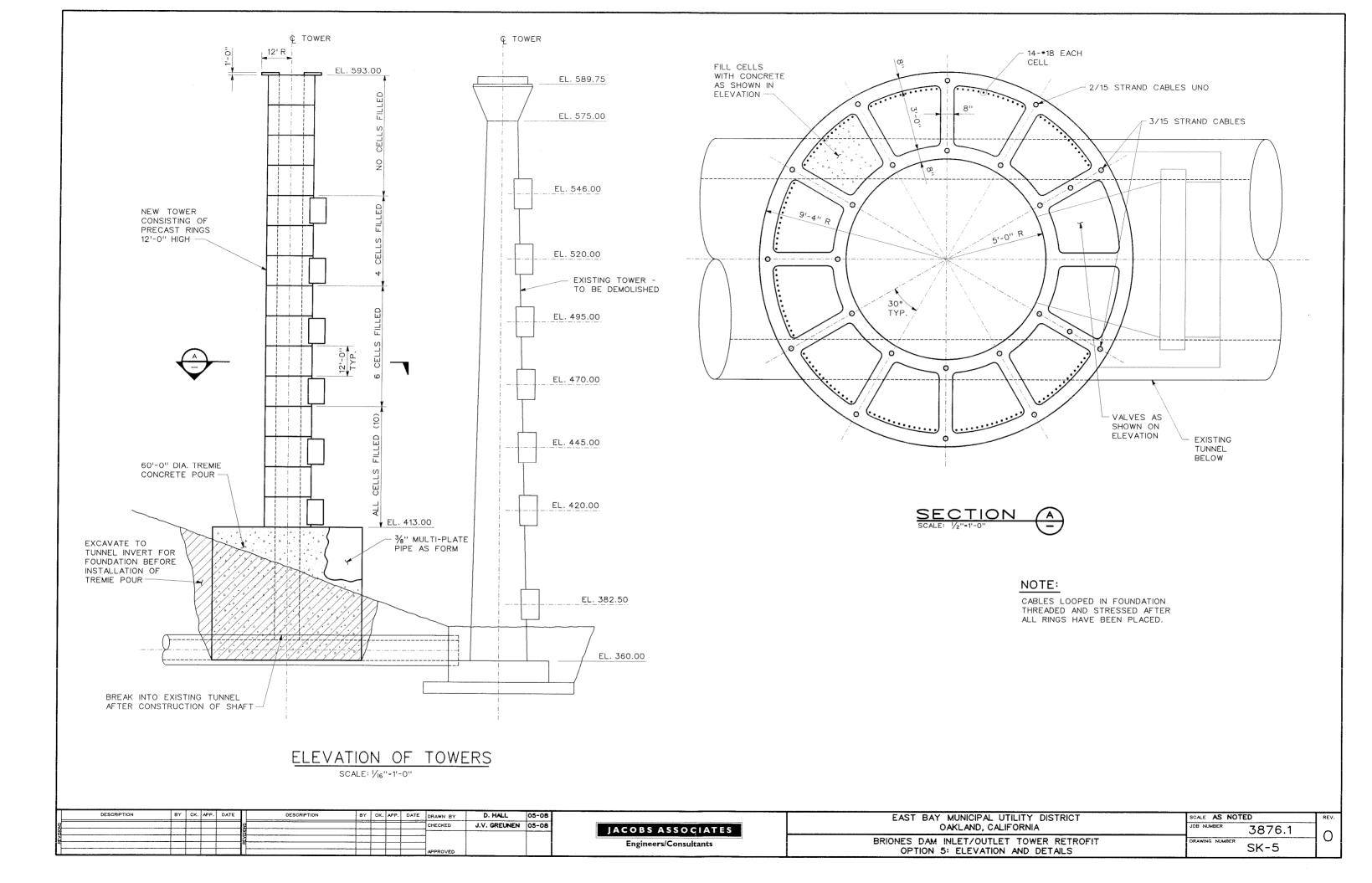

CIVIL

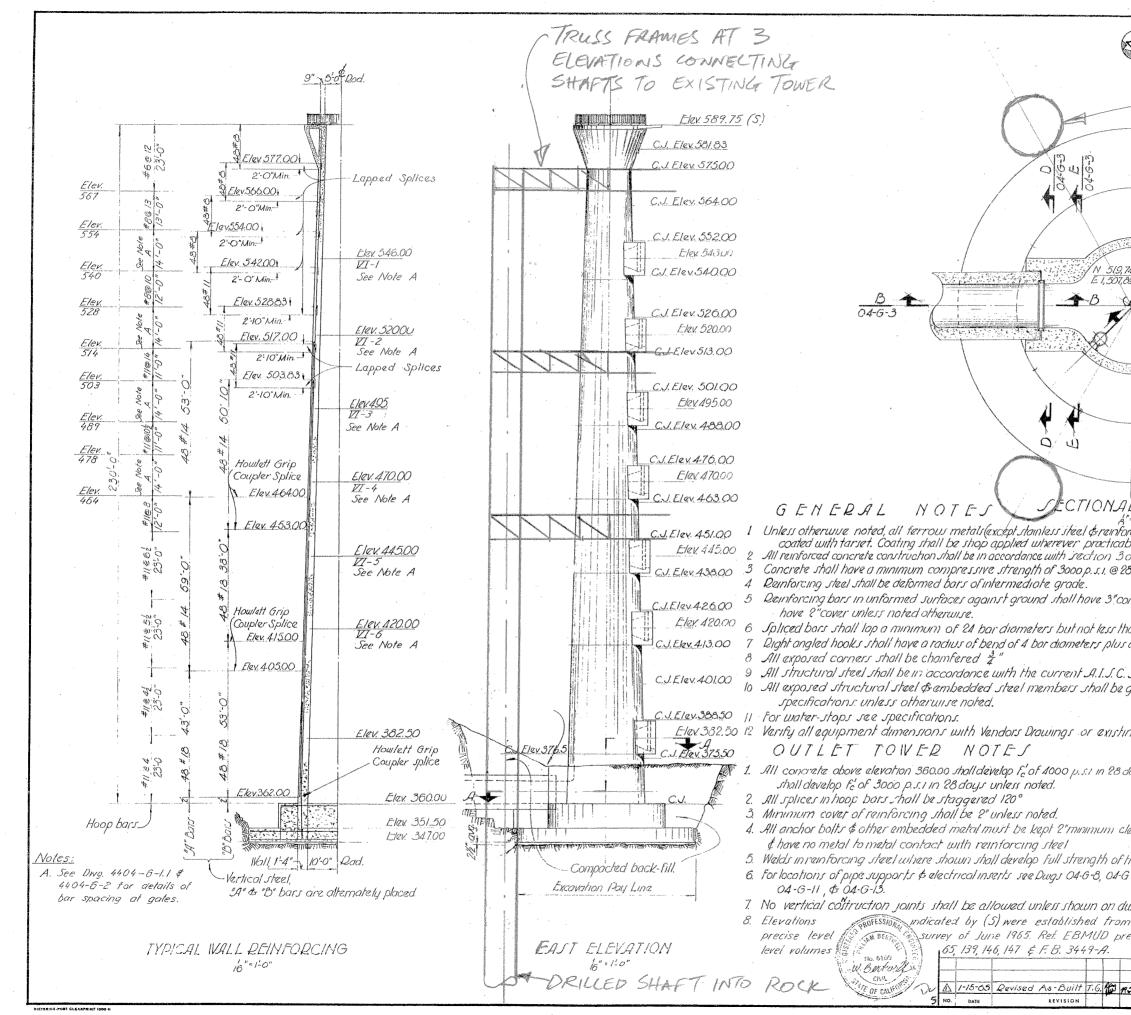

- 3. Minimum cover of reinforcing
- 4. All anchor bolts & other embedd & have no metal to matal conta
- 5. Welds in reinforcing steel where
- 6. For locations of pipe supports & 04-G-11 , & 04-G-13.


7. No vertical costruction joints 8. Elevations ONFESSION ind


precise level level volumes W. Bertwell >


compressive strength of 3000 p. s. @ 28 days unless otherwise noted. d bars of intermediate grade. rbars of intermediate grade. rbars of 24 bar diameters but not less than 12" an of 24 bar diameters but not less than 12" adjust of bard of 4 bar diameters plus an extension of 12 bar diameters gentfered 2" cocordance with the current A.I.J. C. Specifications & A.S.I.M. Spec. A.T ambedded steel members shall be galvanized as autimed in the nors. ns with vendors Dawings or existing equipment. Q N OT E.J Doos shalldevelop for toold. restagered 12° staggered 12° </th <th></th> <th></th>		
$\begin{array}{c c} & \text{Alsolvely} \\ \hline & \text{Alsolvely} \\ \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline \hline \\ \hline \\ \hline & \text{B} \hline \hline \\ \hline \\ \hline \hline $		
$\begin{array}{c c} & \text{Alsolvely} \\ \hline & \text{Alsolvely} \\ \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline & \text{B} \hline & \text{B} \hline \\ \hline & \text{B} \hline \hline \\ \hline \\ \hline & \text{B} \hline \hline \\ \hline \\ \hline \hline $	004.63	
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	N 519,743.59 EL507.892.20	
$\begin{array}{c} (\text{putried trunched})\\ \text{(putried trunched)}\\ (putried trun$		N-43°-29-47.5"W
With the set of sendering back of touched up in the field. With the index applied wherever precisions of touched up in the field. Shall be indexerved precisions of the up affections. Shall be indexerved precisions of the up affections. Shall be indexerved precisions of the up affections. Shall be indexerved precisions. Shall be indexerved.		(District furnished)
With the set of sendering back of touched up in the field. With the index applied wherever precisions of touched up in the field. Shall be indexerved precisions of the up affections. Shall be indexerved precisions of the up affections. Shall be indexerved precisions of the up affections. Shall be indexerved precisions. Shall be indexerved.	04. ^C .3 04. ^C .3	
unrefail(except standard stated & mathematication of bardion notified fauet felex 602.50 in Valve Access shall shall be in account state of backhed up in the field. is shall be in account section 3 of the specifications. onder the in account section 3 of the specifications. onsprensme strength of 3000 p.s. is 28 days unless other up in the field. if bar diameters ground shall have 3" concrete cover. Attributer bars shall for 0 a a an action for the specifications. if of bar diameters but not less than 12" if of bar diameters but not less than 12" if of bar diameters but not less than 12" if of bar diameters but not less than 12" ambedded streat members shall be gavanised as outlined in the unser noted. ambedded streat members shall be gavanised as outlined in the unser noted. ins unth Vendors Draumage or existing equipment. Q N O T E J into the effection much station of all rainforcing steel into the effection much be lead 2 for annown clear of all rainforcing steel into the reinforcing steel into the reinforcing steel into the station of the bar: alectrical inserts sue Dugs O 46 (3 (0 - 0)) into the reinforcing steel into the reinforcing steel into the reinforcing steel into the est onleas and of the bar:		
In Or Car bend of 4 bor diameters plus on extension of 12 bar diameters GRAPHIC SCALES canfered 2 GRAPHIC SCALES canfered 3 GRAPHIC SCALES canfered 3 GRAPHIC SCALES canfered 4 GRAPHIC SCALES canfered 3 GRAPHIC SCALES canfered 4 GRAPHIC SCALES canfered 5 GRAPHIC SCALES canfered 5 GRAPHIC SCALES canfered 6 GRAPHIC SCALES canfered 6 GRAPHIC SCALES canf	pus metals (except stainless steel & rainforcing bars) below elev 581.00 in Outler all be shop applied wherever practicable & touched up in the field. In shall be in accordance with section 3 of the specifications. compressive strength of 3000 p.s.i. @ 28 days unless otherwise noted. and bars of intermediate grade. Infaces against ground shall have 3" concrete cover. All other bars shall therwise.	$ \frac{1}{8} = 1^{-0} = 10^{-10} = 10^{-10} $
Coordance with the current A.I.J. C. Specifications # A.S.T.M. Spec. A-7 ambedded steel members shall be galvanized as outlined in the wise noted. thom: ns with Vandors Drawings or axisting equipment: Q NOTE-J Doos shall develop food 4000 p.s.i in 85 days. Below elev. 360.00 conc. in 28 days unless noted. technol must be kept 2°minimum clear of all reinforcing steel- shall be 2° unless noted. technol inserts see Dugs 04-6-8, 04-6-10, shall be allowed unless shown on dugs. catest by (S) were established from rever of June 1955. Rel. EBMUD precise 65, 139, 146, 147 & F.B. 3449-A. A 1-15-65 Revised As-Built T.G. R. R. Market A. A 1-15-65 Revised As-Built T.G. R. R. Market A.	m of 24 bar diameters but not less than 12" radius of bend of 4 bar diameters plus an extension of 12 bar diameters hamfered $\frac{3}{7}$ "	
Q NOTES Q Not	embedded steel members shall be galvonized as outlined in the wise noted. Mons.	A-7
DOD shall develop f'of 4000 p.s.1 in 28 days. Below elev. 360.00 conc. In 28 days unless noted. It staggered 120° Shall be 2" unless noted. It with reinforcing steel It with rei		
Jhail be 2" unless noted. Jed matal must be kept 2" minimum clear of all reinforcing steel- Set with reinforcing steel Shown shall develop full strength of the bar: State develo	0.00 shall develop f_c' of 4000 μ s. i in 28 days. Below elev. 360.00 conc. In 28 days unless noted.	
Approved Approved <td< td=""><td>shall be 2" unless noted. ded metal must be kept 2"minimum clear of all reinforcing steel.</td><td>DIVISION OF HENRY J. KAISER COMPANY</td></td<>	shall be 2" unless noted. ded metal must be kept 2"minimum clear of all reinforcing steel.	DIVISION OF HENRY J. KAISER COMPANY
shall be allowed unless shown on dwg's. cated by (S) were established from invey of June 1965. Ref. EBMUD precise 65, 139, 146, 147 & F.B. 3449-A. A 1-15-65 Revised As-Built T.G. Ref. Intervention Structure of Scale As-Built T.G. Ref. And Addition Structure of Scale As-Built T.G. Ref. Ref. And Addition Structure of Scale As-Built T.G. Ref. Ref. Constants of the structure of Scale As-Built T.G. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref	e shown shall develop full strength of the bar.	APPROVED MDelonta
shall be allowed unless shown on dug's. cated by (S) were established from invey of June 1965. Ref. EBMUD precise 65, 139, 146, 147 & F.B. 3449-A. A 1-15-65 Revised As-Built T.G. TREASE A 4404-G-I		EAST BAY MUNICIPAL UTILITY DISTRICT OAKLAND, CALIFORNIA
VIVEY OF JUNE 1965. Ref. EBMUD precise 65, 139, 146, 147 & F.B. 3449-A. A 1-15-65 Revised As-Built T.G. P.T. M. C. C. PROJECT ENGR. J. J. C.	shall be allowed unless shown on dwg's. CHECKED BY E.F. NIELSEN	
MANAGER DESIGN ENGRG ANT STRUCTURE OR 521 DESIGN ENGRG AS-BUILT T.G. M PSTILMED SCALE ASSHOWN 4404-G-I	urvey of June 1965. Ref. EBMUD precise	
LA 1-15-65 Revised As-Built T.G. A PETRIMAN SCALE ASSHOWN 4404-G-1		
	A 1-15-65 Revised As-Built T.G. W RJ. M.D.	

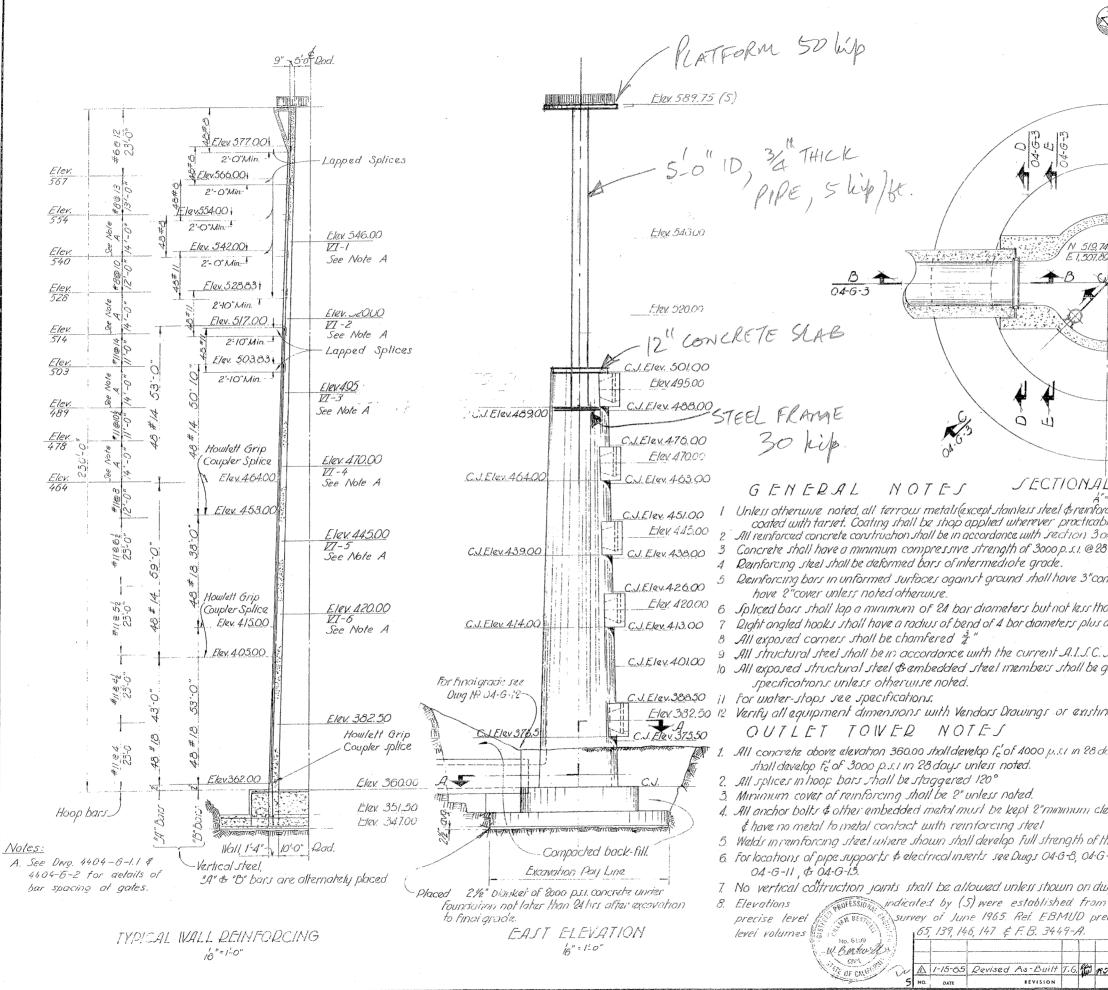




UTILITY DISTRICT	SCALE AS NOTED	REV.
LIFORNIA	JOB NUMBER 3876.1	
ET TOWER RETROFIT DETAILS	DRAWING NUMBER SK-4	

OPTION 2 : EXTERNAL SUPPOP

REVISION


-0 04.6.3 1.6-

A-B

CTIONA

0 ιĤ

	NATES AND
	THREE DRILLED
	SHAFTS @ 120°
	10' DIAMETER WITH
	TRUSS FRAMES.
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Re Leost	
LAN @ A-A	
bard below elev 581.00 in Out touched up in the field.	let Tower &elev. 6o2.5o in Valve Access Shaft shall be
r specification s. is unless otherwise noted,	
te cover. Allother bars shall	
2" 	1° - 1 - 0° 10 10 20 30 40
tension of 12 bar diameters	
rifications & A.S.T.M. Spe nized as outlined in the	<i>c. A</i> -7
guipment.	
Belout elev, 360.00 conc.	
of all reinforcing steel	KAISER ENGINEERS Division of HENRY J. KAISER COMPANY OAKLAND
77.	APPROVED CHIP ENGINEER B. E. NO. YER
designed by P.R.FLORENCE drawn by E.A. O'DELL	EAST BAY MUNICIPAL UTILITY DISTRICT
CHECKED BY E.F. NIELTEN CORROSION CHECK BY MOJECT ENGR. 23 J. JACO 3. 4-60	BRIONES DAM
MORET LIKE (0 12. 12. 12. 12. 14.60)	OUTLET TOWER PLAN & ELEVATIONS
MANAGER DESIGN ENORG (11/17 makim	ETRACTURE OF EDITE DESIGNATION 521
DESIGN ENORGLADU Machin	SCALE ASTOWN 4404-6-1

OPTION 6: PARTIAL DEMOLITION

$H - 43^{\circ} - 29^{\circ} 47.5^{\circ} W$ $H - 43^{\circ} - 29^{\circ} 47.5^{\circ} W$ $Survey monumon!$	E	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.20 ² 000-2010-	
(Dutrict formuled) See E.B.M.U.D. Sid. Dwg. 1480-A See E.B.M.M.S. Dwg. 1480-A See E.B.M.M.C.S. D	743.59	N-43°-29-47.5"W
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \left\langle r_{e1} + \sigma^{\prime \prime} \\ \sigma r_{end} & \sigma r_{end} \\ \sigma r$		(District furnished)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \left\langle r_{e1} + \sigma^{\prime \prime} \\ \sigma r_{end} & \sigma r_{end} \\ \sigma r$	NO ANO A-A	
hon 12" is an extension of 12 bar diameters Specifications & A.S.I.M. Spec. A-7 galvanized as outlined in the ing equipment: days. Below elev. 360,00 conc. Selear of all reinforcing steel School Market Market Selection of HENRY J. KAISER ENGINEERS Division of HENRY J. KAISER COMPANY OAKLAND OF HENRY J. KAISER COMPANY OAKLAND, CALIFORNIA Selection of E.F. NELSEN BRIONES DAM OUTLET TOWER PLAN & ELEVATIONS Mittation of HENRY J. 4404-54	{*=1'-0" proing bars)below elev 581.00 inOutle able & touched up in the field. af the specifications.	r Tower ¢elev, 6o2,5o in Valve Access shaft shall be
galvonized as outlined in the ing equipment: days. Below elev. 360.00 conc. clear of all reinforcing steel. Che bai: G-10, Escore w Bair w Bair w G-10, Escore w Bair w Bair w G-10, Escore w Bair w Bai	hon 12"	16 - 1:0 10 10 30 40
days. Below eley. 360,00 conc. elear of all reinforcing steel. billear of all reinforcing steel. approved called row of Henry J. Kaiser company oakland called row of Henry J. Kaiser company called row of Henry J. Kaiser company calle		4-7
Maar of all reinforcing staal KAISER ENGINEERS Division of Henry J. Kaiser company OAKLAND Division of Henry J. Kaiser company OAKLAND G-10, March M. BR. Florence Barn st. E.A. O'Dell EAST BAY MUNICIPAL UTILITY DISTRICT OAKLAND, CALIFORNIA Course of the st. St. F. NIELSEN BRIONES DAM OUTLET TOWER Pecise PLAN & ELEVATIONS Precise PLAN & ELEVATIONS March M. St. M. St. March M. St. St. J. St. J. St. J. Precise PLAN & ELEVATIONS March M. St. M. St. M. March M. St. J. St. J. March M. St. M. March M. St. J. St. J. March M. March M. St. J. St. J. March M. March M. St. J. St. J.	ng equipment.	
Inder of of interminion of Henry J, Kaiser company oakLand The bar: G-10, Design by RR.FLORENCE Design by RR.FLORENCE Design by RR.FLORENCE Design by RR.FLORENCE Design by R.F. NIELSEN Construction by R.F. NIELSEN Construction by R.F. NIELSEN Construction by R.F. NIELSEN Construction by R.F. Nielsen Design check by R.F. Nie	days. Below eley, 360,00 conc.	
G-10, LEBIORER BY P.R.FLORENCE DENORM BY P.R.FLORENCE EAST BAY MUNICIPAL UTILITY DISTRICT DENORM SY E.R. NIELTEN CALIFORNIA COMPANY E.R. NIELTEN BRIONES DAM COMPANY F.R. NIELTEN BRIONES DAM COMPANY P.R. NIELTEN BRIONES DAM COMPANY P. AN & ELEVATIONS BRIONES PLAN & ELEVATIONS ENDIRED SECOND Address PLAN & ELEVATIONS ENDIRED SECOND Address	lear of all ren forcing steel	DIVISION OF HENRY J. KAISER COMPANY
Image: Contexter by E.F. NIELSEN BRIONES DAM CORRESTON CHECK BY BRIONES DAM PROJECT SHOR (1) A. BERGENAGE OUTLET TOWER PLAN & ELEVATIONS AMANGER OUTLET SOURCE PLAN & ELEVATIONS AMANGER OUTLET SOURCE PLAN & ELEVATIONS AMANGER OUTLET SOURCE SCALE AL Shown	G-10, DESIGNED BY P.R.FLORENCE	EAST BAY MUNICIPAL UTILITY DISTRICT
MANAGER DEGION PROPER (M) Just un SPRICTURE OR SCALE AI Shown 4.404-5-1	11195. CHECKED BY E.F. NIELSEN CORROSION CHECK BY 177 HOIRCT ENDER J. A. 600. 9. 4.400	BRIONES DAM Outlet tower
	ASTA MAD	STRUCTURE OR DESIGNATION 521

APPENDIX B1: SEISMIC EVALUATION OF RETROFIT OPTIONS FOR BRIONES OUTLET TOWER

SEISMIC EVALUATION OF RETROFIT OPTIONS FOR BRIONES OUTLET TOWER

Final Report

Prepared for

East Bay Municipal Utility District 375 11th Street Oakland, CA 94607

By

Quest Structures, Inc. 3 Altarinda Road, Suite 203 Orinda, CA 94563

September 12, 2008

Table of Contents

1.		FRODUCTION	
2.	OP	TION-1: GUY-WIRE ALTERNATIVE	. 1
	2.1	Finite Element Model	. 4
	2.2	Evaluation Loads	. 5
	2.2	.1 Dead Loads	. 5
	2.2	.2 Water Loads	5
	2.2	.3 Hydrodynamic Loads	. 5
	2.2	.4 Seismic Loads	6
	2.3	Moment-Curvature Relationship	9
	2.4	Analysis Results	10
	2.4	.1 Displacement Histories	10
	2.4	.2 Force and moment histories	13
	2.4	.3 Evaluation of Results	13
3.	OP	TION-3: REINFORCED TOWER AND STRENGHTENED FOUNDATION 2	22
3.		TION-3: REINFORCED TOWER AND STRENGHTENED FOUNDATION 2 omputer Model	
3.			22
3.	3.1 Co	omputer Model	22 23
3.	3.1 Co 3.2	omputer Model Material Properties Evaluation Loads	22 23 23
3.	3.1 Co 3.2 3.3	omputer Model Material Properties Evaluation Loads .1 Dead Loads	22 23 23 23
3.	3.1 Co 3.2 3.3 3.3	omputer Model 2 Material Properties 2 Evaluation Loads 2 .1 Dead Loads .2 Water Loads	22 23 23 23 23 23
3.	3.1 Co 3.2 3.3 3.3 3.3	omputer Model 2 Material Properties 2 Evaluation Loads 2 .1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads	22 23 23 23 23 23 23
3.	3.1 Co 3.2 3.3 3.3 3.3 3.3	omputer Model 2 Material Properties 2 Evaluation Loads 2 .1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads	22 23 23 23 23 23 23 23 23
3.	3.1 Co 3.2 3.3 3.3 3.3 3.3 3.3 3.3	omputer Model 7 Material Properties 7 Evaluation Loads 7 .1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads .4 Seismic Loads	22 23 23 23 23 23 23 23 23 23
3.	3.1 Co 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.4	omputer Model 7 Material Properties 7 Evaluation Loads 7 .1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads .4 Seismic Loads .5 Section Capacities	22 23 23 23 23 23 23 23 23 23 23 25
3.	3.1 Co 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.5	omputer Model Material Properties Material Properties Evaluation Loads Evaluation Loads 2 1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads .4 Seismic Loads Section Capacities Analysis Results	22 23 23 23 23 23 23 23 23 23 23 25 26
3.	3.1 Co 3.2 3.3 3.3 3.3 3.3 3.3 3.4 3.5 3.5.1 3.5.2	omputer Model 7 Material Properties 7 Evaluation Loads 7 .1 Dead Loads .2 Water Loads .3 Hydrodynamic Loads .4 Seismic Loads Section Capacities 7 Analysis Results 7 Mode Shapes and Periods 7	22 23 23 23 23 23 23 23 23 23 25 26 26

1. INTRODUCTION

The most recent seismic evaluation of Briones Tower (Quest, 2007) concluded that the tower would suffer significant damage and could overturn or become unstable when subjected to ground motions at the level of the maximum design earthquake (MDE) or the maximum credible earthquake (MCE). The MDE was estimated probabilistically and was chosen by the East Bay Municipal Utility District (District) as a ground motion having a 10 percent probability of exceedance in 50 years (a return period of 475 years). The MCE was estimated deterministically as an M_w 7.25 event on the nearby Hayward-Rogers Creek Fault.

Subsequently, Jacobs Associates of San Francisco was contracted to develop remediation schemes to strengthen the tower with Quest Structures to conduct seismic evaluation of the remediation alternatives. This report presents the results of seismic analyses carried out by Quest Structures for two remediation schemes consisting of a guy-wire support and a concrete infill scheme proposed by Jacobs Associates.

This report was prepared by Quest Structures for the District under a subcontract to Geomatrix Consultants of Oakland, California.

2. OPTION-1: GUY-WIRE ALTERNATIVE

The guy-wire retrofit option consisted of four steel wire ropes connected to the tower at El. 512 ft at one end and anchored to the reservoir floor at the other end (Figures 2-1 and 2-3). The anchors are to locate at a radius of 115 feet from the tower centerline. The steel wires are to be 2.5, 3.25, or 4 inches in diameter. The guy wires were initially arranged at a 60-degree angle (Figure 2-2), but later at a 90-degree angle between the wires to preserve the symmetry (Figure 2-3). Initial analyses indicated that the 2.5-inch and 3.25-inch diameter wires had inadequate capacity. The final analysis reported here was carried out using the 4-in diameter wires.

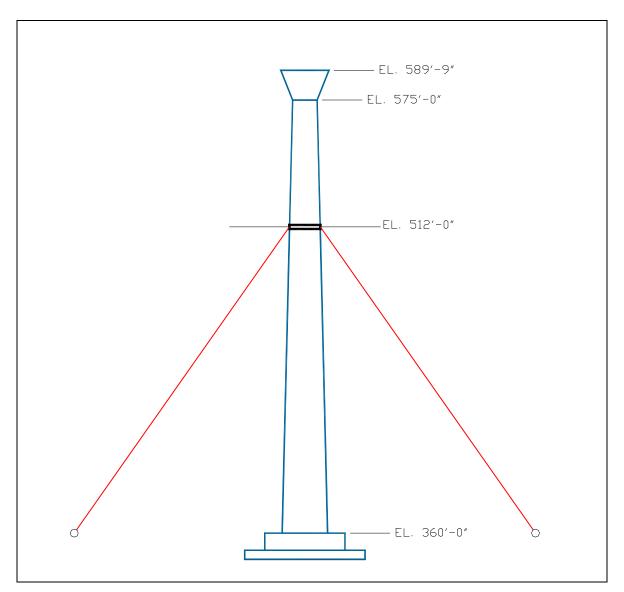


Figure 2-1. Elevation view of proposed guy-wire retrofit option

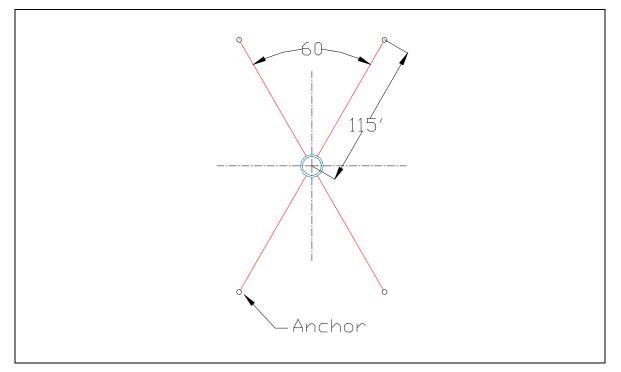


Figure 2-2. Plan view with guy-wires at 60 degrees.

Figure 2-3. Plan view with guy-wires at 90 degrees.

2.1 Finite Element Model

The SAP2000 model from the 2007 study (Quest, 2007) was used, except that nonlinear elements were used to model the guy-wires and also the bottom section of the tower where the plastic hinging was expected to occur. The hollow circular shaft was represented by linear beam elements with axial, bending, and shear deformations. The model included 17 nodal points and 16 beam elements spanning from the bottom elevation at 360 ft to top elevation at 589.75 ft, corresponding to elevation of the operating platform. The beam elements were developed based on the shaft nominal section geometry. A nonlinear joint element was included at the base of the shaft to model nonlinear behavior at this location. The nonlinear joint element was represented by a nonlinear moment-curvature relationship discussed in Section 2.3. The guy-wires were modeled using cable elements with the catenary behavior under their self-weight. The cable elements include both the tension-stiffening and large-deflections nonlinearity. Figure 2-4 displays the model with extruded beam elements shown in blue and cable elements shown as green lines. Figure 2-5 shows a plan view of the model with the guy-wires installed at 90 degrees.

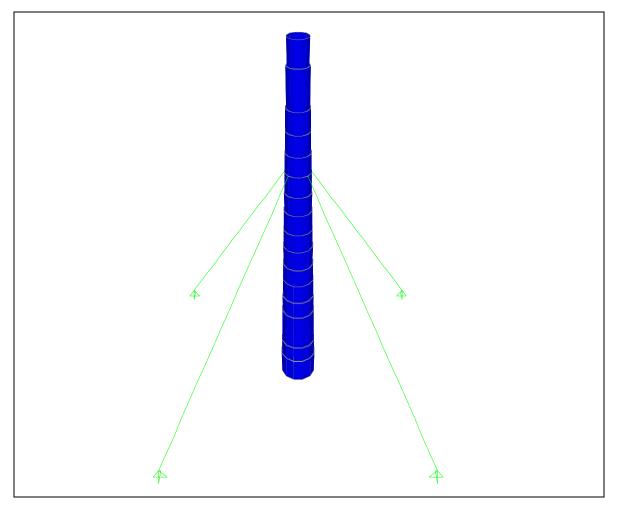


Figure 2-4. Finite element model of tower with guy wires

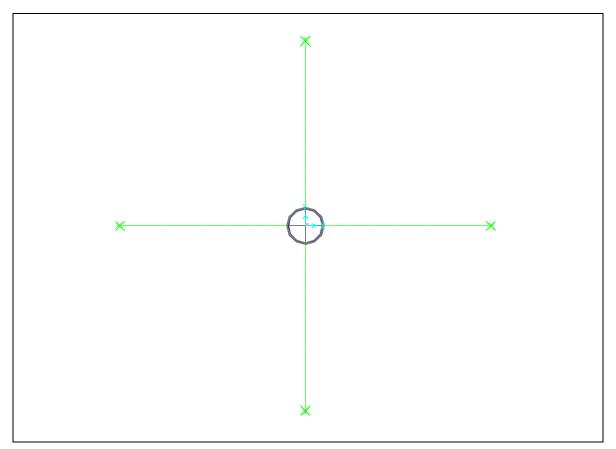


Figure 2-5. Plan view of the model with guy-wires installed at 90 degrees.

2.2 Evaluation Loads

Evaluation loads consisted of the dead weight, water, and seismic loads. These are fully described in the 2007 report (Quest, 2007).

2.2.1 Dead Loads

The dead loads due to weight of the concrete were determined using a unit weight of 150 pcf.

2.2.2 Water Loads

The water loads were estimated for the reservoir water level at El. 576 ft, just below the spilling elevation. The tower is normally full, thus the elevation of inside water is also at 576 ft. The net hydrostatic pressures acting on the inside and outside surfaces of the circular shaft are zero.

2.2.3 Hydrodynamic Loads

The inside and outside water inertia loads due to seismic excitation were accounted for by added-mass terms following the Goyal and Chopra's procedure (1989).

2.2.4 Seismic Loads

The seismic input for the 2007 linear and equivalent-linear (post-elastic) seismic analyses of the tower consisted of the site-specific response spectra for the MDE and MCE ground motions developed by Geomatrix Consultants (Quest, 2007). The estimated peak horizontal ground accelerations for these events are 0.70g and 0.75g, respectively. However, the seismic input for the nonlinear analysis of the tower with guy wires required acceleration time histories. This was accomplished by using the acceleration time histories that had been developed for the Sobrante Outlet Tower, except that they were scaled to the level of Briones response spectra. This approach seems reasonable considering that Sobrante Tower is located only a few miles from Briones Tower and that the seismic load for both towers is controlled by similar seismic sources.

Figures 2-6 and 2-7 compare spectra for the fault-normal and fault-parallel acceleration time histories with the target fault-normal and fault-parallel MDE response spectra. The spectrum-matched acceleration time histories for the MDE ground motion are displayed in Figure 2-8.

Figures 2-9 and 2-10 compare spectra for the fault-normal and fault-parallel acceleration time histories with the target fault-normal and fault-parallel MCE response spectra. The corresponding spectrum-matched acceleration time histories for the MCE ground motion are given in Figure 2-11.

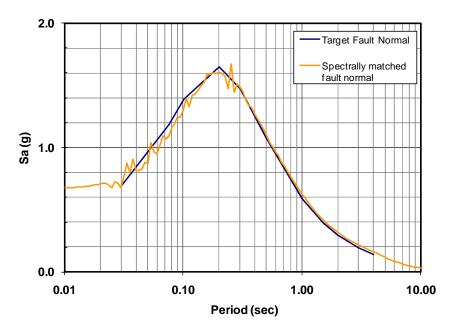


Figure 2-6. Comparison of spectrum for fault normal acceleration time history with target fault normal MDE response spectrum (damping).

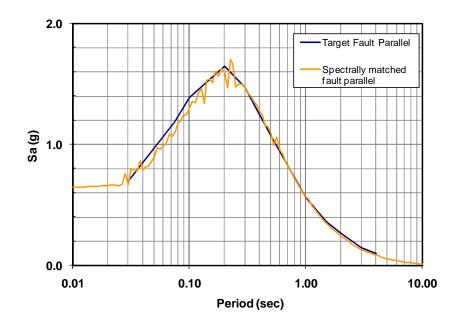


Figure 2-7. Comparison of spectrum for fault parallel acceleration time history with target fault parallel MDE response spectrum (5% damping).

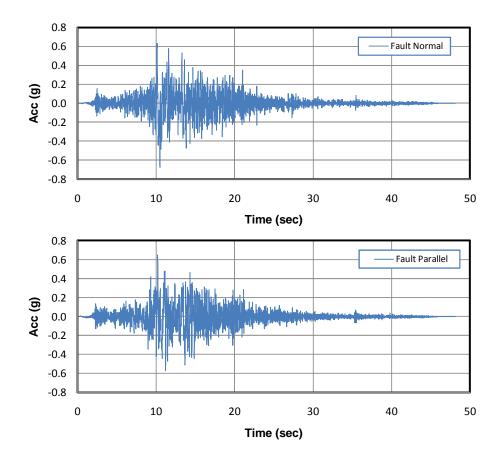


Figure 2-8. MDE fault-normal and fault-parallel spectrum-matched acceleration time histories.

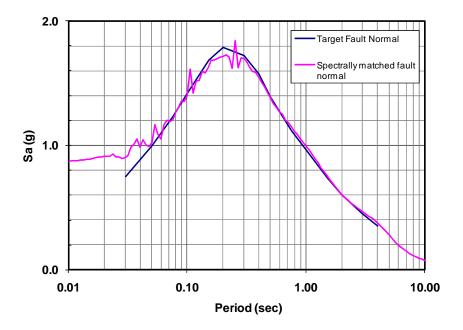


Figure 2-9. Comparison of spectrum for fault-normal acceleration time history with target fault-normal MCE spectrum (5% damping).

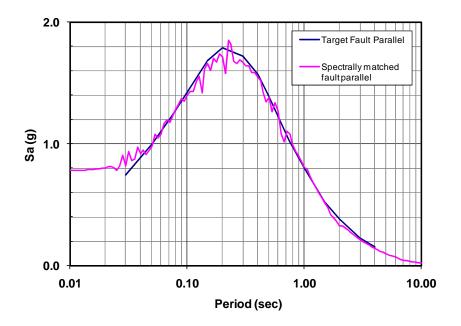


Figure 2-10. Comparison of spectrum for fault-parallel acceleration time history with target fault-parallel MCE spectrum (5% damping).

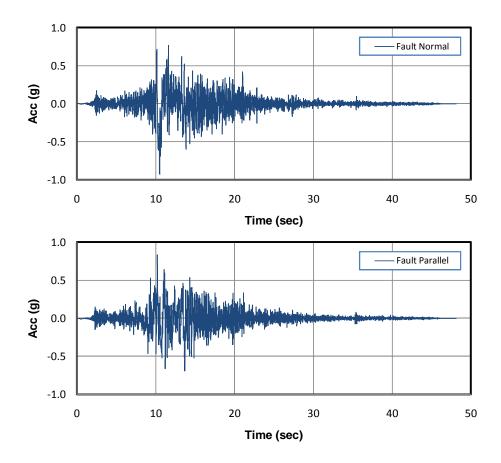


Figure 2-11. MCE fault-normal and fault-parallel spectrum-matched acceleration time histories.

2.3 Moment-Curvature Relationship

The moment-curvature (M-Phi) relationship for the nonlinear joint element at the bottom of the tower was estimated using the computer program M-Phi developed for the US Army Corps of Engineers (Ehsani and Marine, 1994). This program computes the moment and the corresponding curvature values for a specified reinforced-concrete cross section from typical stress-strain models for concrete and reinforcing steel. Figure 2-12 shows one such M-Phi relationship for the bottom section of Briones Tower. This figure shows that there is a reduction in the moment values immediately following the cracking of the concrete (i.e., kink on the graph), while the curvature increases. This behavior is common for sections that have large concrete area in tension. Also shown on this figure is the nominal section moment capacity estimated using the ACI procedure.

The concrete multi-linear pivot hysteretic plasticity model available in SAP2000 was used to represent the nonlinear joint element. Input parameters for this plasticity model were defined consistent with the moment-curvature relationship computed for the bottom section.

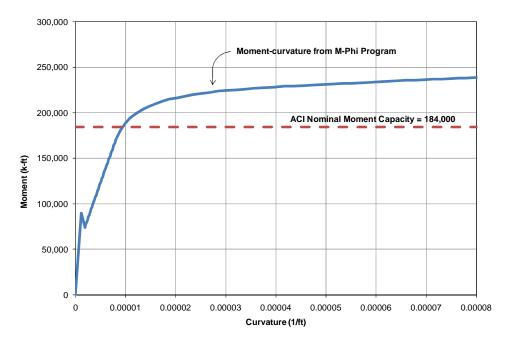


Figure 2-12. Moment curvature relationship for bottom section of tower.

2.4 Analysis Results

The finite-element model described in section 2.1 was analyzed using the step-by-step nonlinear time history method. Both horizontal components of the ground motions were applied as the seismic input but the effects of the vertical component were ignored. Considering that circular cross sections are subjected to the resultant shear and moment caused by two horizontal components of the ground motion, the maximum shear and moment should be estimated for the combined effects of the horizontal components. This can be done by applying both horizontal components simultaneously and determining the resultant shear and moment at each time step, from which the maximum resultant shear moment can then be obtained. However, in this study a simpler approach was taken, in which each horizontal component of ground motion was applied separately but was multiplied by 1.3 to account for the two-component excitation. The factor of 1.3 was selected consistent with the customary 30% rule used for building structures. This way the resultant shear and moment time histories are computed directly and then searched to obtain the maximum values. The results reported in the following sections are for the 1.3 times the fault parallel components applied separately.

2.4.1 Displacement Histories

Figures 2-13 and 2-14 show the time histories of the maximum displacements at the top of tower due the MDE and MCE ground motions, respectively. The results indicate that the top of tower moves in the range of 1.75 to 2.8 ft when subjected to the MDE and in the range of 2 to 3.2 ft in the case of the MCE excitation.

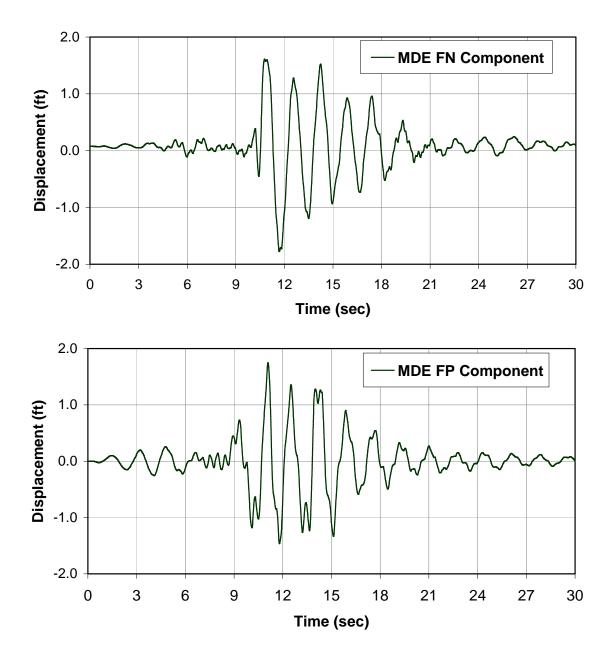


Figure 2-13. Maximum displacement histories due to MDE

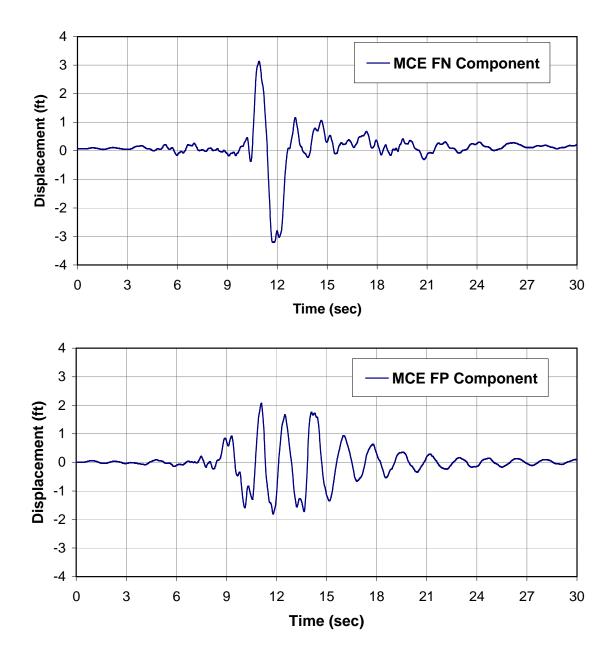


Figure 2-14. Maximum displacement time histories due to MCE

2.4.2 Force and moment histories

Figures 2-15 and 2-16 exhibit axial force histories for guy wires due to the MDE and MCE ground motions, respectively. As expected the wires experience tensile forces only. The maximum wire tension reaches 800 kips for the MDE and over 1,600 kips for the MCE. The ultimate capacity of the 4-in-diameter wires is about 2,000 kips. Using a factor of safety of 2, they will be designed for an allowable tension value of only 1,000 kips. On this basis, the 4-in-diameter works are adequate for the MDE but not the MCE.

Figures 2-17 and 2-18 show time histories of the maximum moments at the base of the tower for the MDE and MCE, respectively. As expected, the maximum moments at the base of the tower are limited to the moment capacity of the nonlinear joint set to 225,000 k-ft in accordance with the M-Phi results (also see Figure 2-12). The magnitudes of moments at higher elevations are discussed below in Section 2.4.3.

Figures 2-19 and 2-20 display time histories of the maximum shear forces at the base of the tower for the MDE and MCE, respectively. The results show that the maximum base shear is less than the base shear capacity (6,000 kips) for both the MDE and MCE ground motions. Comparison of shear demands with shear capacities at higher elevations are discussed below in Section 2.4.3.

2.4.3 Evaluation of Results

Figure 2-21 compares moment demands with moment capacities along the entire height of the tower for the MDE excitation. The results indicate that moment demands remain below the M-Phi moment capacities at elevations below 450 ft but exceed moment capacities above this elevation. Note that the M-Phi moment capacities are generally 25 percent higher than those obtained using the ACI procedure, because the ACI moment capacity is based on nominal yield strength while the M-Phi moment capacity beyond the yield point takes advantage of the steel strain-hardening. The results suggest that the nonlinear response behavior and the guy wires have helped to reduce moments in the lower portion of the tower but not in the upper portion. This indicates that the tower could still experience significant cracking and yielding in its upper half.

Figure 2-22 provides a comparison of the moment demands with moment capacities for the MCE excitation. The results clearly indicate that moment demands exceed moment capacities along the entire height of the tower, except at the bottom where the cracking and yielding were permitted. The results suggest that the concrete cracking and steel yielding will not be limited to the bottom of the tower, a condition for which the guy wires could have secured the tower from overturning. Spread of cracking and yielding to higher elevations diminishes the benefit of guy wires as stabilizers.

Figures 2-23 and 2-24 compare shear demands with shear capacities for the MDE and MCE, respectively. The results show that the shear demands remain below the shear capacities at elevations below the guy-wire connection, but exceed the capacities above this elevation.

Overall, the results suggest that the guy-wire bracing concept is not feasible, because significant cracking would still spread along the height of the tower. The guy-wires option would have worked if the damage was limited to the bottom of the tower.

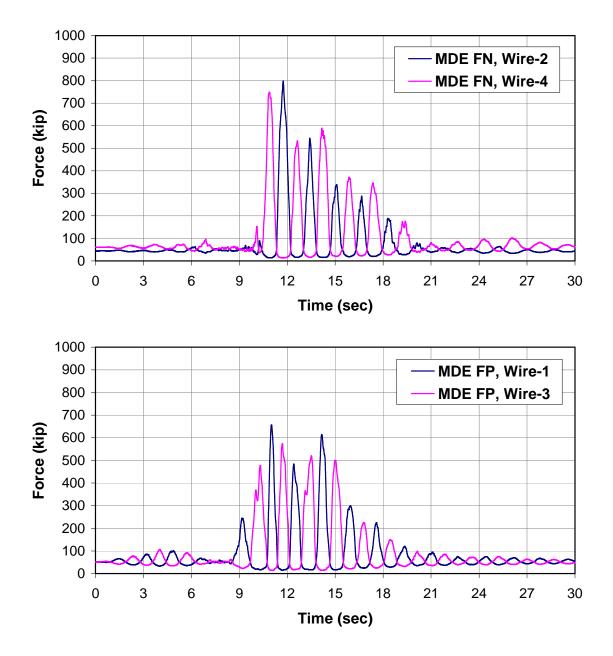


Figure 2-15. Time histories of guy-wires tensile forces due to MDE.

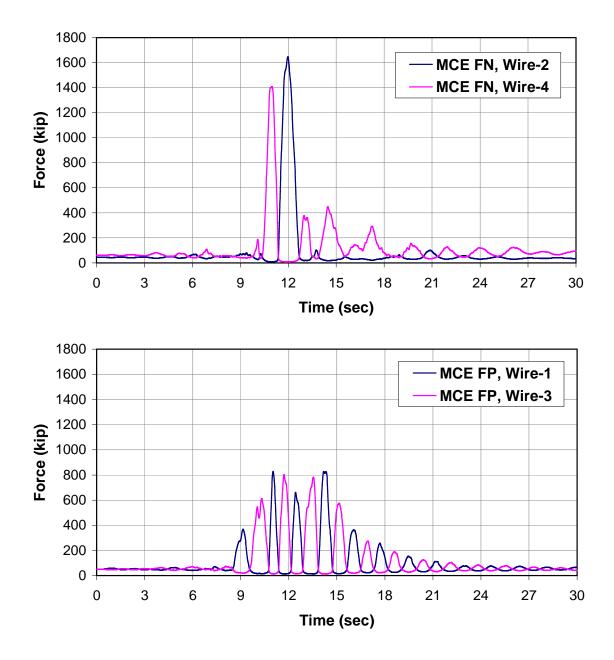


Figure 2-16. Time histories of guy-wires tensile forces due to MCE.

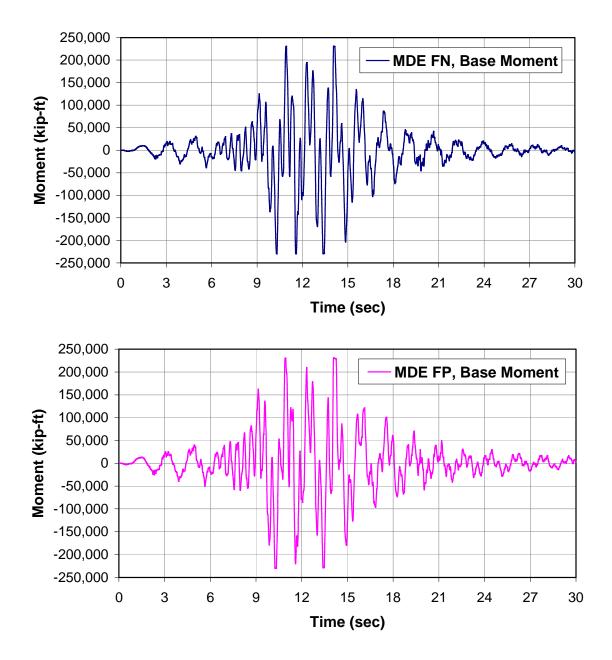


Figure 2-17. Time histories of maximum moments due to MCE.

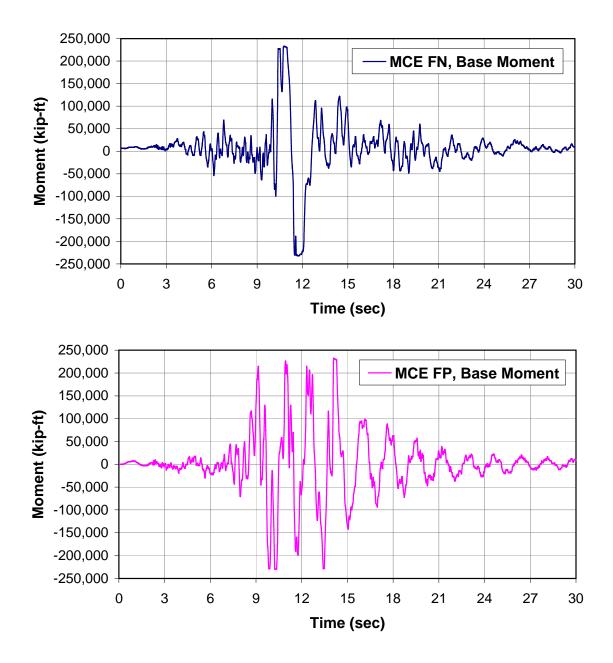


Figure 2-18. Time histories of maximum moments due to MCE.

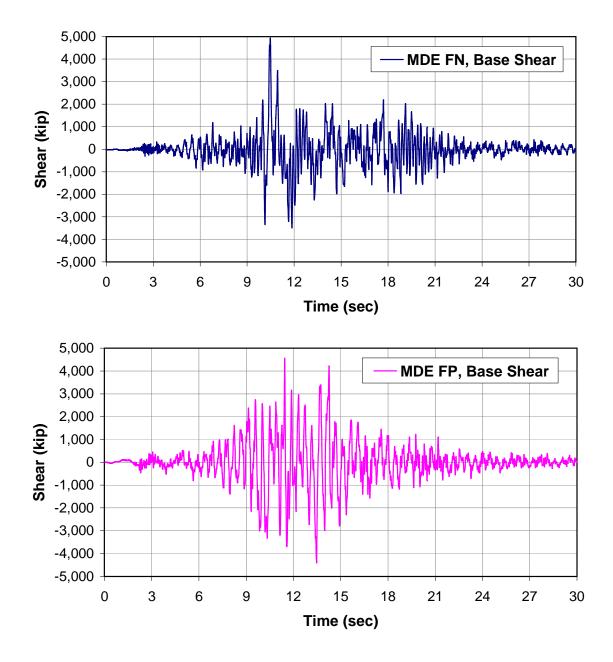


Figure 2-19. Time histories of base shears for MDE.

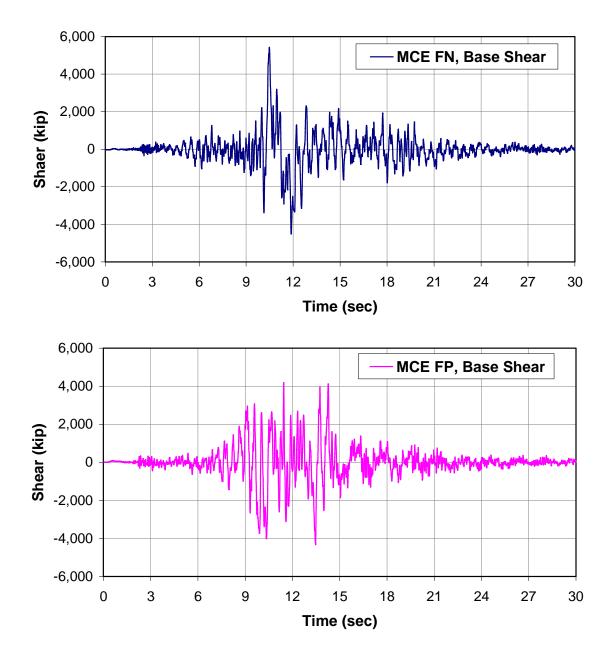


Figure 2-20. Time histories of base shear for MCE.

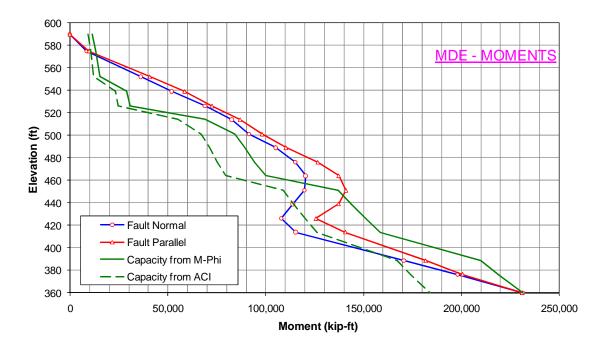


Figure 2-21. Comparison of moment demands with moment capacities for MDE.

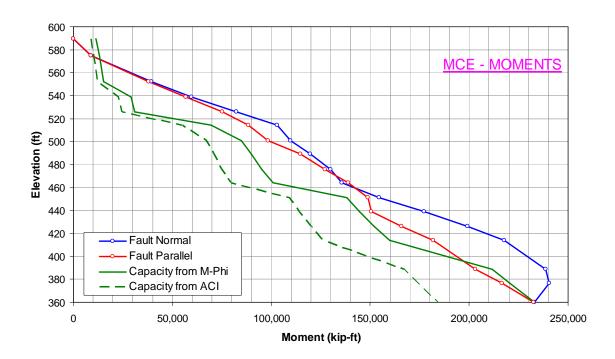


Figure 2-22. Comparison of moment demands with moment capacities for MCE.

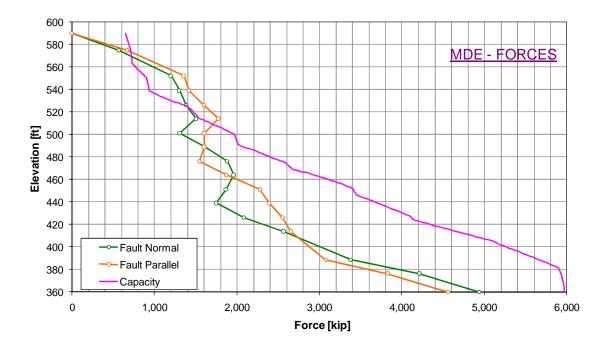


Figure 2-23. Comparison of shear demands with shear capacities for MDE.

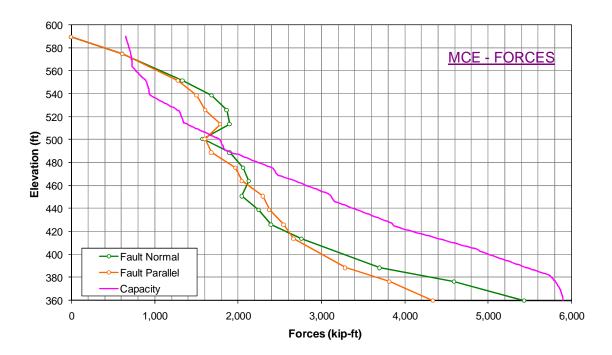


Figure 2-24. Comparison of shear demands with shear capacities for MCE.

3. OPTION-3: REINFORCED TOWER AND STRENGHTENED FOUNDATION

This retrofit option consists of two parts: an internal concrete infill, and an external concrete addition. The internal concrete infill is to thicken the existing shaft from the inside diameters of 20 ft at the bottom and 10 ft at the top to a uniform inside diameter of 8 ft from top to bottom using a reinforced concrete infill. The external concrete addition will use treme concrete to thicken the bottom portion of the tower from the footing at El. 347 ft up to El. 414 ft, just under the 2^{nd} valve opening. The external concrete would limit tower deformations along the length of the added concrete and would also eliminate the need for anchoring the concrete-infill reinforcing-steel into the foundation rock.

3.1 Computer Model

The hollow circular shaft including the concrete infill was represented by linear beam elements with axial, bending, and shear deformations. The model included 17 nodes and 16 beam elements spanning from the bottom elevation of 360 ft to top elevation of 589.75 ft at the operating platform. The beam elements were developed based on the shaft nominal section geometry that included both the existing and the concrete infill. The added external treme concrete was also modeled using beam elements attached to the shaft as parallel elements. An outside diameter of 60 ft was assumed for the treme concrete.

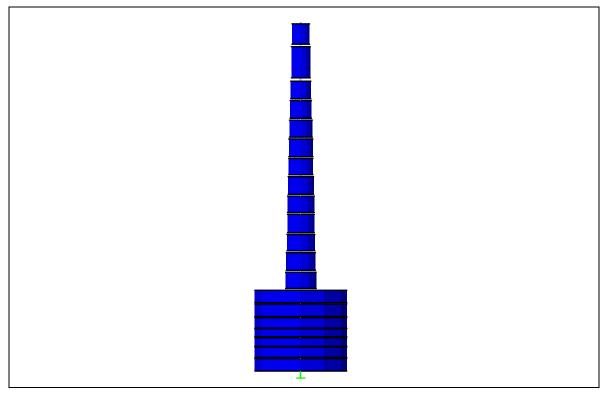


Figure 3-1. Finite element model of concrete infill option with external concrete addition.

3.2 Material Properties

The expected concrete material properties, established in the 2007 study (Quest, 2007), were used. These are summarized below.

Concrete Expected properties				
Compressive strength	f_c	=	6,000	psi
Modulus of rupture	f_r	=	581	psi
Weight density	W_c	=	150	pcf
Modulus of elasticity	E_c	=	4,415,200	psi
Ultimate compressive strain	\mathcal{E}_{c}	=	0.003	

The expected yield strength of 46 ksi with a modulus of elasticity of 29,000 ksi and ultimate strain of 0.05 were assumed for the reinforcing steel.

3.3 Evaluation Loads

Evaluation loads consisted of the dead weight, water and seismic loads, as described below.

3.3.1 Dead Loads

The dead loads due to weight of the concrete were determined using a unit weight of 150 pcf.

3.3.2 Water Loads

The water loads were estimated for the reservoir water level at El. 576 ft, just below the spilling elevation. The tower is normally full, thus the elevation of inside water is also at 576 ft. The net hydrostatic pressures acting on the inside and outside surfaces of the circular shaft are zero.

3.3.3 Hydrodynamic Loads

The inside and outside water inertia loads due to seismic excitation were accounted for by added-mass terms following the Goyal and Chopra's procedure (1989).

3.3.4 Seismic Loads

The seismic input for evaluation of the concrete infill option consisted of two horizontal components of the site-specific MDE response spectra at 5% damping. The seismic performance of the tower was also checked against the seismic loads generated by the MCE. The MDE and MCE acceleration response spectra are fully described in the 2007 report (Quest, 2007). The estimated peak horizontal ground accelerations for these events are 0.70g and 0.75g, respectively.

3.4 Section Capacities

The flexural and shear section capacities were estimated following the procedures described in the 2007 study (Ouest, 2007). The axial force-bending moment interaction diagrams were computed for the expected material properties using PCACOL computer program. Table 3-1 lists nominal moment capacities along the height of the tower for the existing tower, tower with concrete infill (composite section), and the concrete infill.

The section shear capacities were estimated in accordance with the US Army Corps of Engineers' EM1110-2-2400 and included contribution from the concrete and reinforcing steel. For this computation, however, only shear reinforcement associated with the existing concrete was considered. This is because shear reinforcements for the concrete infill were not available at the time of this computation. The estimated section capacities are thus conservative because they ignore contribution of the concrete-infill shear reinforcements. Table 3-2 summarizes section shear capacities along the height of the tower. In this table V_s is the shear contribution from the existing reinforcing steel and V_c from the existing and new concrete infill.

	Existing	Concrete	Existing +	
	Section	Infill	Infill	
ELEV.	M _N	M _N	M _N	
(ft)	[k-ft]	[k-ft]	[k-ft]	
589.75	9,000	108,000	117,000	
575.00	10,400	203,600	214,000	
552.00	12,000	229,000	241,000	
539.00	22,900	240,100	263,000	
526.00	24,400	255,600	280,000	
514.00	55,000	261,000	316,000	
501.00	67,000	274,000	341,000	
489.00	71,000	289,000	360,000	
476.00	75,000	305,000	380,000	
464.00	79,500	318,500	398,000	
451.00	109,000	330,000	439,000	
439.00	114,000	348,000	462,000	
426.00	120,000	363,000	483,000	
414.00	126,000	381,000	507,000	
388.50	167,000	418,000	585,000	
376.50	174,000	429,000	603,000	
360.00	184,000	450,000	634,000	

 Table 3-1. Section moment capacities (also see Figure 3-3)

ELEV.	Shear capacity (kip)				
[ft]	0.85Vs	0.85Vc	0.85(Vc+Vs)		
589.75	249	813	1062		
575.00	264	1016	1280		
567.00	273	1131	1403		
567.00	452	1131	1582		
552.00	478	1356	1834		
552.00	1129	1356	2485		
540.00	1183	1562	2744		
540.00	651	1562	2212		
528.00	665	1668	2333		
528.00	950	1668	2618		
526.00	971	1777	2748		
526.00	1918	1777	3695		
514.00	1995	1984	3978		
514.00	997	1984	2981		
501.00	1039	2217	3256		
501.00	1385	2217	3602		
489.00	1436	2441	3877		
476.00	1492	2692	4184		
476.00	1958	2692	4650		
464.00	2025	2933	4958		
453.00	2086	3161	5247		
453.00	2568	3161	5729		
451.00	2582	3203	5785		
439.00	2664	3461	6125		
428.00	2740	3704	6444		
428.00	3238	3704	6942		
426.00	3254	3749	7003		
414.00	3352	4023	7375		
405.00	3425	4235	7659		
405.00	4186	4235	8421		
388.50	4350	4634	8983		
382.50	4410	4782	9192		
382.50	4961	4782	9743		
376.50	5028	4933	9961		
360.00	5212	5359	10571		

Table 3-2. Section shear capacities (also see Figure 3-4)

3.5 Analysis Results

The linear-elastic response-spectrum method of analysis was used to evaluate the concrete-infill retrofit option. The model was first analyzed to obtain its vibration mode shapes and periods, which were then used to compute the maximum responses to the MDE and MCE ground motions. The modal responses were combined using the CQC method and directional responses were combined using the SRSS method.

3.5.1 Mode Shapes and Periods

Table 3-3 lists modal periods with individual and cumulative modal participation ratios for 48 modes. The results show that 100 percent participation was achieved in all three orthogonal directions. Note that the identical modes are obtained in the x and y directions, because the symmetric beam model was analyzed in three dimensions.

Figure 3-2 displays the first four mode shapes in "x" direction. These represent the first four cantilever bending modes, where the effects of the outside concrete addition in the lower part of the tower can be observed.

3.5.2 Maximum Shears and Moments

The moment demands, moment capacities, and moment demand-capacity ratios for the MDE and MCE are listed in Table 3-4. The moment demands for the MDE and MCE are compared with the section moment capacities in Figure 3-3. The results indicate that the MDE moments remain below the moment capacities at all elevations and that the maximum moment demand-capacity ratio is 0.9. This indicates that the response of the concrete-infill option to the MDE ground motion is within the linear-elastic range. Consequently, under the MDE, the concrete infill option should perform satisfactorily. The moment demand-capacity ratios for the MCE are mostly less than one, except in the lower portion of the tower between El. 408 to 468 ft. However, the maximum demand-capacity ratio in this region is limited to 1.4, which is less than the allowable value of 2 required by EM 1110-2-2400. Therefore, the flexural performance of the concrete infill is also acceptable for the MCE ground motion.

The shear demands and capacities along the height of the tower are compared in Figure 3-4. Note that the shear capacities are given separately for the reinforcing steel and the concrete as well as for the combined concrete and reinforcing steel. It is also important to note that only the existing shear reinforcing steel was considered in this study. It is anticipated that the concrete infill will include significant shear reinforcing steel and thus the actual shear capacities of the modified section would be significantly higher than the current estimate. The results show that the shear demands for the MDE are generally lower than the section shear capacities and thus the required shear demand-capacity of less than 1 is met. The shear demands for the MCE exceed the current estimates of the shear capacities, indicating that the concrete-infill should be designed with adequate shear reinforcement to make up for the difference. With the additional shear capacity provided by the concrete-infill, it can be concluded that the concrete infill option is a feasible alternative and can be designed to satisfy both the shear and flexural requirements for the MDE and MCE.

	PERIOD	INDIVIDUA	AL MODE (PE	RCENT)	CUMULAT	IVE SUM (P	PERCENT)
MODE	(SEC)	UX	UY	UZ	UX	UY	UZ
1	1.1479	41.29	0.00	0.00	41.29	0.00	0.00
2	1.1479	0.00	41.29	0.00	41.29	41.29	0.00
3	0.2543	15.19	0.00	0.00	56.48	41.29	0.00
4	0.2543	0.00	15.19	0.00	56.48	56.48	0.00
5	0.1058	8.11	0.00	0.00	64.59	56.48	0.00
6	0.1058	0.00	8.11	0.00	64.59	64.59	0.00
7	0.0567	6.00	0.00	0.00	70.59	64.59	0.00
8	0.0567	0.00	6.00	0.00	70.59	70.59	0.00
9	0.0524	0.00	0.00	49.71	70.59	70.59	49.71
10	0.0377	4.15	0.00	0.00	74.74	70.59	49.71
11	0.0377	0.00	4.15	0.00	74.74	74.74	49.71
12	0.0299	3.53	0.00	0.00	78.27	74.74	49.71
13	0.0299	0.00	3.53	0.00	78.27	78.27	49.71
14	0.0237	0.00	4.63	0.00	78.27	82.90	49.71
15	0.0237	4.63	0.00	0.00	82.90	82.90	
16	0.0226	0.00	0.00	11.57	82.90	82.90	
17	0.0191	0.00	3.79	0.00	82.90	86.69	61.28
18	0.0191	3.79	0.00	0.00	86.69	86.69	61.28
19	0.0160	3.82	0.00	0.00	90.50	86.69	61.28
20	0.0160	0.00	3.82	0.00	90.50	90.50	61.28
21	0.0142	0.00	0.00	5.94	90.50	90.50	67.22
22	0.0133	0.00	1.56	0.00	90.50	92.06	67.22
23	0.0133	1.56	0.00	0.00	92.06	92.06	67.22
24	0.0116	0.00	1.33	0.00	92.06	93.40	67.22
25	0.0116	1.33	0.00	0.00	93.40	93.40	67.22
26	0.0105	0.00	0.97	0.00	93.40	94.36	67.22
27	0.0105	0.97	0.00	0.00	94.36	94.36	67.22
28	0.0103	0.00	0.00	4.89	94.36	94.36	72.12
29	0.0095	0.00	0.65	0.00	94.36	95.01	72.12
30	0.0095	0.65	0.00	0.00	95.01	95.01	72.12
31	0.0085	0.00	0.43	0.00	95.01	95.44	72.12
32	0.0085	0.43	0.00	0.00	95.44	95.44	72.12
33	0.0081	0.00	0.00	5.42	95.44	95.44	77.53
34	0.0069	0.00	0.00	4.86	95.44	95.44	82.39
35	0.0064	0.00	0.00	4.78	95.44	95.44	87.18
36	0.0063	0.00	4.03	0.00		99.46	
37	0.0063	4.03	0.00	0.00	99.46	99.46	87.18
38	0.0057	0.00	0.00	5.92	99.46	99.46	93.10
39	0.0050	0.00	0.00	2.02	99.46	99.46	95.11
40	0.0046	0.00	0.00	1.35	99.46	99.46	96.47
41	0.0042	0.00	0.00	0.43	99.46	99.46	96.90
42	0.0039	0.00	0.00	0.18	99.46	99.46	97.08
43	0.0037	0.00	0.00	0.07	99.46	99.46	97.15
44	0.0036	0.00	0.00	0.03	99.46	99.46	97.18
45	0.0031	0.00	0.54	0.00	99.46	100.00	97.18
46	0.0031	0.54	0.00	0.00	100.00	100.00	97.18
47	0.0027	0.00	0.00	2.23	100.00	100.00	99.42
48	0.0016	0.00	0.00	0.58	100.00	100.00	

Table 3-3. Vibration periods and modal participation ratios.

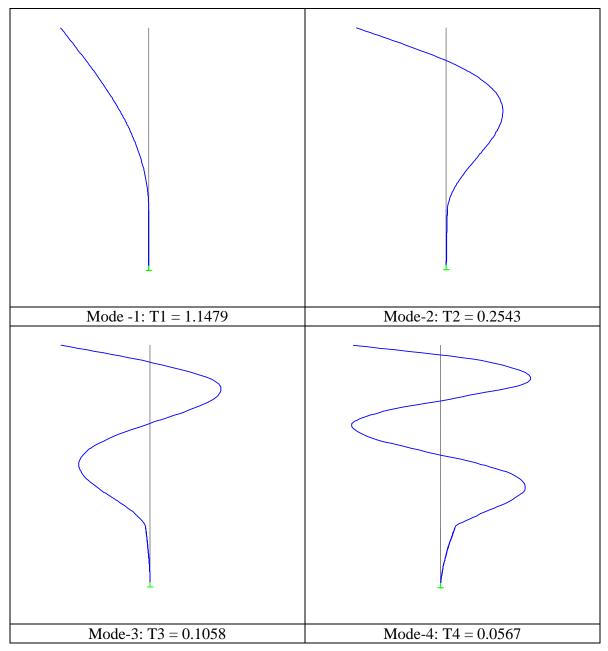


Figure 3-2. Deflected shape of first four modes

EL.	Moment Capacity	Moment [Demands	Moment Demand-Capacity Ratio	
(ft)	M _N [k-ft]	MCE M [k-ft]	MDE M [k-ft]	MCE	MDE
589.75	117,000	0	0	0.0	0.00
575.00	214,000	20,290	16,973	0.1	0.08
552.00	241,000	79,099	62,648	0.3	0.26
539.00	263,000	118,063	89,827	0.4	0.34
526.00	280,000	159,074	115,230	0.6	0.41
514.00	316,000	200,767	140,114	0.6	0.44
501.00	341,000	247,987	166,733	0.7	0.49
489.00	360,000	296,318	194,581	0.8	0.54
476.00	380,000	351,986	227,068	0.9	0.60
464.00	398,000	409,250	262,788	1.0	0.66
451.00	439,000	475,125	305,643	1.1	0.70
439.00	462,000	541,643	351,529	1.2	0.76
426.00	483,000	616,332	404,579	1.3	0.84
414.00	507,000	689,500	458,341	1.4	0.90
388.50	585,000	16,362	11,521	0.0	0.02
376.50	603,000	18,445	12,941	0.0	0.02
360.00	634,000	23,740	16,863	0.0	0.03

Table 3-4. Moment demand-capacity ratios

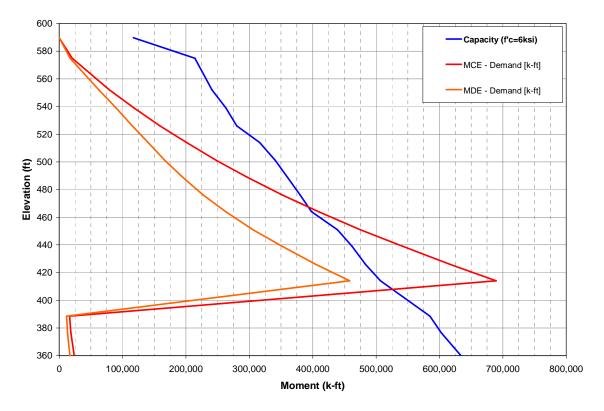


Figure 3-3. Comparison of MDE and MCE moment demands with section moment capacities.

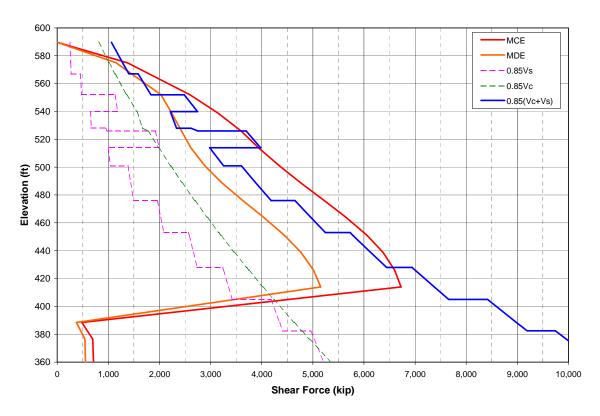


Figure 3-4. Comparison of MDE and MCE shear demands with section shear capacities.

4. CONCLUSION

The results of nonlinear time-history analyses indicate that the guy-wire support alternative is not feasible for stabilization of Briones Tower. This is because the tower would still experience tensile cracking along its height and could fail in shear at elevations above the guy wires.

The results of linear-elastic analyses suggest that the concrete infill alternative is a feasible alternative and can be designed to satisfactorily resist both shear and moment demands for the MDE and MCE ground motions.

5. **REFERENCES**

Ehsani M.R. and Marine M.E. (1994), "User's Guide for Concrete Moment-Curvature Relationship (M-Phi)," prepared for US Army Corps of Engineers.

Goyal, A. and Chopra, A.K. (1989), "Earthquake Analysis and response of Intake-Outle Towers," report No. UCB/EERC-89-04, Earthquake Engineering research Center, University of California, Berkeley, 1989.

Quest, 2007, "Seismic Evaluation of Briones Outlet Tower," final report submitted to EBMUD, August 6, 2007.

APPENDIX B2: SEISMIC EVALUATION OF OPTION-6 ALTERNATIVE BRIONES OUTLET TOWER

SEISMIC EVALUATION OF OPTION-6 ALTERNATIVE BRIONES OUTLET TOWER

September 12, 2008

Prepared for

East Bay Municipal Utility District 375 11th Street Oakland, CA 94607

By

Quest Structures, Inc. 3 Altarinda Road, Suite 203 Orinda, CA 94563

Seismic Evaluation of Option-6 Alternative Briones Outlet Tower

1. Description of Option 6 Alternative

Figure 1 shows the latest remedial alternative designated as Option 6. It involves cutting the top 1/3 of the tower and replacing it with a 5-foot-diameter and ¾-inch thick steel pipe. The pipe will be 88.75 ft long, rising from El. 501 to 589.75 ft with an access platform at the top. The steel pipe will be connected to the bottom concrete shaft using a steel frame and 12-inch concrete slab that caps the shaft.

2. Finite-element Model

Figure 2 displays SAP2000 models for the Option 6 alternative and the existing tower. The steel pipe for the Option 6 is indicated as red. The access platform and the anchoring steel frame were represented as lumped nodal lumped masses.

3. Seismic Analysis

The Option 6 model was analyzed for the gravity and the effects of MDE ground motion. The response-spectrum mode superposition method of analysis was used. The analysis included more than 40 modes to ensure 100% modal mass participation. The material properties for the concrete were the same as those reported previously. A damping ratio of 5% was used for all modes of vibration.

4. Mode Shapes and Periods

The lowest 6 mode shapes and periods for the Option 6 are presented in Figure 3. Mode-1 with a period of 1.65 sec corresponds to the fundamental bending mode of the steel pipe. Mode-2 with a period of 0.78 sec is the fundamental bending mode of the shortened concrete shaft. These can be compared with mode shapes and periods of the existing tower provided in Figure 4.

The important change to note is that the fundamental mode of the existing tower with the largest modal participation factor of 50% vibrates at a period of 1.78 sec, while the fundamental mode of the shortened concrete shaft in the Option 6 vibrates at 0.78 sec. The MDE spectral acceleration at 1.78 sec is 0.34g and at 0.78 sec is 0.806g. This indicates that although the remediated tower is approximately 30% lighter, the spectral acceleration for its primary mode with the largest participation factor is 2.37 times larger (0.806/0.34 = 2.37) than that for the heavier exiting tower. So the net effect is such that the base shear and moment for the retrofitted tower is about the same as that of the existing tower, as discussed next.

5. Results

The moment and shear results for Option 6 and the exiting tower are provided in Figures 5 and 6, respectively. Also provided in these figures for comparison are the moment and shear capacities.

The results show that the moments for Option 6 are equal or greater than those for the exiting tower in the bottom 20 feet of the shaft. This indicates that the lower part of the tower would still suffer significant damage even though the top 1/3 of the tower have been replaced by lighter steel pipe. This condition is more severe for the MCE excitation (not shown here). To make this option work the lower 20 to 50 feet of the tower should be strengthened.

The shears for Option 6 are even higher than those obtained for the exiting tower at elevations below 501 feet (i.e., for the entire concrete shaft). In particular, shear demands exceed the shear capacity in the embedded portion of the steel pipe (El. 489 to 501), thus requiring shear strengthening in this region.

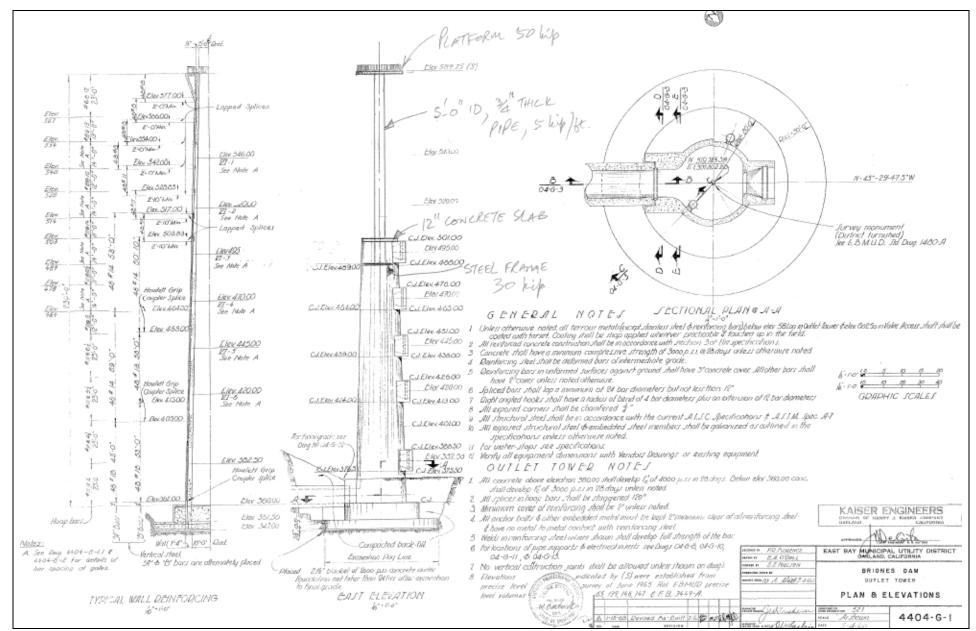


Figure 1. Proposed pipe retrofit option (Option 6).

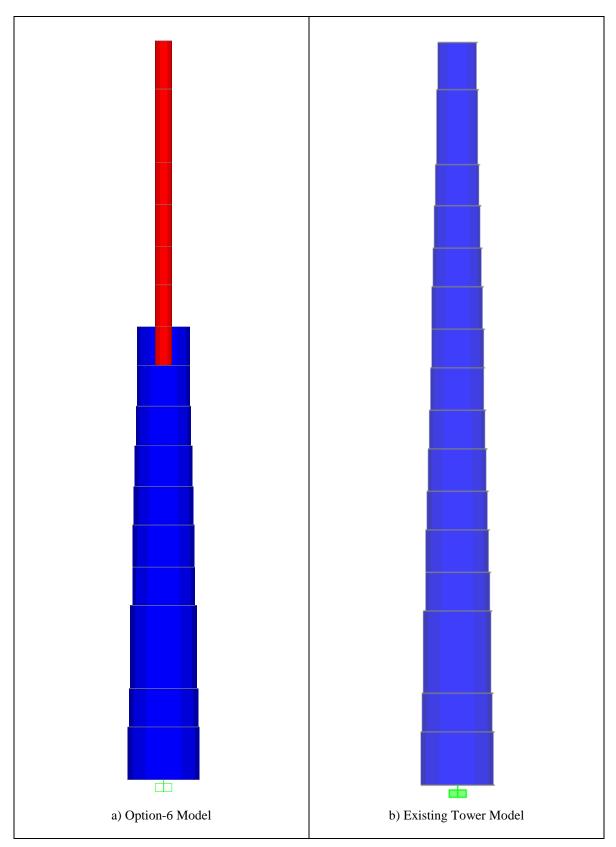


Figure 2. SAP2000 models of Option-6 and original towers.

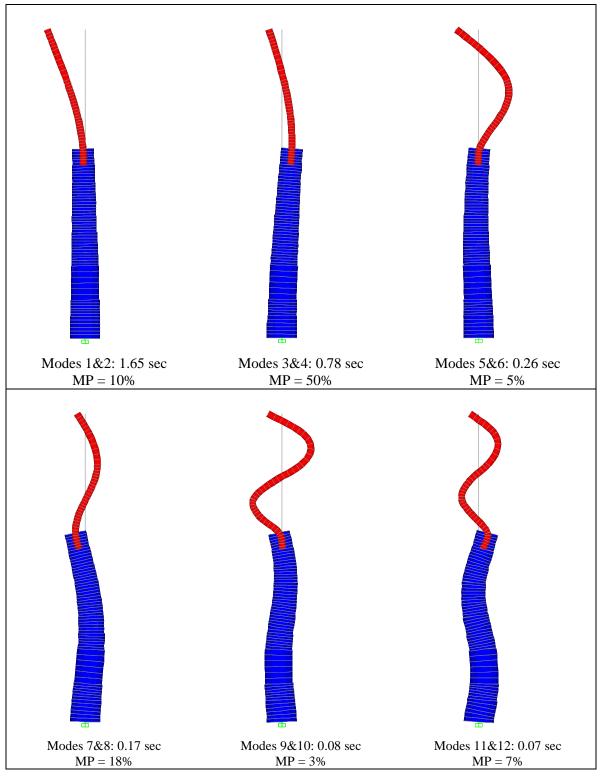


Figure 3. Mode shapes, periods, and modal participation factors for Option 6.

Note: Modes 1&2, 3&4, etc. refer to two similar modes in each of the two horizontal directions.

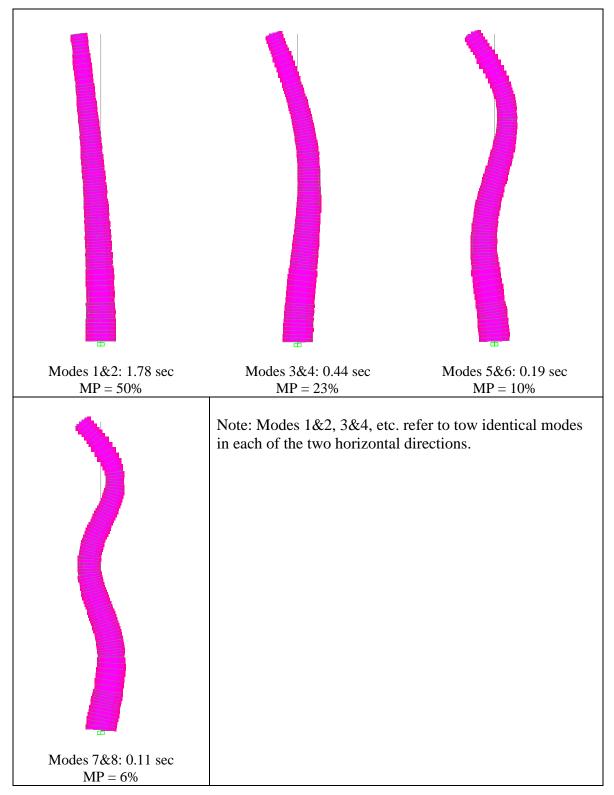


Figure 4. Mode shapes, periods, and modal participation factors for existing tower.

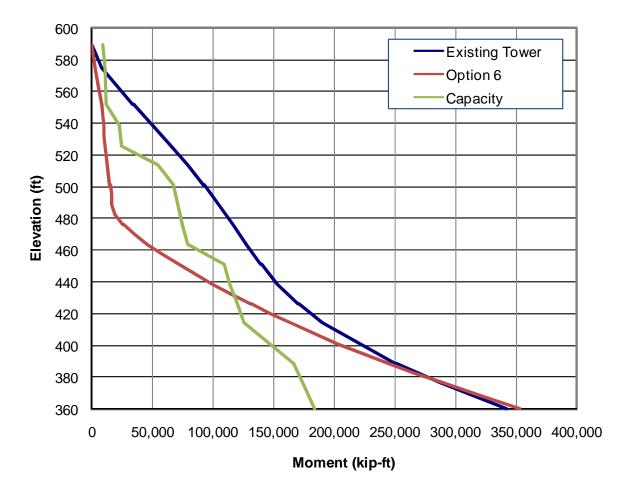


Figure 5. Comparison of MDE moment demands with moment capacity

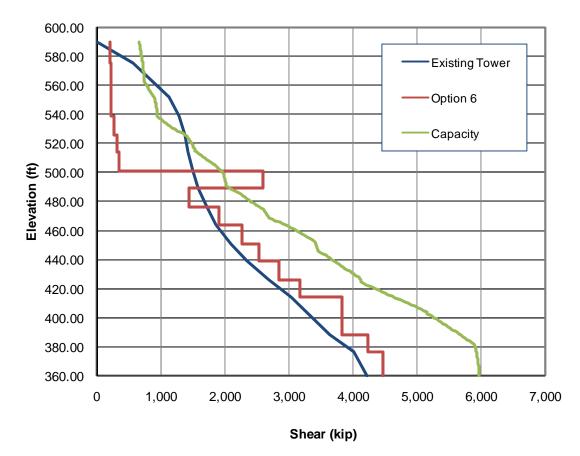


Figure 6. Comparison of MDE shear demands with shear capacity

APPENDIX B3: SEISMIC EVALUATION OF GUY-WIRES WITH TWO SUPPORT LEVELS

SEISMIC EVALUATION OF GUY-WIRES WITH TWO SUPPORT LEVELS (OPTION 1A)

BRIONES OUTLET TOWER

Final Report

Prepared for

East Bay Municipal Utility District 375 11th Street Oakland, CA 94607

By

Quest Structures, Inc. 3 Altarinda Road, Suite 203 Orinda, CA 94563

March 27, 2009

Table of Contents

1.	DESCRIPTION OF GUY-WIRE SUPPORT ALTERNATIVE	1
2.	FINITE-ELEMENT MODEL	1
3.	EVALUATION LOADS	1
	3.1 Dead Loads	1
	3.2 Water Loads	1
	3.3 Hydrodynamic Loads	2
	3.4 Seismic Loads	
4.	RESULTS OF ANALYSIS	2
	4.1 Results for 2 ¹ / ₄ inch Wires	3
	4.1.1 Tower displacement	3
	4.1.2 Wire axial forces	
	4.1.3 Tower base moment and shear	3
	4.1.4 Evaluation of results	3
	4.2 Results for 4-inch Wires	4
	4.2.1 Tower displacement	4
	4.2.2 Wire axial forces	4
	4.2.3 Tower base moment and shear	
	4.2.4 Evaluation of results	4
5.	CONCLUSION	4
6.	REFERENCES	5

Seismic Evaluation of Guy-wires with Two Support Levels Briones Outlet Tower

1. DESCRIPTION OF GUY-WIRE SUPPORT ALTERNATIVE

Figure 1-1 is a sketch of a two-level guy-wire support alternative (Option 1A) proposed for stabilization of Briones Tower. It consists of two sets of four wires with two support levels at approximate elevations of 485 ft and 555 ft. The wires will use steel rings for connection to the tower and four hold down points for anchorage to the reservoir floor. The two levels of wires are tied to the same anchor, with an assumed 45 degrees angle for the upper level and a flatter angle for the lower wire. However, the anchorage point of the upper level wire could be 10 feet higher than that of the lower level wire.

2. FINITE-ELEMENT MODEL

The SAP2000 model is based on the same tower shaft idealization used previously (Quest, 2007), but also employs nonlinear elements to represent guy wires and plastic hinging at the base of the tower. The hollow circular shaft is represented by linear beam elements with axial, bending, and shear deformations. The model includes 17 nodal points and 16 beam elements spanning from the bottom elevation at 360 ft to the top elevation at 589.75 ft. The beam elements are based on the shaft nominal section geometry. A nonlinear joint element is included at the base of the shaft to model plastic hinging at this location. The nonlinear joint element uses a nonlinear moment-curvature relationship discussed previously (Quest, 2008). The guy-wires are modeled using cable elements with the catenary behavior under their self-weight. The cable elements include both the tension-stiffening and large-deflections nonlinearity. Figures 2-1 and 2-2 display the model with extruded beam elements shown in blue and cable elements shown as green lines.

3. EVALUATION LOADS

Evaluation loads consist of the dead weight, water, and seismic loads. These are fully described in the Quest 2007 report (Quest, 2007).

3.1 Dead Loads

The dead loads due to weight of the concrete were determined using a unit weight of 150 pcf.

3.2 Water Loads

The water loads were estimated for the reservoir water level at El. 576 ft, just below the spilling elevation. The tower is normally full, thus elevation of the inside water is also at 576 ft. The net hydrostatic pressures acting on the inside and outside surfaces of the circular shaft are zero.

3.3 Hydrodynamic Loads

The inside and outside water inertia loads due to seismic excitation were accounted for by added-mass terms following the Goyal and Chopra's procedure (1989).

3.4 Seismic Loads

The seismic input is the same as that used previously (Quest, 2007). It consists of the sitespecific response spectra for the MDE and MCE ground motions developed by Geomatrix Consultants. The estimated peak horizontal ground accelerations for these events are 0.70g and 0.75g, respectively. However, the seismic input for the nonlinear analysis of the tower with guy wires required acceleration time histories. This was accomplished by using the acceleration time histories that had been developed for the Sobrante Outlet Tower, except that they were scaled to the level of Briones response spectra (Quest, 2008).

4. RESULTS OF ANALYSIS

The finite-element model described in section 2 was analyzed using the step-by-step nonlinear time history method. Both horizontal components of the ground motions were considered but each was applied separately plus the vertical component. Circular cross sections are subjected to the resultant shear and moment caused by both horizontal components of the ground motion. The maximum shear and moment therefore should be estimated for the combined effects of the horizontal components. This can be done by applying both horizontal components simultaneously and determining the resultant shear and resultant moment at each time step, from which the maximum resultant shear moment can then be obtained. However, in this study a simpler approach was taken, in which each horizontal component of ground motion was applied separately but was multiplied by 1.3 to account for the effects of two-component excitation. The factor of 1.3 was selected consistent with the customary 30% rule used for building structures. This way the resultant shear and moment time histories are computed directly and then searched to obtain the maximum values. The results reported in the following sections are for the 1.3 times the fault normal and 1.3 times the fault parallel components applied separately.

Two cases were analyzed: one with 2 ¹/₄-inch wires, and another with 4-inch wires to investigate whether larger wires would improve the seismic performance of the tower.

4.1 Results for 2 1/4 inch Wires

4.1.1 Tower displacement

Figures 4-1 and 4-2 show the maximum displacement histories at the top of the tower for the MDE and MCE ground motions, respectively. The results indicate a maximum displacement of 1.8 ft for the MDE and 3.1 ft for the MCE. These are comparable with those estimated previously for the guy wires with one level support.

4.1.2 Wire axial forces

Figures 4-3 and 4-4 exhibit guy-wires axial-force histories for the MDE and MCE, respectively. As expected the wires experience tensile forces only. The maximum tension reaches the wire capacity of 600 kips for the MDE, and 700 kips for the MCE which is slightly higher than the capacity.

4.1.3 Tower base moment and shear

Figures 4-5 and 4-6 show the maximum moment histories at the base of the tower for the MDE and MCE, respectively. As expected, the maximum moments at the base of the tower are limited to the moment capacity of the nonlinear joint set to 225,000 kip-ft in accordance with previous study (Quest, 2008). The magnitudes of moments at higher elevations are discussed below in Section 4.1.4.

Figures 4-7 and 4-8 display the maximum shear force histories at the base of the tower for the MDE and MCE, respectively. The results show that the maximum base shear is just under the base shear capacity of 6,000 kips for both the MDE and MCE ground motions. Comparison of shear demands with shear capacities at higher elevations are discussed below in Section 4.1.4.

4.1.4 Evaluation of results

Figures 4-9 and 4-10 compare moment demands with moment capacities along the entire height of the tower for the MDE and MCE, respectively. The results indicate that the MDE moment demands exceed moment capacities above El. 450 ft and the MCE moments exceed the moment capacities at all elevations. This indicates that the tower could still experience significant cracking and yielding in its upper half. Spread of cracking and yielding to higher elevations diminishes the benefit of guy wires as the stabilizers.

Figures 4-11 and 4-12 compare shear demands with shear capacities for the MDE and MCE, respectively. The results show that the shear demands remain below the shear capacities at elevations below the lower level guy-wires, but exceed the capacities above this elevation.

Overall, the results suggest that the two-level guy-wires have improved the situation only slightly over the one-level guy-wires analyzed previously.

4.2 Results for 4-inch Wires

4.2.1 Tower displacement

Figures 4-13 and 4-14 show the maximum displacement histories at the top of the tower for the MDE and MCE ground motions, respectively. The results indicate a maximum displacement of 1.7 ft for the MDE and 3.0 ft for the MCE, only slightly less than those for the 2 ¼ inch wires.

4.2.2 Wire axial forces

Figures 4-15 and 4-16 exhibit the guy-wires axial-force histories for the MDE and MCE, respectively. The maximum wire tension for the MDE is well within the wire capacity of the MCE just reaches the capacity of 1000 kips.

4.2.3 Tower base moment and shear

Figures 4-17 and 4-18 show the maximum moment histories at the base of the tower for the MDE and MCE, respectively. As expected, the maximum moments at the base of the tower are limited to the moment capacity of the nonlinear joint set to 225,000 kip-ft.

Figures 4-19 and 4-20 display the maximum shear force histories at the base of the tower for the MDE and MCE, respectively. The results show that the maximum base shear is under the base shear capacity of 6,000 kips for both the MDE and MCE ground motions.

4.2.4 Evaluation of results

Figures 4-21 and 4-22 compare moment demands with moment capacities along the entire height of the tower for the MDE and MCE, respectively. The results indicate that the MDE moment demands exceed moment capacities above El. 460 and those of the MCE exceed the capacities at all elevations. The results suggest that the use of 4-inch diameter wires have not improved the situation over that of the 2 ¼ inch diameter wires.

Figures 4-23 and 4-24 compare shear demands with shear capacities for the MDE and MCE, respectively. The results show that the shear demands remain below the shear capacities at elevations below the lower level guy-wires, but exceed the capacities above this elevation.

5. CONCLUSION

Overall, the results indicate that neither the 2¹/₄ inch nor the 4-inch diameter wires with 2 level attachments show any measureable performance improvement over the single-attachment guy wires analyzed previously (Quest, 2008).

6. REFERENCES

Goyal, A. and Chopra, A.K. (1989), "Earthquake Analysis and response of Intake-Outlet Towers," report No. UCB/EERC-89-04, Earthquake Engineering research Center, University of California, Berkeley, 1989.

Quest, 2007, "Seismic Evaluation of Briones Outlet Tower," final report submitted to EBMUD, August 6, 2007.

Quest, 2008, "Seismic Evaluation of Retrofit Options for Briones Outlet Tower," final report submitted to EBMUD, September 12, 2008.

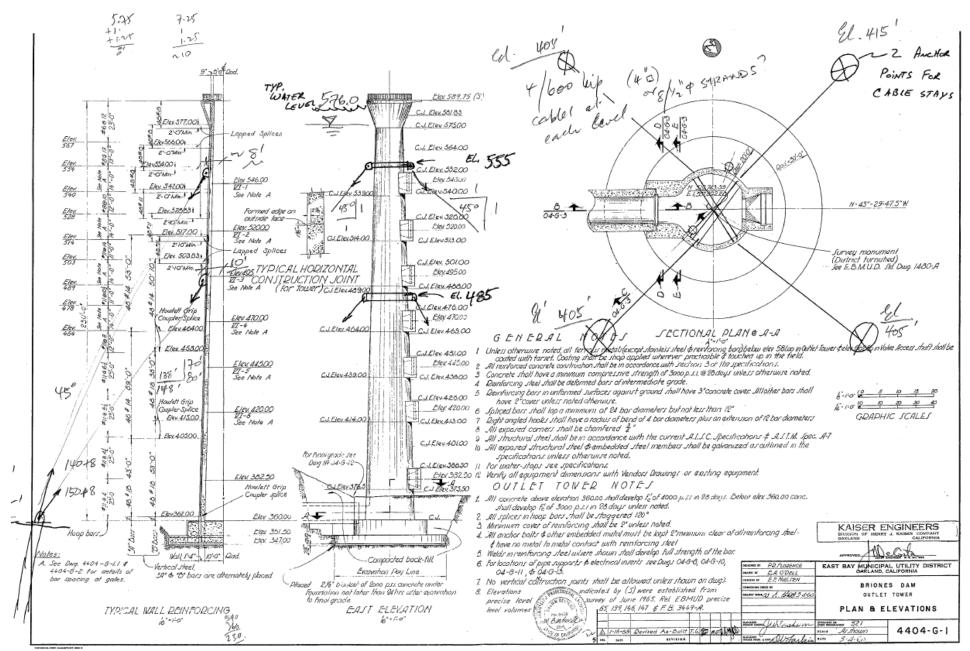


Figure 1-1: Sketch of guy wires alternative with 2 support levels.

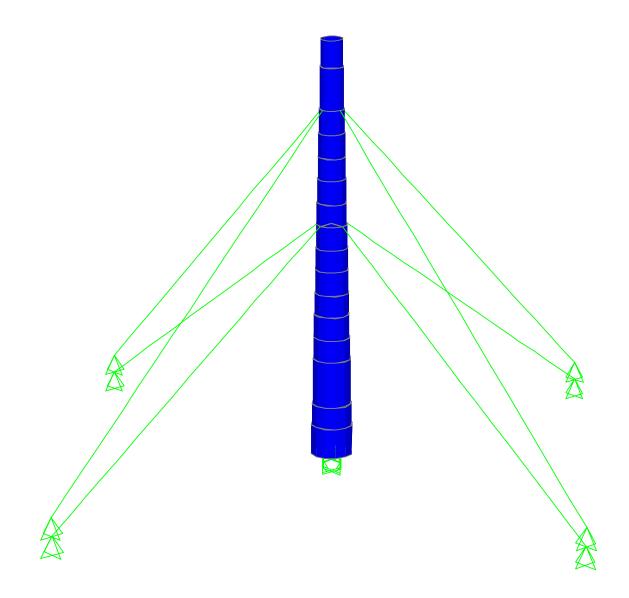


Figure 2-1: 3D view of finite-element model showing tower with 2 sets of guy wires.

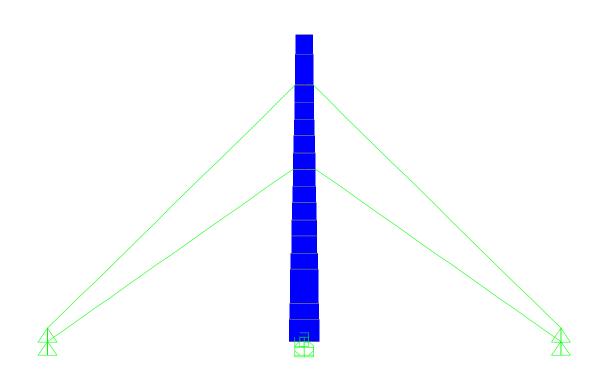


Figure 2-2: Elevation view of finite-element model.

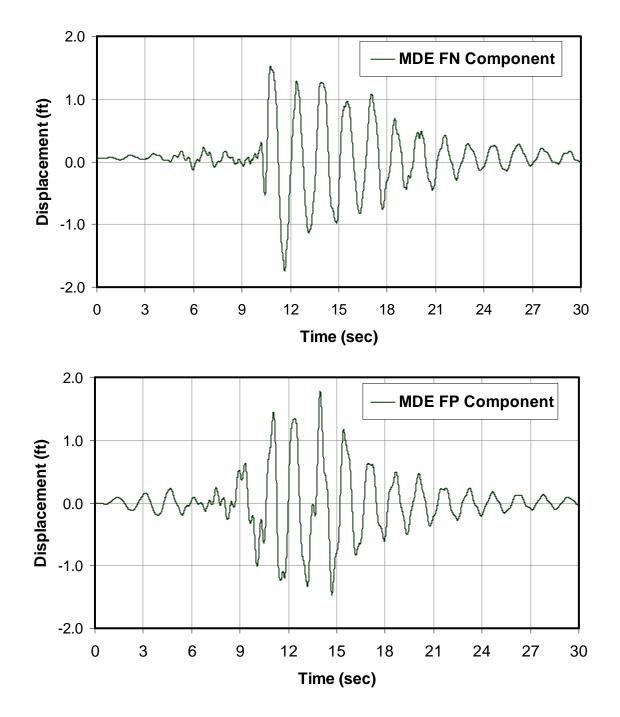


Figure 4-1: MDE displacement histories at top of tower (2-1/4 inch wires).

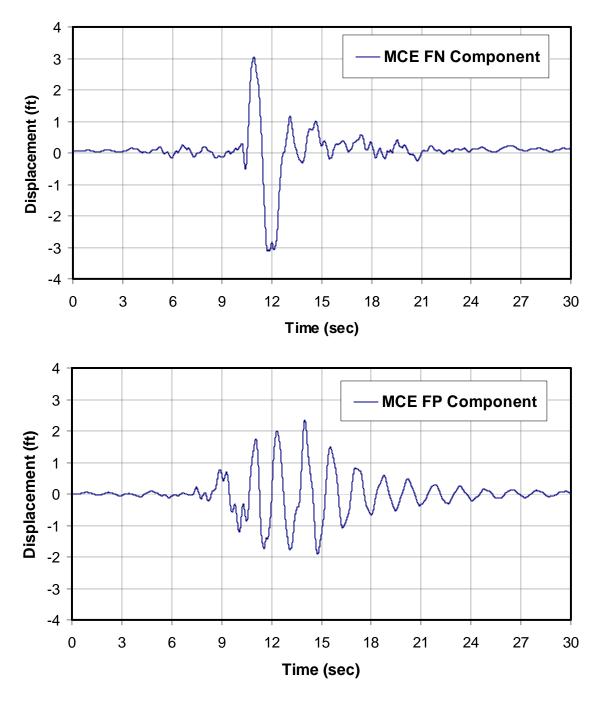


Figure 4-2: MCE displacement histories at top of tower (2-1/4 inch wires).

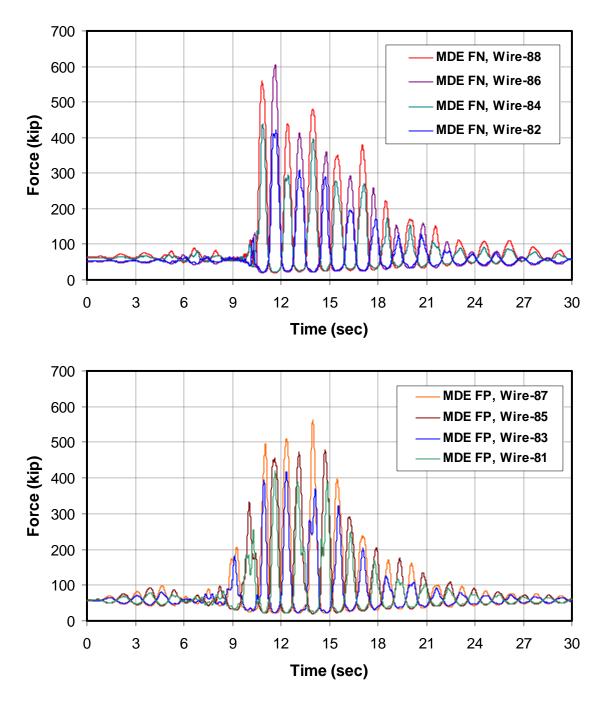


Figure 4-3: Time history of wire forces for MDE (2 ¹/₄ inch wires).

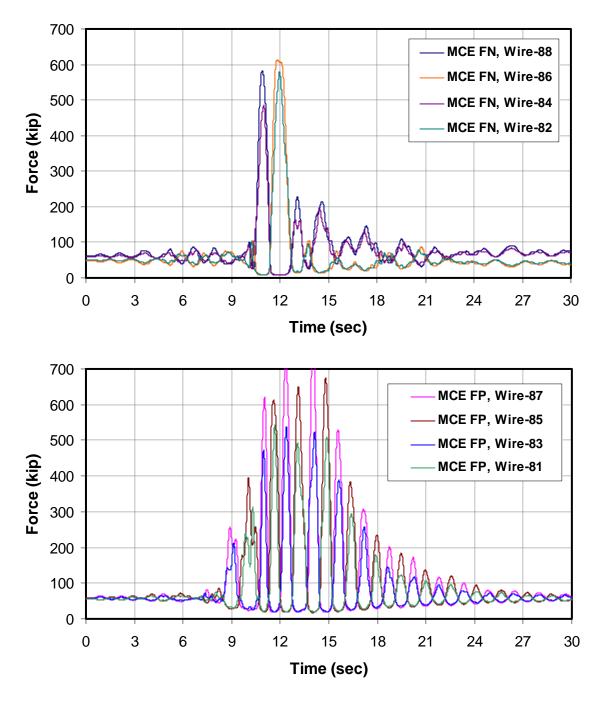


Figure 4-4: Time Histories of wire forces for MCE (2 ¹/₄ inch wires).

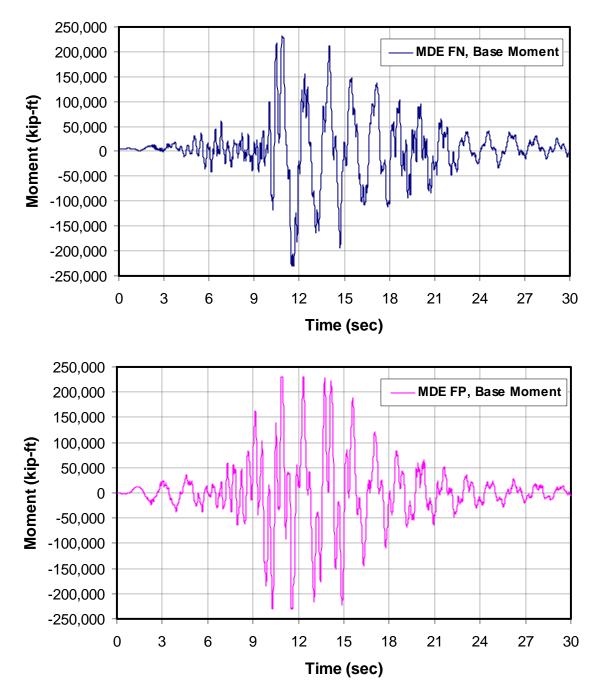


Figure 4-5: Time histories of maximum moments for MDE (2 ¹/₄ inch wires).

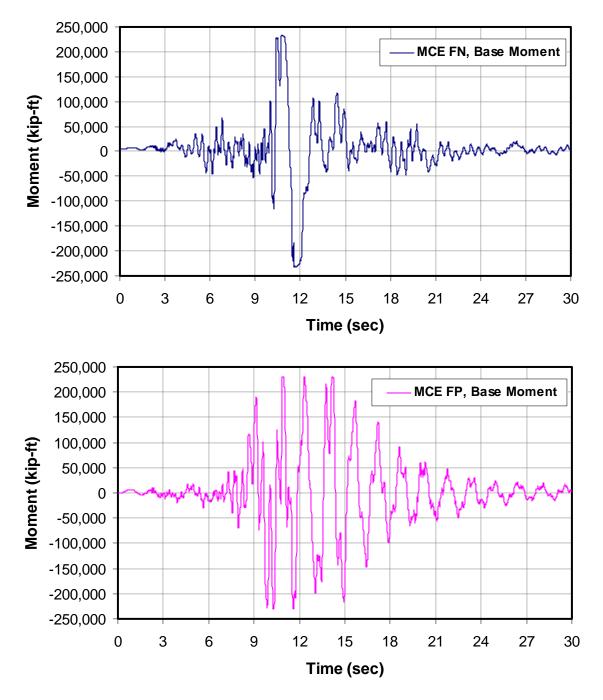


Figure 4-6: Time histories of maximum moments for MCE (2 ¹/₄ inch wires).

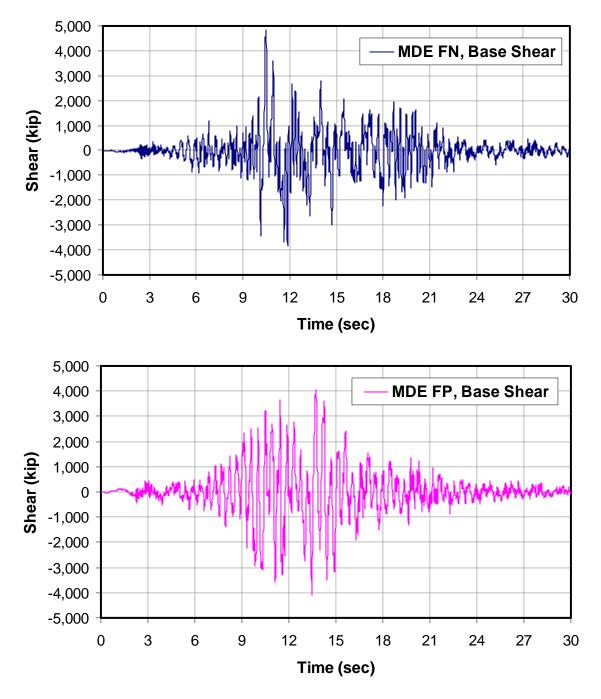


Figure 4-7: Time histories of base shear for MDE (2 ¹/₄ inch wires).

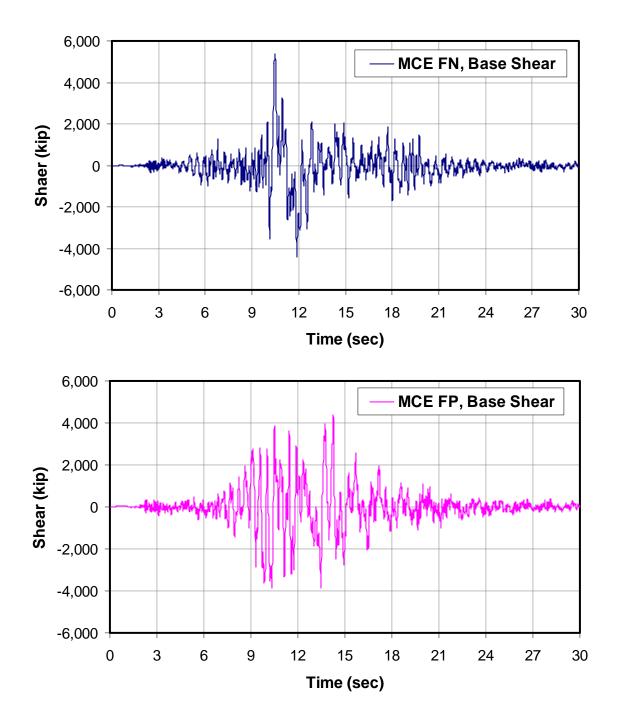


Figure 4-8: Time histories of base shear for MCE (2-1/4 inch wires).

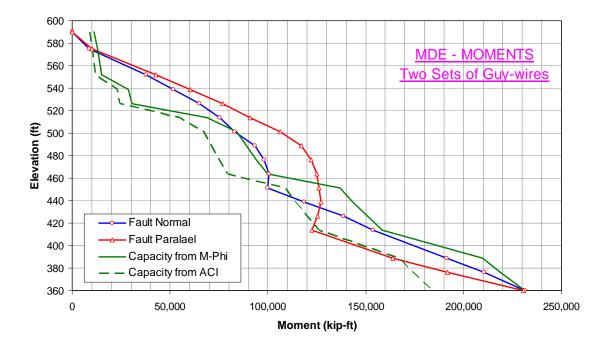


Figure 4-9: Comparison of MDE moment demands with moment capacities (2 ¼ inch wires).

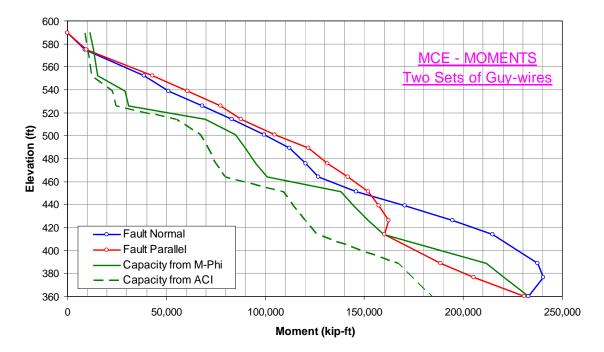


Figure 4-10: Comparison of MCE moment demands with moment capacities (2 ¹/₄ inch wires).

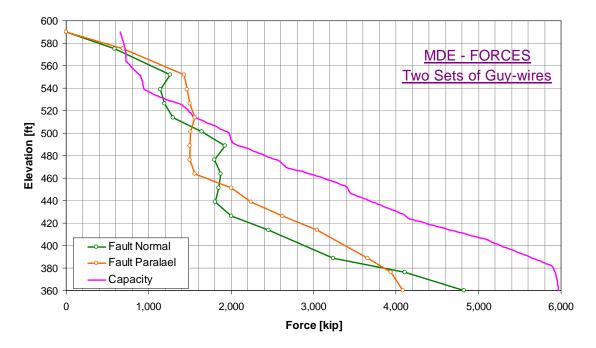


Figure 4-11: Comparison of MDE shear demands with shear capacities (2 ¹/₄ inch wires).

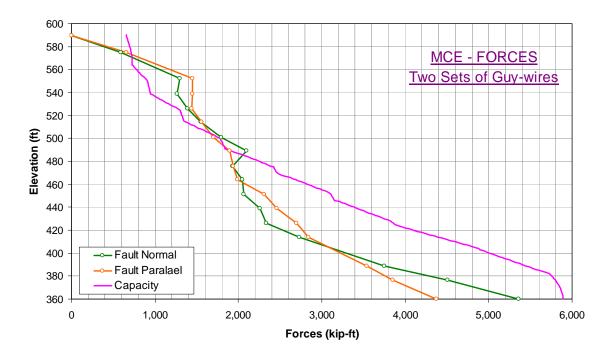


Figure 4-12: Comparison of MCE shear demands with shear capacities (2 ¼ inch wires).

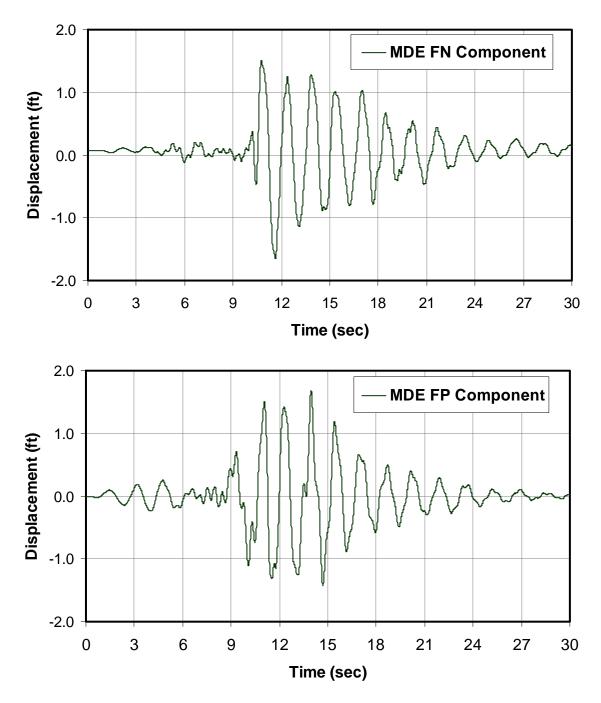


Figure 4-13: Displacement histories of top of tower for MDE (4-in wires).

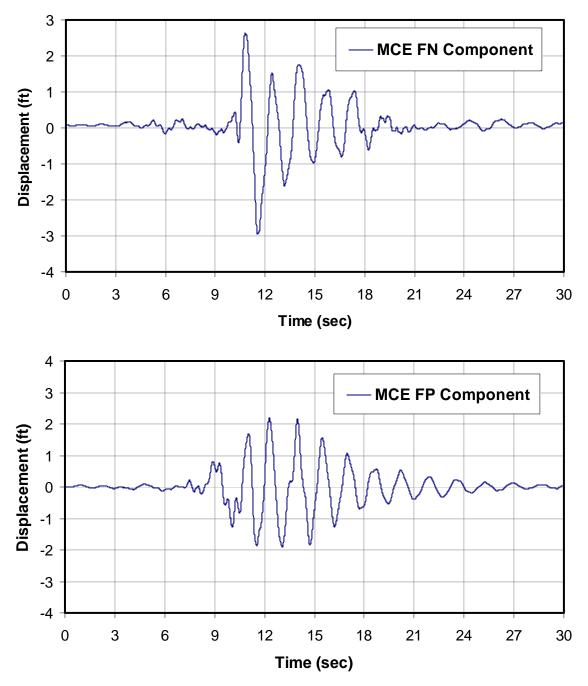


Figure 4-14: Top of tower displacement histories for MCE (4-inch wires).

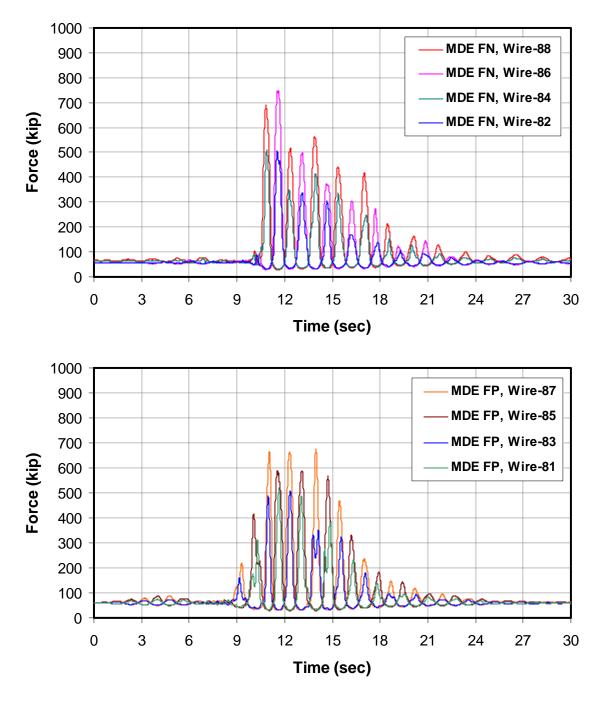


Figure 4-15: Time histories of wire forces for MDE (4-inch wires).

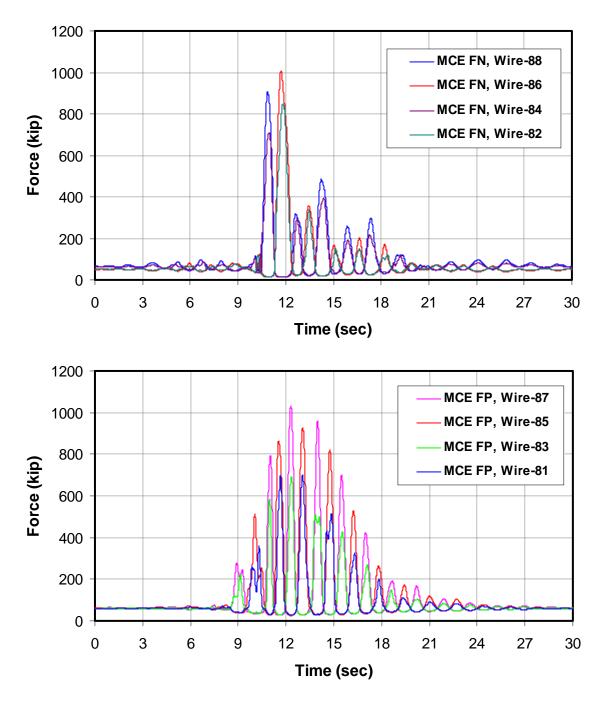


Figure 4-16: Time histories of wire forces for MCE (4-inch wires).

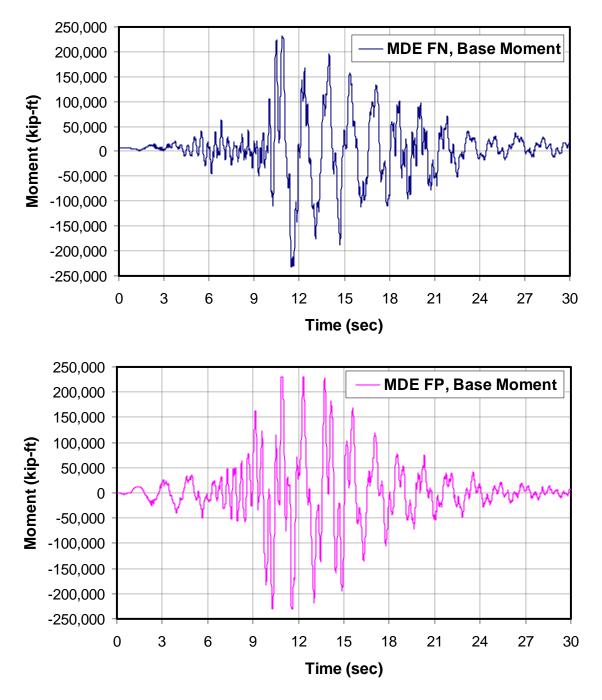


Figure 4-17: Time history of maximum moments for MDE (4-inch wires).

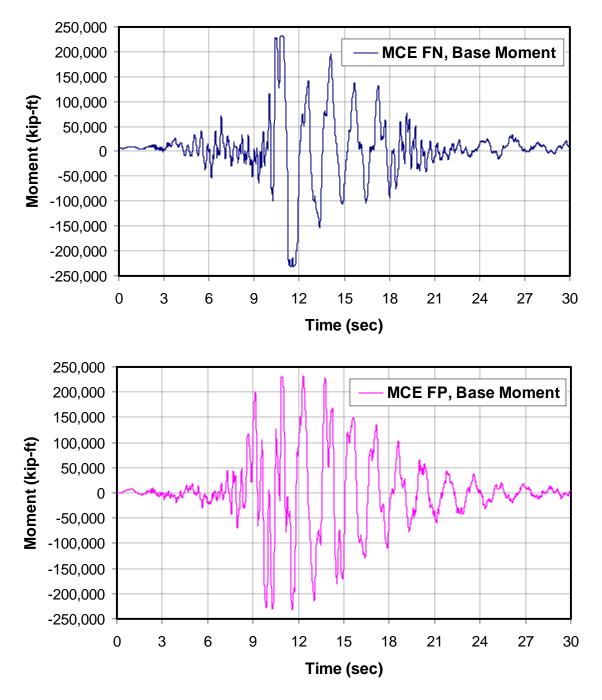


Figure 4-18: Time histories of maximum moments for MCE (4-inch wires).

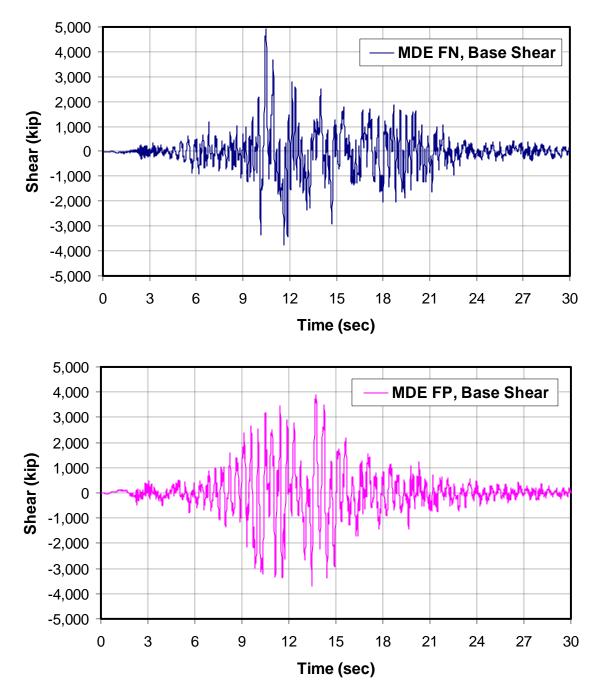


Figure 4-19: Time histories of base shear for MDE (4-inch wires).

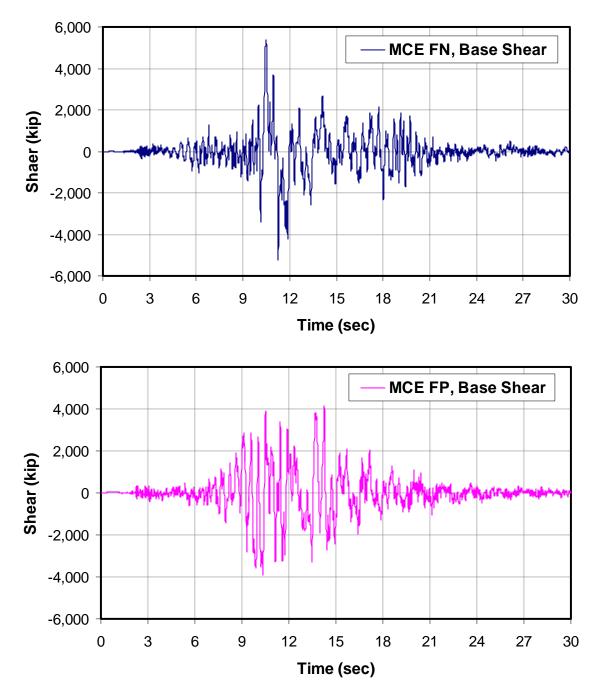


Figure 4-20: Time histories of base shear for MCE (4-inch wires).

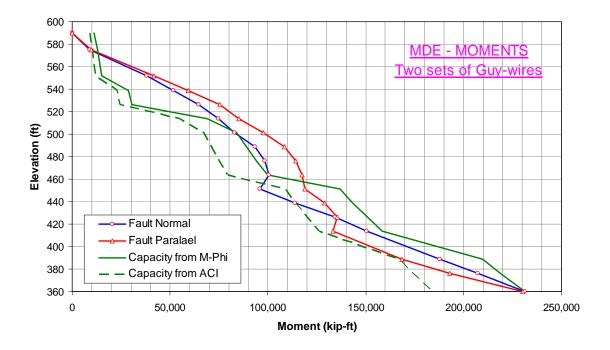


Figure 4-21: Comparison of MDE moment demands with moment capacities (4-inch wires).

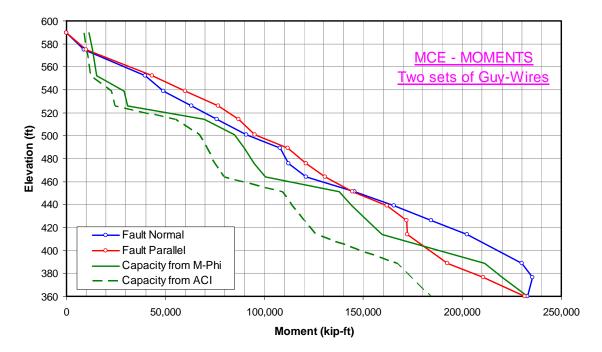


Figure 4-22: Comparison of MCE moment demands with moment capacities (4-inch wires).

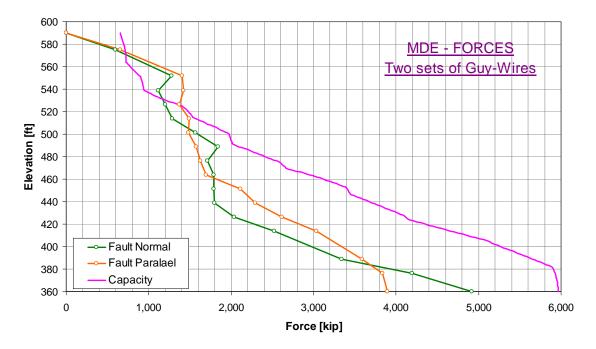


Figure 4-23: Comparison of MDE shear demands with shear capacities (4-inch wires).

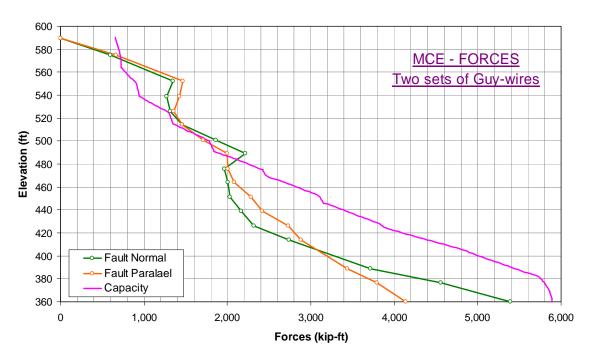


Figure 4-24: Comparison of MCE shear demands with shear capacities (4-inch wires).

APPENDIX C: PRELIMINARY COST ESTIMATES

Option 3: Dredge around Tower, Tremie Anchor Concrete, Stiffen Interior w/ Reinforced Concrete

Option 3A: PARTIALLY DEWATERED - Dredge around Tower, Tremie Anchor Concrete, Stiffen Interior w/ Reinforced Concrete

Option 3B: DEWATERED - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ Reinforced Concrete

Option 4: Dredge over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Option 4A: PARTIALLY DEWATERED - Dredge over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Option 4B: DEWATERED - Excavate over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Option 5: Dredge over Existing Tunnel, Tremie Anchor Concrete, Install Precast Tower Spools and Posttension

Option 5A: PARTIALLY DEWATERED - Dredge over Existing Tunnel, Tremie Anchor Concrete, Install Precast Tower Spools and Posttension

Vortex Estimate for Diving Work

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3 - Dredge Around Tower, Tremie Anchor Concrete, Stiffen Interior w/ reinforced Concrete No Dewatering

Item	Description	Quantity	Hrs/Shift Shif	its/Day	Days	Unit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		\$706,000
2	Dredge for Tremied Anchor Concrete	1 LS	10	1	11		\$2,143,000
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1	20		\$4,478,000
4	Tremie Base Anchor Concrete	1 LS	10	1	6		\$2,128,000
5	Dewater & Clean Tower	1 LS	10	1	13		\$684,000
6	FRP Tunnel Transition	1 LS	10	1	11		\$284,000
7	FRP to valve at El. 382.5	1 LS	10	1	11		\$265,000
8	FRP to El. 399	1 LS	10	1	7		\$188,000
9	FRP to valves at El. 420, 445, 470, 495	1 LS	10	1	44		\$1,377,000
10	FRP to valve at El. 520	1 LS	10	1	12		\$228,000
11	FRP to valves at El. 546	1 LS	10	1	11		\$240,000
12	FRP to El. 589.75	1 LS	10	1	12		\$252,000
13	Permanent Access into Tower	1 LS	10	1	20		\$1,045,000
14	Demobilization	1 LS	10	1	10		\$426,000
					198 Days		
					9.9 Month	าร	\$14,444,000
15	Supervision	1 LS			9.9 Mo	\$62,020 Mo	\$614,000
16	General Operations	1 LS			9.9 Mo	\$111,010 Mo	\$1,099,000
17	General Requirements 10% of Direct	10 %					\$1,445,000
18	Home Office - 4-% of Direct	4 %					\$578,000
	Subtotal						\$18,180,000
19	Profit - 15% total	15%					\$2,727,000
20	Bond, Taxes, & Insurance	2 %					\$419,000
	Total (2008 Dollars)						\$21,326,000
21	Escalation Excluded - Recommend 5% per year						
22	Contingency & Escalation	40%					\$8,531,000
	Total Unescalated Construction Cost with Contingenc	v					\$29,857,000
	Fuchada Decimo Conte OM Conte and Cumor Oct	•					,,

Excludes Design Costs, CM Costs, and Owner Soft Costs

Assume Dredging material deposited on reservoir floor. Assume \$250,000 additional to total unescalated cost if off-hauled. Assume Valve controls, actuators, piping, etc do not have to be relocated or removed, and partially encased in Concrete.

1

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

em	Description	Quantity	Hrs/Shift Shifts	/Day	Days		Unit Cost	LF	Item Cost
1	Mobilization	1 LS	10	1	10				\$706,000
	Move in cranes, barges, office, formwork, materials,								
	1 Mobilize Plant & Equip	1 LS				1	600000		\$600,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/da	ay	10	1000	72 \$/hr	1.05	\$75,600
	3 Receive Materials	20 Day	20 mhr/da	ay		400	72 \$/hr	1.05	\$30,240
2	Dredge for Tremied Anchor Concrete	1 LS	10	1	11				<mark>\$2,143,000</mark>
	Dredge around base of tower for tremie concrete, 10		er day, 250 CY/d	ay					
	1 Dredger - Subcontractor	2512 CY				2512	100 \$/cy		\$251,200
	2 Divers	11 Days	80 mhr/da	ay		880	157200 \$/day	:	\$1,729,200
	3 100 T Crane	11 Days				110	250 \$/hr		\$27,500
	4 Barge & Tug	11 Days				110	340 \$/hr	1.05	\$39,270
	5 Labor	11 Days	100 mhr/da	ay	11	1100	72 \$/hr		\$79,200
	6 Decompression chamber	11 Days				264	62.5 \$/hr		\$16,500
	7 Muck Disposal - on lake bed	,							. ,
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1	20				\$4,478,000
	Install 60-ft diameter "formwork" and Brace, 10-hr shi	ifts, 1 shift per da	y, divers - 3sf/ml	า					
	1 Divers	20 Days	160 mhr/da			3200	179625 \$/day		\$3,592,500
	2 100 T Crane	20 Days		,		200	250 \$/hr		\$50,000
	3 Barge & Tug	20 Days				200	340 \$/hr		\$68,000
	4 Decompression chamber	20 Days				480	62.5 \$/hr		\$30,000
	5 Labor	20 Days	100 mhr/da	av.	20	2000	72 \$/hr	1.05	\$151,200
	6 Form material	60 LF		^{xy}	20	60	9430 \$/LF	1.00	\$565,800
	7 Bracing	1 LS				1	20000 LS		\$20,000
4	Tremie Base Anchor Concrete	1 LS	24	1	6				\$2,128,000
	Setup concrete operation & tremie concrete, 50 CY/h								+_,,,
	1 Divers	6 Days	192 mhr/da	ν		1152	157200 \$/day		\$943.200
	2 100 T Crane	6 Days		,		144	250 \$/hr		\$36,000
	3 Barge & Tug	6 Days				144	340 \$/hr		\$48,960
	4 Decompression chamber	6 Days				144	62.5 \$/hr		\$9,000
	5 Concrete pump & piping	5500 CY				5500	10 \$/cy		\$55,000
	6 Tremie Concrete	6 Days	240 mhr/da	a./	6	1440	72 \$/hr	1.5	\$155,520
	7 Concrete	5500 CY	240 1111/40	A Y	U	5500	140 \$/cy	1.0	\$770,000
	8 Concrete Overtime fees	3667 CY				3667	30 \$/cy		\$110,010
5	Dewater & Clean Tower	1 LS	10	1	13				\$684,000
v	Dewater tower, clean interior, and remove unnecess								<i>+</i> , <i></i> , <i>-</i>
	1 Dewater tower & seal intakes	2 TT	(72 \$/hr		

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
	2 Divers	3 Days	80 mhr/day	- , -	240	157200 \$/day		\$471,600
	3 Barge & Tug	13 Days	,		130	250 \$/hr		\$32,500
	4 100 T Crane	13 Days			130	340 \$/hr		\$44,200
	5 Decompression chamber	2 Days			48	62.5 \$/hr		\$3,000
	6 Clean interior walls	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	7 Remove unnecessary Appurtenances	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	8 Man cage	13 Days			130	2 \$/hr		\$260
	9 Ventilation	13 Days			130	10 \$/hr		\$1,300
	10 Generator	13 Days			130	15 \$/hr		\$1,950
	11 Intake Seal Covers	6 ea				5000 ea		\$30,000
6	FRP Tunnel Transition		10 1	11				\$284,000
	Install Reinforcing steel, Form, Pour, Strip, and F							
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	11 LF	4786 lbs/LF		52646	1.5 \$/lb		\$78,969
	7 Concrete	11 LF	5 CY/LF		55	140 \$/cy		\$7,700
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Shaft Formwork - 25-ft Purchase	1 LS			1	50000 LS		\$50,000
	10 Barge & Tug	11 Days			110	340 \$/hr		\$37,400
	11 100 T Crane	11 Days			110	250 \$/hr		\$27,500
	12 Concrete pump & piping	55 CY			55	10 \$/cy		\$550
	13 Man cage	11 Days			110	2 \$/hr		\$220
	14 Ventilation	11 Days			110	10 \$/hr		\$1,100
	15 Generator	11 Days			110	15 \$/hr		\$1,650
7			10 1	11				\$265,000
	Install Reinforcing steel, Form, Pour, Strip, and F					* *		A 1
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	15 LF	4786 lbs/LF		71790	1.5 \$/lb		\$107,685
	7 Concrete	15 LF	5 CY/LF		75	140 \$/cy		\$10,500
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Barge & Tug	11 Days			110	250 \$/hr		\$27,500

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
	10 100 T Crane	11 Days			110	340 \$/hr		\$37,400
	11 Concrete pump & piping	75 CY			75	10 \$/cy		\$750
	12 Man cage	11 Days			110	2 \$/hr		\$220
	13 Ventilation	11 Days			110	10 \$/hr		\$1,100
	14 Generator	11 Days			110	15 \$/hr		\$1,650
8			10 1	7				\$188,000
	Install Reinforcing steel, Form, Pour, Strip, and Fin							
	1 Plant support for Reinforcing	3 Days	50 mhr/day	3	150	72 \$/hr	1.05	\$11,340
	2 Install Special Formwork at Transition	0 Days	100 mhr/day	0	0	72 \$/hr	1.05	\$0
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	13 LF	4786 lbs/LF		62218	1.5 \$/lb		\$93,327
	7 Concrete	13 LF	5 CY/LF		65	140 \$/cy		\$9,100
	8 Transition Formwork	0 LS			0	10000 LS		\$0
	9 Barge & Tug	7 Days			70	340 \$/hr		\$23,800
	10 100 T Crane	7 Days			70	250 \$/hr		\$17,500
	11 Concrete pump & piping	65 CY			65	10 \$/cy		\$650
	12 Man cage	7 Days			70	2 \$/hr		\$140
	13 Ventilation	7 Days			70	10 \$/hr		\$700
	14 Generator	7 Days			70	15 \$/hr		\$1,050
9	FRP to valves at El. 420, 445, 470, 495		10 1	44			ç	1,377,000
	Install Reinforcing steel, Form, Pour, Strip, and Fin							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Install Reinforcing steel, Form, Pour, Stind, and Fin	ish to top of valves	4 Pours @ 25 LF					
				16	800	72 \$/hr	1.05	\$60.480
	1 Plant support for Reinforcing	16 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day	-	800 1200	72 \$/hr 72 \$/hr	1.05 1.05	\$60,480 \$90,720
		16 Days 12 Days	50 mhr/day 100 mhr/day	16 12 8		72 \$/hr	1.05	\$90,720
	1 Plant support for Reinforcing 2 Install Special Formwork at Transition	16 Days 12 Days 8 Days	50 mhr/day 100 mhr/day 100 mhr/day	12	1200			\$90,720 \$60,480
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete 	16 Days 12 Days 8 Days 4 Days	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	12 8	1200 800	72 \$/hr 72 \$/hr 72 \$/hr	1.05 1.05	\$90,720 \$60,480 \$30,240
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete 	16 Days 12 Days 8 Days 4 Days 4 Days	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	12 8 4	1200 800 400 400	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$30,240
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install 	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 400 478600	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$30,240 \$717,900
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete 	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF 100 LF	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	12 8 4	1200 800 400 400	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete Transition Formwork 	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF 100 LF 4 Ea	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 400 478600 500	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000 \$40,000
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete 	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 400 478600 500 4	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete Transition Formwork Barge & Tug 100 T Crane 	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF 100 LF 4 Ea	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 478600 500 4 440	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600 \$110,000
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete Transition Formwork Barge & Tug 100 T Crane Concrete pump & piping 	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days 44 Days 500 CY	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 478600 500 4 440 440	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr 10 \$/cy	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$70,000 \$70,000 \$40,000 \$149,600 \$110,000 \$5,000
	 Plant support for Reinforcing Install Special Formwork at Transition Install Vertical formwork Pour Concrete Strip forms & patch Concrete Reinforcing Bars furnish & install Concrete Transition Formwork Barge & Tug 100 T Crane 	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days 44 Days	50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	12 8 4	1200 800 400 478600 500 4 440 440 500	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr	1.05 1.05 1.05	\$90,720 \$60,480 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600 \$110,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

tem	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
10	FRP to valve at El. 520		10 1	12				\$228,000
	Install Reinforcing steel, Form, Pour, Strip, and	Finish to top of valve a			chman			φ0,000
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	26 LF	1200 lbs/LF		31200	1.5 \$/lb		\$46,800
	7 Concrete	26 LF	5 CY/LF		130	140 \$/cy		\$18,200
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Dutchman Formwork	1 LS			1	2000 LS		\$2,000
	10 Barge & Tug	12 Days			120	340 \$/hr		\$40,800
	11 100 T Crane	12 Days			120	250 \$/hr		\$30,000
	12 Concrete pump & piping	130 CY			130	10 \$/cy		\$1,300
	13 Man cage	12 Days			120	2 \$/hr		\$240
	14 Ventilation	12 Days			120	10 \$/hr		\$1,200
	15 Generator	12 Days			120	15 \$/hr		\$1,800
								.
11	FRP to valves at El. 546 Install Reinforcing steel, Form, Pour, Strip, and	Finish to top of volvo	10 1	11 15				<mark>\$240,000</mark>
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	4	300	72 \$/hr	1.05	\$22.680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$22,000
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	25 LF	1200 lbs/LF		30000	1.5 \$/lb	1.00	\$45,000
	7 Concrete	25 LF	5 CY/LF		125	140 \$/cy		\$17,500
	8 Transition Formwork	4 LS	0 01/El		4	10000 LS		\$40,000
	9 Barge & Tug	11 Days			110	340 \$/hr		\$37,400
		11 Days			110	250 \$/hr		\$27,500
	10 100 L Crane				110	200 ψ/11		
	10 100 T Crane 11 Concrete pump & piping				125	10 \$/cv		\$1,250
	11 Concrete pump & piping	125 CY			125 110	10 \$/cy 2 \$/br		\$1,250 \$220
	11 Concrete pump & piping 12 Man cage	125 CY 11 Days			110	2 \$/hr		\$220
	11 Concrete pump & piping12 Man cage13 Ventilation	125 CY 11 Days 11 Days				2 \$/hr 10 \$/hr		\$220 \$1,100
	11 Concrete pump & piping 12 Man cage	125 CY 11 Days			110 110	2 \$/hr		\$220

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3 - Dredge Around Tower, Tremie Anchor Concrete, Stiffen Interior w/ reinforced Concrete No Dewatering

em Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
Install Reinforcing steel, Form, Pour, Strip, and Fi	nish to top at EL 589	9.75, 2 pours @ 20LF (each				
1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
2 Install Special Formwork at Transition	0 Days	100 mhr/day	0	0	72 \$/hr	1.05	\$0
3 Install Vertical formwork	4 Days	100 mhr/day	4	400	72 \$/hr	1.05	\$30,240
4 Pour Concrete	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
5 Strip forms & patch Concrete	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
6 Reinforcing Bars furnish & install	40 LF	1200 lbs/LF		48000	1.5 \$/lb		\$72,000
7 Concrete	40 LF	5 CY/LF		200	140 \$/cy		\$28,000
8 Transition Formwork	0 LS			0	10000 LS		\$0
9 Barge & Tug	12 Days			120	340 \$/hr		\$40,800
10 100 T Crane	12 Days			120	250 \$/hr		\$30,000
11 Concrete pump & piping	200 CY			200	10 \$/cy		\$2,000
12 Man cage	12 Days			120	2 \$/hr		\$240
13 Ventilation	12 Days			120	10 \$/hr		\$1,200
14 Generator	12 Days			120	15 \$/hr		\$1,800
13 Permanent Access into Tower		10 1	20				\$1,045,000
Provide New ladder into shaft							
1 Furnish Ladder	1 LS			1	25000		\$25,000
2 Install Ladder	10 Days	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
3 Furnish Hoisting system w/ workdeck & New Cove	er 1 LS			1	750000		\$750,000
4 Install Hoisting system	10 Days	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
5 Barge & Tug	20 Days			200	340 \$/hr		\$68,000
6 100 T Crane	20 Days			200	250 \$/hr		\$50,000
14 Demobilization		10 1	10				\$426,000
Demobilize cranes, barges, office, formwork, mate							.
1 Demobilize Plant & Equip	1 LS			1	300000 LS	–	\$300,000
2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
3 Restoration	1 LS			1	50000 LS		\$50,000

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 3 - Dredge Around Tower, Tremie Anchor Concrete, Stiffen Interior w/ reinforced Concrete

	No Dewatering				
Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	9.9 Mo	\$62,020 Mo	\$614,000
	1 Project Manager	1 Ea	9.9	13000 Mo	\$128,700
	2 Project Superintendent	1 Ea	9.9	12000 Mo	\$118,800
	3 Walker	3 Ea	9.9	10000 Mo	\$99,000
	4 Project Engineer	1 Ea	9.9	10000 Mo	\$99,000
	5 Office Manager	1 Ea	9.9	8000 Mo	\$79,200
	6 Field Engineer	2 Ea	9.9	9000 Mo	\$89,100
2	General Operations	1 LS	9.9 Mo	\$111,010 Mo	\$1,099,000
	1 Office	1 Ea	9.9	450	\$4,455
	2 Change House	1 Ea	9.9	450	\$4,455
	3 Shop Containers	4 Ea	9.9	100	\$3,960
	4 Power supply	1 Ea	9.9	400	\$3,960
	5 Lights	1 Ea	9.9	100	\$990
	6 Phones	1 Ea	9.9	250	\$2,475
	7 Computers	1 Ea	9.9	250	\$2,475
	8 Copier	1 Ea	9.9	200	\$1,980
	9 Water	1 Ea	9.9	200	\$1,980
	10 Sewer	1 Ea	9.9	200	\$1,980
	11 Access Road	1 LS	1	20000 LS	\$20,000
	12 Vehicles	6 Ea	9.9	900	\$53,460
	13 CAT 950 FEL	1 Ea	9.9	10000	\$99,000
	14 Forklift	1 Ea	9.9	4000	\$39,600
	15 RT30 Crane	1 Ea	9.9	12000	\$118,800
	16 Living Costs	6 Ea	9.9	2000	\$118,800
	17 Travel	1 Ea	9.9	1000	\$9,900
	18 Insurance	1 LS	1	500000 LS	\$500,000
	19 Permits	1 LS	1	10000 LS	\$10,000
	20 Consultants	1 LS	1	50000 LS	\$50,000
	21 Legal	1 LS	1	50000 LS	\$50,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3A - Dredge Around Tower, Tremie Anchor Concrete, Stiffen Interior w/ reinforced Concrete Partial Dewater to 100 ft

Item	Description	Quantity	Hrs/Shift Shifts/Da	iy Da	ays Uni	t Cost	Item Cost
1	Mobilization	1 LS	10	1 ′	10		\$706,000
2	Dredge for Tremied Anchor Concrete	1 LS	10	1 ′	11		\$960,000
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1 2	20		\$1,980,000
4	Tremie Base Anchor Concrete	1 LS	10	1	6		\$1,483,000
5	Dewater & Clean Tower	1 LS	10	1 ′	13		\$361,000
6	FRP Tunnel Transition	1 LS	10	1 ′	11		\$284,000
7	FRP to valve at EI. 382.5	1 LS	10	1 ′	11		\$265,000
8	FRP to El. 399	1 LS	10	1	7		\$188,000
9	FRP to valves at El. 420, 445, 470, 495	1 LS	10	1 4	44		\$1,377,000
10	FRP to valve at EI. 520	1 LS	10	1 '	12		\$228,000
11	FRP to valves at El. 546	1 LS	10	1 '	11		\$240,000
12	FRP to El. 589.75	1 LS	10	1 '	12		\$252,000
13	Permanent Access into Tower	1 LS	10	1 2	20		\$1,045,000
14	Demobilization	1 LS	10	1 ′	10		\$426,000
				19	98 Days		
				9	.9 Months		\$9,795,000
15	Supervision	1 LS		9	.9 Mo	\$62,020 Mo	\$614,000
16	General Operations	1 LS		9	.9 Mo	\$111,010 Mo	\$1,099,000
17	General Requirements 10% of Direct	10 %					\$980,000
18	Home Office - 4-% of Direct	4 %					\$392,000
	Subtotal						\$12,880,000
19	Profit - 15% total	15%					\$1,932,000
20	Bond, Taxes, & Insurance	2 %					\$297,000
	Total (2008 Dollars)						\$15,109,000
21	Escalation Excluded - Recommend 5% per year						
22	Contingency & Escalation	40%					\$6,044,000
	Dewater Costs to 100 LF						\$4,000,000
	Total Unescalated Construction Cost with Contingency						\$25,153,000
	Excludes Design Costs, CM Costs, and Owner Soft Costs						

Assume Dredging material deposited on reservoir floor. Assume \$250,000 additional to total unescalated cost if off-hauled. Assume Valve controls, actuators, piping, etc do not have to be relocated or removed, and partially encased in Concrete.

TLP

1

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

1	Description	Quantity	Hrs/Shift	Shifts/Day	Days		Unit Cost	LF	Item Cos
1	Mobilization	1 LS	10	1	10				\$706,000
	Move in cranes, barges, office, formwork, materials,								
	1 Mobilize Plant & Equip	1 LS				1	600000		\$600,000
	2 Setup Plant & Equip (8 men)	10 Day	100 m	hr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Receive Materials	20 Day	20 m	hr/day		400	72 \$/hr	1.05	\$30,240
2	Dredge for Tremied Anchor Concrete	1 LS	10	1	11				\$960,000
	Dredge around base of tower for tremie concrete, 10		er day, 250	CY/day					
	1 Dredger - Subcontractor	2512 CY				2512	100 \$/cy		\$251,200
	2 Divers	11 Days	80 m	hr/day		880	49600 \$/Day		\$545,600
	3 100 T Crane	11 Days		-		110	250 \$/hr		\$27,500
	4 Barge & Tug	11 Days				110	340 \$/hr	1.05	\$39,270
	5 Labor	11 Davs	100 m	hr/day	11	1100	72 \$/hr		\$79,200
	6 Decompression chamber	11 Days				264	62.5 \$/hr		\$16,500
	7 Muck Disposal - on lake bed	,					·		. ,
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1	20				<mark>\$1,980,000</mark>
-	Install 60-ft diameter "formwork" and Brace, 10-hr sh			sf/mh					+ , ,
	1 Divers	20 Days		hr/day		3200	54750 \$/Day		\$1,095,000
	2 100 T Crane	20 Days		,		200	250 \$/hr		\$50,000
	3 Barge & Tug	20 Days				200	340 \$/hr		\$68,000
	4 Decompression chamber	20 Days				480	62.5 \$/hr		\$30,000
	5 Labor	20 Days 20 Days	100 m	hr/day	20	2000	72 \$/hr	1.05	\$151,200
	6 Form material	60 LF	100 11	inii/day	20	60	9430 \$/LF	1.00	\$565,80
	7 Bracing	1 LS				1	20000 LS		\$20,000
		1 13				1	20000 L3		φ20,000
4	Tremie Base Anchor Concrete	1 LS	24	1	6				<mark>\$1,483,00</mark>
	Setup concrete operation & tremie concrete, 50 CY/		100						* ~~ ~ ~~~
	1 Divers	6 Days	192 m	hr/day		1152	49600 \$/Day		\$297,600
	2 100 T Crane	6 Days				144	250 \$/hr		\$36,000
	3 Barge & Tug	6 Days				144	340 \$/hr		\$48,96
	4 Decompression chamber	6 Days				144	62.5 \$/hr		\$9,000
	5 Concrete pump & piping	5500 CY				5500	10 \$/cy		\$55,000
	6 Tremie Concrete	6 Days	240 m	ihr/day	6	1440	72 \$/hr	1.5	\$155,520
	7 Concrete	5500 CY				5500	140 \$/cy		\$770,000
	8 Concrete Overtime fees	3667 CY				3667	30 \$/cy		\$110,010
5	Dewater & Clean Tower	1 LS	10	1	13				\$361,000
	Dewater tower, clean interior, and remove unnecess				-		TO * "		A <i>a</i> -
	1 Dewater tower & seal intakes	3 Days	100 m	hr/day	3	300	72 \$/hr	1.05	\$22,680

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
	2 Divers	3 Days	80 mhr/day	-	240	49600 \$/Day		\$148,800
	3 Barge & Tug	13 Days	-		130	250 \$/hr		\$32,500
	4 100 T Crane	13 Days			130	340 \$/hr		\$44,200
	5 Decompression chamber	2 Days			48	62.5 \$/hr		\$3,000
	6 Clean interior walls	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	7 Remove unnecessary Appurtenances	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	8 Man cage	13 Days			130	2 \$/hr		\$260
	9 Ventilation	13 Days			130	10 \$/hr		\$1,300
	10 Generator	13 Days			130	15 \$/hr		\$1,950
	11 Intake Seal Covers	6 ea				5000 ea		\$30,000
6	FRP Tunnel Transition		10 1	11				\$284,000
	Install Reinforcing steel, Form, Pour, Strip, and Fi							
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	11 LF	4786 lbs/LF		52646	1.5 \$/lb		\$78,969
	7 Concrete	11 LF	5 CY/LF		55	140 \$/cy		\$7,700
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Shaft Formwork - 25-ft Purchase	1 LS			1	50000 LS		\$50,000
	10 Barge & Tug	11 Days			110	340 \$/hr		\$37,400
	11 100 T Crane	11 Days			110	250 \$/hr		\$27,500
	12 Concrete pump & piping	55 CY			55	10 \$/cy		\$550
	13 Man cage	11 Days			110	2 \$/hr		\$220
	14 Ventilation	11 Days			110	10 \$/hr		\$1,100
	15 Generator	11 Days			110	15 \$/hr		\$1,650
7			10 1	11				\$265,000
	Install Reinforcing steel, Form, Pour, Strip, and Fi							.
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	15 LF	4786 lbs/LF		71790	1.5 \$/lb		\$107,685
	7 Concrete	15 LF	5 CY/LF		75	140 \$/cy		\$10,500
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Barge & Tug	11 Days			110	250 \$/hr		\$27,500

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
	10 100 T Crane	11 Days			110	340 \$/hr		\$37,400
	11 Concrete pump & piping	75 CY			75	10 \$/cy		\$750
	12 Man cage	11 Days			110	2 \$/hr		\$220
	13 Ventilation	11 Days			110	10 \$/hr		\$1,100
	14 Generator	11 Days			110	15 \$/hr		\$1,650
8			10 1	7				\$188,000
	Install Reinforcing steel, Form, Pour, Strip, and	•						
	1 Plant support for Reinforcing	3 Days	50 mhr/day	3	150	72 \$/hr	1.05	\$11,340
	2 Install Special Formwork at Transition	0 Days	100 mhr/day	0	0	72 \$/hr	1.05	\$0
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	13 LF	4786 lbs/LF		62218	1.5 \$/lb		\$93,327
	7 Concrete	13 LF	5 CY/LF		65	140 \$/cy		\$9,100
	8 Transition Formwork	0 LS			0	10000 LS		\$0
	9 Barge & Tug	7 Days			70	340 \$/hr		\$23,800
	10 100 T Crane	7 Days			70	250 \$/hr		\$17,500
	11 Concrete pump & piping	65 CY			65	10 \$/cy		\$650
	12 Man cage	7 Days			70	2 \$/hr		\$140
	13 Ventilation	7 Days			70	10 \$/hr		\$700
	14 Generator	7 Days			70	15 \$/hr		\$1,050
0	ERP to valves at EL 420, 445, 470, 495		10 1	ΔΔ			q	<u>1 377 000</u>
9		Finish to top of valves	10 1 4 Pours @ 25 I F	44			9	\$1,377,000
ç	Install Reinforcing steel, Form, Pour, Strip, and	•	4 Pours @ 25 LF		800	72 \$/br		
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing	16 Days	4 Pours @ 25 LF 50 mhr/day	16	800 1200	72 \$/hr 72 \$/hr	1.05	\$60,480
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition	16 Days 12 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day	16 12	1200	72 \$/hr	1.05 1.05	\$60,480 \$90,720
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork	16 Days 12 Days 8 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day	16 12 8	1200 800	72 \$/hr 72 \$/hr	1.05 1.05 1.05	\$60,480 \$90,720 \$60,480
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete	16 Days 12 Days 8 Days 4 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	16 12 8 4	1200 800 400	72 \$/hr 72 \$/hr 72 \$/hr	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete	16 Days 12 Days 8 Days 4 Days 4 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	16 12 8	1200 800 400 400	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr	1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$30,240
<u> </u> c	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 400 478600	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$30,240 \$717,900
S	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF 100 LF	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day	16 12 8 4	1200 800 400 400 478600 500	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000
Ę	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete 8 Transition Formwork	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 478600 500 4	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000 \$40,000
Ę	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete 8 Transition Formwork 9 Barge & Tug	16 Days 12 Days 8 Days 4 Days 4 Days 100 LF 100 LF 4 Ea 44 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 478600 500 4 440	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600
ç	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete 8 Transition Formwork 9 Barge & Tug 10 100 T Crane	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days 44 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 478600 500 4 440 440	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600 \$110,000
Ę	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete 8 Transition Formwork 9 Barge & Tug 10 100 T Crane 11 Concrete pump & piping	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days 44 Days 500 CY	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 478600 500 4 440 440 500	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr 10 \$/cy	1.05 1.05 1.05 1.05	\$60,480 \$90,720 \$60,480 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600 \$110,000 \$5,000
Ę	Install Reinforcing steel, Form, Pour, Strip, and 1 Plant support for Reinforcing 2 Install Special Formwork at Transition 3 Install Vertical formwork 4 Pour Concrete 5 Strip forms & patch Concrete 6 Reinforcing Bars furnish & install 7 Concrete 8 Transition Formwork 9 Barge & Tug 10 100 T Crane	16 Days 12 Days 8 Days 4 Days 100 LF 100 LF 4 Ea 44 Days 44 Days	4 Pours @ 25 LF 50 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 100 mhr/day 4786 lbs/LF	16 12 8 4	1200 800 400 478600 500 4 440 440	72 \$/hr 72 \$/hr 72 \$/hr 72 \$/hr 1.5 \$/lb 140 \$/cy 10000 Ea 340 \$/hr 250 \$/hr	1.05 1.05 1.05 1.05	\$1,377,000 \$60,480 \$90,720 \$60,480 \$30,240 \$30,240 \$717,900 \$70,000 \$40,000 \$149,600 \$110,000 \$149,600 \$110,000 \$4,400

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cos
10	FRP to valve at El. 520		10 1	12				\$228,000
10	Install Reinforcing steel, Form, Pour, Strip, and	Finish to top of valve a			chman			φ220,000
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	26 LF	1200 lbs/LF		31200	1.5 \$/lb		\$46,800
	7 Concrete	26 LF	5 CY/LF		130	140 \$/cv		\$18,200
	8 Transition Formwork	1 LS			1	10000 LS		\$10,000
	9 Dutchman Formwork	1 LS			1	2000 LS		\$2,000
	10 Barge & Tug	12 Days			120	340 \$/hr		\$40,800
	11 100 T Crane	12 Days			120	250 \$/hr		\$30,000
	12 Concrete pump & piping	130 CY			130	10 \$/cv		\$1,300
	13 Man cage	12 Days			120	2 \$/hr		\$240
	14 Ventilation	12 Days			120	10 \$/hr		\$1,200
	15 Generator	12 Days			120	15 \$/hr		\$1,800
11	FRP to valves at El. 546		10 1	11				\$240,00
	Install Reinforcing steel, Form, Pour, Strip, and				000	70.04	4.05	
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	100 mhr/day	3	300	72 \$/hr	1.05	\$22,680
	3 Install Vertical formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	4 Pour Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	5 Strip forms & patch Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Reinforcing Bars furnish & install	25 LF	1200 lbs/LF		30000	1.5 \$/lb		\$45,00
	7 Concrete	25 LF	5 CY/LF		125	140 \$/cy		\$17,500
	8 Transition Formwork	4 LS			4	10000 LS		\$40,000
	9 Barge & Tug	11 Days			110	340 \$/hr		\$37,400
	10 100 T Crane	11 Days			110	250 \$/hr		\$27,500
		125 CY			125	10 \$/cy		\$1,250
	11 Concrete pump & piping							· ·
	12 Man cage	11 Days			110	2 \$/hr		
	12 Man cage 13 Ventilation	11 Days 11 Days			110	10 \$/hr		\$1,100
	12 Man cage	11 Days			-			\$1,100
	12 Man cage 13 Ventilation	11 Days 11 Days			110	10 \$/hr		\$220 \$1,100 \$1,650

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

ltem	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cost
	Install Reinforcing steel, Form, Pour, Strip, and Finish	to top at EL 589	9.75, 2 pours @ 20LF (each				
	1 Plant support for Reinforcing	4 Days	50 mhr/day	4	200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	0 Days	100 mhr/day	0	0	72 \$/hr	1.05	\$0
	3 Install Vertical formwork	4 Days	100 mhr/day	4	400	72 \$/hr	1.05	\$30,240
	4 Pour Concrete	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	5 Strip forms & patch Concrete	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	6 Reinforcing Bars furnish & install	40 LF	1200 lbs/LF		48000	1.5 \$/lb		\$72,000
	7 Concrete	40 LF	5 CY/LF		200	140 \$/cy		\$28,000
	8 Transition Formwork	0 LS			0	10000 LS		\$0
	9 Barge & Tug	12 Days			120	340 \$/hr		\$40,800
	10 100 T Crane	12 Days			120	250 \$/hr		\$30,000
	11 Concrete pump & piping	200 CY			200	10 \$/cy		\$2,000
	12 Man cage	12 Days			120	2 \$/hr		\$240
	13 Ventilation	12 Days			120	10 \$/hr		\$1,200
	14 Generator	12 Days			120	15 \$/hr		\$1,800
13	Permanent Access into Tower		10 1	20				\$1,045,000
	Provide New ladder into shaft							
	1 Furnish Ladder	1 LS			1	25000		\$25,000
	2 Install Ladder	10 Days	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Furnish Hoisting system w/ workdeck & New Cover	1 LS			1	750000		\$750,000
	4 Install Hoisting system	10 Days	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	5 Barge & Tug	20 Days			200	340 \$/hr		\$68,000
	6 100 T Crane	20 Days			200	250 \$/hr		\$50,000
14	Demobilization		10 1	10				\$426,000
	Demobilize cranes, barges, office, formwork, material							
	1 Demobilize Plant & Equip	1 LS			1	300000 LS		\$300,000
	2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Restoration	1 LS			1	50000 LS		\$50,000

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 3A - Dredge Around Tower, Tremie Anchor Concrete, Stiffen Interior w/ reinforced Concrete

em	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	9.9 Mo	\$62,020 Mo	\$614,000
	1 Project Manager	1 Ea	9.9	13000 Mo	\$128,700
	2 Project Superintendent	1 Ea	9.9	12000 Mo	\$118,800
	3 Walker	3 Ea	9.9	10000 Mo	\$99,000
	4 Project Engineer	1 Ea	9.9	10000 Mo	\$99,000
	5 Office Manager	1 Ea	9.9	8000 Mo	\$79,200
	6 Field Engineer	2 Ea	9.9	9000 Mo	\$89,100
2	General Operations	1 LS	9.9 Mo	\$111,010 Mo	\$1,099,000
	1 Office	1 Ea	9.9	450	\$4,455
	2 Change House	1 Ea	9.9	450	\$4,455
	3 Shop Containers	4 Ea	9.9	100	\$3,960
	4 Power supply	1 Ea	9.9	400	\$3,960
	5 Lights	1 Ea	9.9	100	\$990
	6 Phones	1 Ea	9.9	250	\$2,475
	7 Computers	1 Ea	9.9	250	\$2,475
	8 Copier	1 Ea	9.9	200	\$1,980
	9 Water	1 Ea	9.9	200	\$1,980
	10 Sewer	1 Ea	9.9	200	\$1,980
	11 Access Road	1 LS	1	20000 LS	\$20,000
	12 Vehicles	6 Ea	9.9	900	\$53,460
	13 CAT 950 FEL	1 Ea	9.9	10000	\$99,000
	14 Forklift	1 Ea	9.9	4000	\$39,600
	15 RT30 Crane	1 Ea	9.9	12000	\$118,800
	16 Living Costs	6 Ea	9.9	2000	\$118,800
	17 Travel	1 Ea	9.9	1000	\$9,900
	18 Insurance	1 LS	1	500000 LS	\$500,000
	19 Permits	1 LS	1	10000 LS	\$10,000
	20 Consultants	1 LS	1	50000 LS	\$50,000
	21 Legal	1 LS	1	50000 LS	\$50,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Item	Description	Quantity	Hrs/Shift Shif	ts/Day	Days	Unit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		291000
2	Excavate for Anchor Concrete	1 LS	10	1	2		\$18,000
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1	10		\$530,000
4	Pour Anchor Concrete	1 LS	10	1	11		\$921,000
5	Clean Tower	1 LS	10	1	5		\$53,000
6	Purchase special formwork	1 LS	10	1	0		\$134,000
7	FRP to valves at El. 420, 445, 470, 495	320.4379 cy	10	1	48	\$3,435.92 cy	\$1,101,000
8	FRP to valve at EI. 520	69.16161 cy	10	1	12	\$3,383.38 cy	\$234,000
9	FRP to valve at El. 546	62.08338 cy	10	1	12	\$3,479.19 cy	\$216,000
10	FRP to El. 589.75	90.70916 cy	10	1	16	\$3,792.34 cy	\$344,000
11	Demobilization	1 LS	10	1	10		\$211,000
					136 Day	S	
					6.2 Mon	oths	\$4,053,000
12	Supervision	1 LS			6.2 Mo	\$62,118 Mo	\$384,000
13	General Operations	1 LS			6.2 Mo	\$150,279 Mo	\$929,000
14	General Requirements 10% of Direct	10 %					\$406,000
15	Home Office - 4-% of Direct	4 %					\$163,000
	Subtotal						\$5,935,000
16	CAT 960 FEL	15%					\$890,250
17	Bond, Taxes, & Insurance	2 %					\$137,000
	Total (2008 Dollars)						\$6,963,000
18	Escalation Excluded - Recommend 5% per year						
19	Contingency & Escalation	40%					\$2,785,200
	Reservoir Dewatering cost						\$6,000,000
	Total Unescalated Construction Cost with Continge	ncy					\$15,748,200
	Excludes Design Costs, CM Costs, and Owner Soft	•					. , ,

Assume Excavated material deposited on reservoir floor. Assume \$250,000 additional if off-hauled.

Assume valves, controls, actuators, piping, etc have no associated work.

Assume Valve @ El. 382.5 is totally encased.

Assume existing valve outlets partially encased in "stiffening" concrete

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10		Onic Oost	Li	\$291,000
	Move in cranes, barges, office, formwork, materials, e							<i>q_0.,000</i>
	1 Mobilize Plant & Equip	1 LS			1	200000		\$200,000
	2 Setup Plant & Equip (8 men)	10 Day	96 mhr/day	10	800	72 \$/hr	1.05	\$60,480
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
		20 20)	_0 day			· _ <i>\</i> /····		¢00, <u> </u> 0
2	Excavate for Tremied Anchor Concrete	1 LS	10 1	2				\$18,000
	Excavate around base of tower for tremie concrete, 1	0-hr shift, 1 shif	it per day, 1300 CY/day					
	1 D8 Dozer for spreading muck	2 Days			20	200 \$/hr		\$4,000
	2 Labor	2 Days	60 mhr/day	2	120	72 \$/hr	1.05	\$8,640
	3 Cat 375 Excavator	2 Days			20	250 \$/hr		\$5,000
	4 Muck Disposal - on lake bed							
3	Install formwork and bracing for Anchor Concrete	1 LS	10 1	10				\$530,000
	Install 60-ft diameter "formwork" and Brace, 10-hr shi	fts, 1 shift per d	ay, - 7sf/mh					
	1 Labor	10 Days	120 mhr/day	10	1200	72 \$/hr	1.05	\$90,720
	2 100 T Crane	10 Days			100	250 \$/hr		\$25,000
	3 Form material	60 LF			60	4735 \$/LF		\$284,100
	4 Bracing	1 LS			1	20000 LS		\$20,000
	5 Crane Mats	100 ea			10000	5 \$/hr		\$50,000
	6 Reinforcing Bar dowels furnish & install	20 LF	1976.8 lbs/LF	3	39535.38	1.5 \$/lb		\$59,303
	CAT 960 FEL							
4	Pour Anchor Concrete	1 LS	10 1	11				\$921,000
	Setup concrete operation & pump concrete, 50 CY/hr							
	1 Pump Concrete	11 Days	120 mhr/day	11	1320	72 \$/hr	1.05	\$95,040
	2 100T Crane	11 Days			110	250 \$/hr		\$27,500
	3 Concrete pump & piping	5500 CY			5500	10 \$/cy	1.05	\$55,000
	4 Concrete	5500 CY			5500	125 \$/cy		\$687,500
	5 Crane Mats	100 ea			11000	5 \$/hr		\$55,000
		4 1 0		_				450 000
5	Clean Tower Exterior	1 LS	10 1	5				\$53,000
	Clean exterior of tower	<i>c</i>	00	-	400		4.0-	MOC 000
	1 Clean Exterior walls	5 Days	96 mhr/day	5	480	72 \$/hr	1.05	\$36,288
	2 100 T Crane	5 Days			50	250 \$/hr		\$12,500
	3 Man cage	5 Days			50	2 \$/hr		\$100

3876.1 Briones Dam Inlet/Outlet Conceptual Estimate

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Item	Description 4 Generator 5 Crane Mats	Quantity 5 Days 100 ea	Hrs/Shift Shifts/Day	Days	50 500	Unit Cost 15 \$/hr 5 \$/hr	LF	Item Cost \$750 \$2,500
6	Form Purchase		10 1	0				<mark>\$134,000</mark>
	Adjustible Conical Shaft Form purchase - 25 LF Shatf form Bracing 3 ea. For 8 pours	25 LF 24 Ea			25 1380	4000 \$/LF 1 \$/lb		\$100,000 \$33,120
7	FRP to valves at El. 420, 445, 470, 495		10 1	48				<mark>\$1,101,000</mark>
	Install Reinforcing steel, Form, Pour, Strip, and F	inish to top of valve	s 4 Pours @ 25 LF					
	1 Plant support for Reinforcing	16 Days	50 mhr/day		800	72 \$/hr	1.05	\$60,480
	2 Install Special Formwork at Transition	12 Days	120 mhr/day	12	1440	72 \$/hr	1.05	\$108,864
	3 Install Vertical formwork	8 Days	120 mhr/day	8	960	72 \$/hr	1.05	\$72,576
	4 Pour Concrete	4 Days	120 mhr/day	4	480	72 \$/hr	1.05	\$36,288
	5 Strip forms & patch Concrete	4 Days	120 mhr/day	4	480	72 \$/hr	1.05	\$36,288
	6 Cure time - 3 days per pour			12				
	7 Reinforcing Bars furnish & install	100 LF	1976.8 lbs/LF	8	197676.9	1.5 \$/lb		\$296,515
	8 Concrete	100 LF	3.2044 CY/LF		320.4379	125 \$/cy		\$40,055
	9 Transition Formwork	4 Ea			4	10000 Ea		\$40,000
	11 100 T Crane	48 Days			480	250 \$/hr		\$120,000
	12 Concrete pump & piping	320.4379 CY			320.4379	10 \$/cy		\$3,204
	13 Man cage	48 Days			480	2 \$/hr		\$960
	15 Generator	48 Days			480	15 \$/hr		\$7,200
	16 Crane Mats	100 ea			48000	5 \$/hr		\$240,000
	17 Form Hoist System	8 ea			3840	10 \$/hr		\$38,400
8	FRP to valve at EI. 520		10 1	12				\$234,000
	Install Reinforcing steel, Form, Pour, Strip, and F	inish to top of valve	at El. 520, 26 LF pour	w/ 1-ft du	utchman			
	1 Plant support for Reinforcing	4 Days	50 mhr/day		200	72 \$/hr	1.05	\$15,120
	2 Install Special Formwork at Transition	3 Days	120 mhr/day	3	360	72 \$/hr	1.05	\$27,216
	3 Install Vertical formwork	2 Days	120 mhr/day	2	240	72 \$/hr	1.05	\$18,144
	4 Pour Concrete	1 Days	120 mhr/day	1	120	72 \$/hr	1.05	\$9,072
	5 Strip forms & patch Concrete	1 Days	120 mhr/day	1	120	72 \$/hr	1.05	\$9,072
	6 Cure time - 3 days per pour	-	-	3				
	7 Reinforcing Bars furnish & install	26 LF	820.49 lbs/LF	2	21332.76	1.5 \$/lb		\$31,999
	8 Concrete	26 LF	2.6601 CY/LF		69.16161	125 \$/cy		\$8,645
	9 Transition Formwork	1 LS			1	10000 LS		\$10,000

3876.1 Briones Dam Inlet/Outlet Conceptual Estimate

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost	LF	Item Cos
10 Dutchman Formwork	1 LS			1	2000 LS		\$2,000
11 100 T Crane	12 Days			120	250 \$/hr		\$30,000
12 Concrete pump & piping	69.16161 CY			69.16161	10 \$/cy		\$692
13 Man cage	12 Days			120	2 \$/hr		\$240
14 Generator	12 Days			120	15 \$/hr		\$1,800
14 Crane Mats	100 ea			12000	5 \$/hr		\$60,000
15 Form Hoist System	8 ea			960	10 \$/hr		\$9,600
		40	10				
FRP to valve at El. 546	and Einich to tan of value	10 1	12 12				<mark>\$216,000</mark>
Install Reinforcing steel, Form, Pour, Strip, a	•		5 LF	200	フ つ 作/トゥ	4.05	MAE 400
1 Plant support for Reinforcing	4 Days	50 mhr/day	•	200	72 \$/hr	1.05	\$15,120
2 Install Special Formwork at Transition	3 Days	120 mhr/day	3	360	72 \$/hr	1.05	\$27,216
3 Install Vertical formwork	2 Days	120 mhr/day	2	240	72 \$/hr	1.05	\$18,144
4 Pour Concrete	1 Days	120 mhr/day	1	120	72 \$/hr	1.05	\$9,072
5 Strip forms & patch Concrete	1 Days	120 mhr/day	1	120	72 \$/hr	1.05	\$9,072
6 Cure time - 3 days per pour			3				• · · · · · ·
7 Reinforcing Bars furnish & install	25 LF	510.65 lbs/LF	2	12766.33	1.5 \$/lb		\$19,149
8 Concrete	25 LF	2.4833 CY/LF		62.08338	125 \$/cy		\$7,760
9 Transition Formwork	1 LS			1	10000 LS		\$10,000
11 100 T Crane	12 Days			120	250 \$/hr		\$30,000
12 Concrete pump & piping	62.08338 CY			62.08338	10 \$/cy		\$621
13 Man cage	12 Days			120	2 \$/hr		\$240
14 Crane Mats	100 ea			12000	5 \$/hr		\$60,000
15 Form Hoist System	8 ea			960	10 \$/hr		\$9,600
FRP to El. 589.75		10 1	16				\$344,000

Install Reinforcing steel, Form, Pour, Strip, and F	inish to top at EL 58	39.75, 2 pours @ 20LF e	each				
1 Plant support for Reinforcing	4 Days	50 mhr/day		200	72 \$/hr	1.05	\$15,120
2 Install Special Formwork at Transition	0 Days	120 mhr/day	0	0	72 \$/hr	1.05	\$0
3 Install Vertical formwork	4 Days	120 mhr/day	4	480	72 \$/hr	1.05	\$36,288
4 Pour Concrete	2 Days	120 mhr/day	2	240	72 \$/hr	1.05	\$18,144
5 Strip forms & patch Concrete	2 Days	120 mhr/day	2	240	72 \$/hr	1.05	\$18,144
6 Cure time - 3 days per pour			6				
7 Reinforcing Bars furnish & install	40 LF	510.65 lbs/LF	2 2	0426.13	1.5 \$/lb		\$30,639
8 Concrete	40 LF	2.2677 CY/LF	90	0.70916	125 \$/cy		\$11,339
9 Transition Formwork	0 LS			0	10000 LS		\$0

TLP

3876.1 Briones Dam Inlet/Outlet Conceptual Estimate

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Item	Description	Quantity	Hrs/Shift	Shifts/Day	Days		Unit Cost	LF	Item Cost
	11 100 T Crane	16 Days				160	250 \$/hr		\$40,000
	12 Concrete pump & piping	90.70916 CY			ç	90.70916	10 \$/cy		\$907
	13 Man cage	16 Days				160	2 \$/hr		\$320
	14 Crane Mats	100 ea				16000	10 \$/hr		\$160,000
	15 Form Hoist System	8 ea				1280	10 \$/hr		\$12,800
									.
11			10	1	10				\$211,000
	Demobilize cranes, barges, office, formwo	rk, materials, etc							
	1 Demobilize Plant & Equip	1 LS				1	100000 LS		\$100,000
	2 Tear down Plant & Equip (8 men)	10 Day	96	mhr/day	10	800	72 \$/hr	1.05	\$60,480
	3 Restoration	1 LS				1	50000 LS		\$50,000

Engineers/Consultants

Option 3B - Dewatered - Excavate Around Tower, Anchor Concrete, Stiffen Exterior w/ reinforced Concrete

Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	6.2 Mo	\$62,118 Mo	\$384,000
	1 Project Manager	1 Ea	6.2	13000 Mo	\$80,364
	2 Project Superintendent	1 Ea	6.2	12000 Mo	\$74,182
	3 Walker	1 Ea	6.2	10000 Mo	\$61,818
	4 Project Engineer	1 Ea	6.2	10000 Mo	\$61,818
	5 Office Manager	1 Ea	6.2	8000 Mo	\$49,455
	6 Field Engineer	1 Ea	6.2	9000 Mo	\$55,636
2	General Operations	1 LS	6.2 Mo	\$150,279 Mo	\$929,000
	1 Office	1 Ea	6.2	450	\$2,782
	2 Change House	1 Ea	6.2	450	\$2,782
	3 Shop Containers	4 Ea	6.2	100	\$2,473
	4 Power supply	1 Ea	6.2	400	\$2,473
	5 Lights	1 Ea	6.2	100	\$618
	6 Phones	1 Ea	6.2	250	\$1,545
	7 Computers	1 Ea	6.2	250	\$1,545
	8 Copier	1 Ea	6.2	200	\$1,236
	9 Water	1 Ea	6.2	200	\$1,236
	10 Sewer	1 Ea	6.2	200	\$1,236
	11 Access Road	1 LS	1.0	20000 LS	\$20,000
	12 Vehicles	6 Ea	6.2	900	\$33,382
	13 CAT 960 FEL	1 Ea	6.2	10000	\$61,818
	14 Forklift	1 Ea	6.2	4000	\$24,727
	15 RT30 Crane	1 Ea	6.2	12000	\$74,182
	16 Scaffold stair tower	1 ea	6.2	1000	\$6,182
	17 Living Costs	6 Ea	6.2	2000	\$74,182
	18 Travel	1 Ea	6.2	1000	\$6,182
	19 Insurance	1 LS	1.0	500000 LS	\$500,000
	20 Permits	1 LS	1.0	10000 LS	\$10,000
	21 Consultants	1 LS	1.0	50000 LS	\$50,000
	22 Legal	1 LS	1.0	50000 LS	\$50,000

Briones Dam Inlet/Outlet Tower Retrofit

TLP

6

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 4A - Dredge Over existing tunnel, Install Lakebed Piping, Connect to existing Tunnel - No Dewatering

ltem	Description	Quantity	Hrs/Shift Shifts	/Day	Days Ur	nit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		\$706,000
2	Dredge for Tremied Saddle & Lakebed Concrete	1 LS	10	1	29		\$5,703,000
3	Install formwork and bracing for Tunnel "Saddle" Cor	1 LS	10	1	20		\$4,036,000
4	Tremie Saddle Concrete	1 LS	10	1	3		\$742,000
5	Install Lakebed piping, connect to new tunnel Riser F	1 LS	10	1	20		\$5,131,000
6	Tremie Lake bottom Pipe Encasement	1 LS	10	1	6		\$2,165,000
9	Make piping connection to Existing tunnel	1 LS	10	1	10		\$161,000
11	Plug & demolish existing tower	1 LS	10	1	9		\$595,000
12	Demobilization	1 LS	10	1	10		\$426,000
					132 Days		
					6.6 Months		\$19,665,000
13	Supervision	1 LS			6.6 Mo	\$62,121 Mo	\$410,000
14	General Operations	1 LS			6.6 Mo	\$143,636 Mo	\$948,000
15	General Requirements 10% of Direct	10 %					\$1,967,000
16	Home Office - 4-% of Direct	4 %					\$787,000
	Subtotal						\$23,777,000
17	Profit - 15% total	15%					\$3,567,000
18	Bond, Taxes, & Insurance	2 %					\$547,000
	Total (2008 Dollars)						\$27,891,000
19	Escalation Excluded - Recommend 5% per year						
20	Contingency & Escalation	40%					\$11,157,000
	Total Unescalated Construction Cost with Contingency						\$39,048,000

Excludes Design Costs, CM Costs, and Owner Soft Costs

Assume Dredging material deposited on reservoir floor. Assume \$300,000 additional to total unescalated cost if off-hauled. Assume Demolished Tower to remain on reservoir floor.

1

TLP

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10				\$705,840
	Move in cranes, barges, office, formwork, materials	, etc						
	1 Mobilize Plant & Equip	1 LS			1	600000		\$600,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
0		410	40	00				
2	Dredge for Tremied Saddle & Lakebed Concrete	1 LS	10 1	29	Vinerday			\$5,702,640
	Dredge over existing tunnel for tremie concrete & La		i u-nr snift, 1 snift per da	ay, 250 C	• •	100 ¢/		\$740,000
	1 Dredger - Subcontractor	7100 CY	00		7100	100 \$/cy		\$710,000
	2 Divers	29 Days	80 mhr/day		2320	157200 \$/day		\$4,558,800
	3 100 T Crane	29 Days			290	250 \$/hr		\$72,500
	4 Barge & Tug	29 Days		~ ~	290	340 \$/hr		\$98,600
	5 Labor	29 Days	100 mhr/day	29	2900	72 \$/hr	1.05	\$219,240
	6 Decompression chamber	29 Days			696	62.5 \$/hr		\$43,500
	7 Muck Disposal - On lake bed							
3	Install formwork and bracing for Tunnel "Saddle"	1 LS	10 1	20				\$4,035,850
	Install 20-ft and 8-ft diameter "formwork", Pipe, and	Brace, 10-hr sh	ifts, 1 shift per day					
	1 Divers	20 Days	160 mhr/day		3200	179625 \$/day		\$3,592,500
	2 100 T Crane	20 Days			200	250 \$/hr		\$50,000
	3 Barge & Tug	20 Days			200	340 \$/hr		\$68,000
	4 Decompression chamber	20 Days			480	62.5 \$/hr		\$30,000
	5 Labor	20 Days	100 mhr/day	20	2000	72 \$/hr	1.05	\$151,200
	6 Form material 20-ft diameter	20 LF	,		20	4720 \$/LF		\$94,400
	7 8-ft Diameter Pipe Saddle	25 LF			25	850 \$/LF		\$21,250
	8 Bracing	1 LS			1	20000 LS		\$20,000
	9 Reinforcing Steel for "Saddle"	20 LF	500 lb/lf		10000	0.85 \$/lb		\$8,500
4	Tremie Saddle Concrete	1 LS	24 1	3				\$741,642
4	Setup concrete operation & tremie concrete, 2 days			3				φ/41,042
	1 Divers				576	150 \$/hr		\$86,400
	2 100 T Crane	3 Days	192 mhr/day			157200 \$/day		\$66,400 \$471,600
		3 Days			30 30	340 \$/day		\$471,600 \$10,200
	3 Barge & Tug	3 Days	240 mbr/day	1			1.05	
	4 Plant support for setup	1 Days	240 mhr/day	1	240	72 \$/hr	1.05	\$18,144
	5 Concrete pump & piping	700 CY	040	0	700	10 \$/cy	4.65	\$7,000
	6 Tremie Concrete	2 Days	240 mhr/day	2	480	72 \$/hr	1.05	\$36,288
	7 Reinforcing steel	0 lf	0 lb/lf		0	0.85 \$/lb		\$0

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

9 Concrete Overtime fees 467 CY 467 30 \$/cy 5 Install Lakebed piping, connect to new tunnel Riser Pipe 10 1 20 \$5 Load piping on barge, lower & install 1 10 1 20 \$5 1 Divers 20 Days 80 mhr/day 20 1600 179625 \$/day \$3 2 100 T Crane 20 Days 200 250 \$/hr \$3 3 Barge & Tug 20 Days 200 340 \$/hr \$4 4 Labor 20 Days 100 mhr/day 2000 72 \$/hr 1.05 \$ 5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Inteke Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea \$ 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ \$ Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1152 157200 \$/day \$ <th></th>	
5 Install Lakebed piping, connect to new tunnel Riser Pipe 10 1 20 \$5 Load piping on barge, lower & install 1 Divers 20 Days 80 mhr/day 20 1600 179625 \$/day \$3 2 100 T Crane 20 Days 80 mhr/day 20 1600 179625 \$/day \$3 3 Barge & Tug 20 Days 200 250 \$/hr 200 340 \$/hr 4 Labor 20 Days 100 mhr/day 2000 72 \$/hr 1.05 \$ 5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea \$ 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ \$ 6 Divers 6 Days 192 mhr/day 1152 157200 \$/day \$	\$98,000
Load piping on barge, lower & install1 Divers20 Days80 mhr/day201600179625 \$/day\$32 100 T Crane20 Days200250 \$/hr\$/hr3 Barge & Tug20 Days200340 \$/hr4 Labor20 Days100 mhr/day200072 \$/hr1.05 \$5 Intake Piping - 6-ft ID 3/8-in Wall640 LF640850 \$/LF\$6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall10 LF125000 Ea7 Valves, operators, & protection7 Ea7100000 Ea\$6Tremie Lake bottom Pipe Encasement2416\$2Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr1152157200 \$/day\$	\$14,010
1 Divers 20 Days 80 mhr/day 20 1600 179625 \$/day \$3 2 100 T Crane 20 Days 20 Days 200 250 \$/hr 200 340 \$/hr 3 Barge & Tug 20 Days 20 Days 200 340 \$/hr 1.05 \$ 4 Labor 20 Days 100 mhr/day 2000 72 \$/hr 1.05 \$ 5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea \$ 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ \$ Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 192 mhr/day 1152 157200 \$/day \$	130,700
2 100 T Crane20 Days200250 \$/hr3 Barge & Tug20 Days20 Days200340 \$/hr4 Labor20 Days100 mhr/day200072 \$/hr1.05 \$5 Intake Piping - 6-ft ID 3/8-in Wall640 LF640850 \$/LF\$6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall10 LF125000 Ea77 Valves, operators, & protection7 Ea7100000 Ea\$6Tremie Lake bottom Pipe Encasement2416\$2Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr192 mhr/day1152157200 \$/day\$	
3 Barge & Tug 20 Days 200 340 \$/hr 4 Labor 20 Days 100 mhr/day 2000 72 \$/hr 1.05 \$ 5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea \$ 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ \$ Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 192 mhr/day 1152 157200 \$/day \$	592,500
4 Labor 20 Days 100 mhr/day 2000 72 \$/hr 1.05 \$ 5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea 7 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 102 mhr/day 1152 157200 \$/day \$	\$50,000
5 Intake Piping - 6-ft ID 3/8-in Wall 640 LF 640 850 \$/LF \$ 6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea \$ 7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$ Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1 152 157200 \$/day \$	\$68,000
6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall 10 LF 1 25000 Ea 7 Valves, operators, & protection 7 Ea 7 100000 Ea 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$2 Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1 12 157200 \$/day \$2	151,200
7 Valves, operators, & protection 7 Ea 7 100000 Ea \$ 6 Tremie Lake bottom Pipe Encasement 24 1 6 \$2 Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1 Divers 6 Days 192 mhr/day 1152 157200 \$/day \$	544,000
6 Tremie Lake bottom Pipe Encasement 24 1 6 \$2 Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1 1 1 6 \$2 1 Divers 6 Days 192 mhr/day 1152 157200 \$/day \$	\$25,000
Setup concrete operation & tremie concrete, 2 days of setup, 50 cy/hr 1 Divers 6 Days 192 mhr/day 1152 157200 \$/day \$	700,000
1 Divers 6 Days 192 mhr/day 1152 157200 \$/day \$	<mark>164,361</mark>
	943,200
	\$15,000
	\$20,400
4 Plant support for setup 1 Days 108 mhr/day 2 108 72 \$/hr 1.05	\$8,165
	\$65,000
	\$72,576
7 Concrete 6500 CY 6500 140 \$/cy \$	910,000
8 Concrete Overtime fees 4334 CY 4334 30 \$/cy \$	130,020
9 Make piping connection to Existing tunnel 10 1 10 \$	<mark>160,074</mark>
Dewater Tower, break into existing Tunnel, Form & place Transition	
1 Dewatering Labor 1 Days 100 mhr/day 1 100 72 \$/hr 1.05	\$7,560
2 Break into existing tunnel 5 Days 100 mhr/day 5 500 72 \$/hr 1.05	\$37,800
3 Plant support for Reinforcing 2 Days 40 mhr/day 80 72 \$/hr 1.05	\$6,048
4 Install custom formwork 2 Days 100 mhr/day 2 200 72 \$/hr 1.05	\$15,120
5 Pump Concrete 1 Days 100 mhr/day 1 100 72 \$/hr 1.05	\$7,560
6 Strip & remove formwork, and patch 1 Days 100 mhr/day 1 100 72 \$/hr 1.05	\$7,560
7 Barge & Tug 10 Days 100 340 \$/hr 1.05	\$35,700
8 Reinforcing steel furnish & install 2684 lbs 2684 1.5 \$/lb	\$4,026
9 Custom formwork 1 LS 1 10000 LS	
10 Concrete 10 CY 10 140 \$/cy	\$10,000
11 100 T crane 10 Days 100 250 \$/hr	\$10,000 \$1,400

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
	12 Mancage	10 Days			100	2 \$/hr		\$200
	13 Dewatering pumps	10 Days			100	10 \$/hr		\$1,000
	14 Ventilation fans	10 Days			100	10 \$/hr		\$1,000
	15 Concrete Pump & piping	10 CY			10	10 \$/cy		\$100
11	Plug & demolish existing tower		10 1	9				\$594,548
	Implode tower onto lake bed							
	1 Plug formwork	1 LS						
	2 Install Formwork & pump Concrete	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	3 Concrete	20 CY			20	140 \$/cy		\$2,800
	4 100 T Crane	9 Days			90	250 \$/hr		\$22,500
	5 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
	6 Concrete Pump & piping	20 CY			20	10 \$/cy		\$200
	7 Supporting Labor	9 Days	100 mhr/day		900	72 \$/hr	1.05	\$648
	8 Demo Existing tower Subcontractor	1 LS		4	1	500000 Ea		\$500,000
12	Demobilization		10 1	10				\$425,600
	Demobilize cranes, barges, office, formwork, m	aterials, etc						
	1 Demobilize Plant & Equip	1 LS			1	300000 LS		\$300,000
	2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Restoration	1 LS			1	50000 LS		\$50,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	6.6 Mo	\$62,000 Mo	\$409,200
	1 Project Manager	1 Ea	6.6	13000 Mo	\$85,800
	2 Project Superintendent	1 Ea	6.6	12000 Mo	\$79,200
	3 Walker	3 Ea	6.6	10000 Mo	\$66,000
	4 Project Engineer	1 Ea	6.6	10000 Mo	\$66,000
	5 Office Manager	1 Ea	6.6	8000 Mo	\$52,800
	6 Field Engineer	2 Ea	6.6	9000 Mo	\$59,400

2 General Operations	1 LS	6.6 Mo	\$143,555 Mo	\$947,460
1 Office	1 Ea	6.6	450	\$2,970
2 Change House	1 Ea	6.6	450	\$2,970
3 Shop Containers	4 Ea	6.6	100	\$2,640
4 Power supply	1 Ea	6.6	400	\$2,640
5 Lights	1 Ea	6.6	100	\$660
6 Phones	1 Ea	6.6	250	\$1,650
7 Computers	1 Ea	6.6	250	\$1,650
8 Copier	1 Ea	6.6	200	\$1,320
9 Water	1 Ea	6.6	200	\$1,320
10 Sewer	1 Ea	6.6	1000	\$6,600
11 Access Road	1 LS	1	20000 LS	\$20,000
12 Vehicles	6 Ea	6.6	900	\$35,640
13 CAT 950 FEL	1 Ea	6.6	10000	\$66,000
14 Forklift	1 Ea	6.6	4000	\$26,400
15 RT30 Crane	1 Ea	6.6	12000	\$79,200
16 Living Costs	6 Ea	6.6	2000	\$79,200
17 Travel	1 Ea	6.6	1000	\$6,600
18 Insurance	1 LS	1	500000 LS	\$500,000
19 Permits	1 LS	1	10000 LS	\$10,000
20 Consultants	1 LS	1	50000 LS	\$50,000
21 Legal	1 LS	1	50000 LS	\$50,000

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 4A - Dredge Over existing tunnel, Install Lakebed Piping, Connect to existing Tunnel - Partial Dewatering to 100 ft

ltem	Description	Quantity	Hrs/Shift Shifts/	Day	Days U	nit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		\$706,000
2	Dredge for Tremied Saddle & Lakebed Concrete	1 LS	10	1	29		\$2,583,000
3	Install formwork and bracing for Tunnel "Saddle" Cor	1 LS	10	1	20		\$1,539,000
4	Tremie Saddle Concrete	1 LS	10	1	3		\$419,000
5	Install Lakebed piping, connect to new tunnel Riser F	1 LS	10	1	20		\$2,634,000
6	Tremie Lake bottom Pipe Encasement	1 LS	10	1	6		\$1,519,000
9	Make piping connection to Existing tunnel	1 LS	10	1	10		\$161,000
11	Plug & demolish existing tower	1 LS	10	1	9		\$595,000
12	Demobilization	1 LS	10	1	10		\$426,000
					132 Days		
					6.6 Months	i	\$10,582,000
13	Supervision	1 LS			6.6 Mo	\$62,121 Mo	\$410,000
14	General Operations	1 LS			6.6 Mo	\$143,636 Mo	\$948,000
15	General Requirements 10% of Direct	10 %					\$1,059,000
16	Home Office - 4-% of Direct	4 %					\$424,000
	Subtotal						\$13,423,000
17	Profit - 15% total	15%					\$2,014,000
18	Bond, Taxes, & Insurance	2 %					\$309,000
	Total (2008 Dollars)						\$15,746,000
19	Escalation Excluded - Recommend 5% per year						
20	Contingency & Escalation	40%					\$6,299,000
	Dewater to 100 ft						\$4,000,000
	Total Unescalated Construction Cost with Contingency						\$26,045,000
	Excludes Design Costs, CM Costs, and Owner Soft Costs	i					

Assume Dredging material deposited on reservoir floor. Assume \$300,000 additional to total unescalated cost if off-hauled. Assume Demolished Tower to remain on reservoir floor.

1

TLP

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 4A - Dredge Over existing tunnel, Install Lakebed Piping, Connect to existing Tunnel - Partial Dewatering to 100 ft

tem	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10				\$705,840
	Move in cranes, barges, office, formwork, materials,	, etc						
	1 Mobilize Plant & Equip	1 LS			1	600000		\$600,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
2	Dredge for Tremied Saddle & Lakebed Concrete	1 LS	10 1	29				\$2,582,240
	Dredge over existing tunnel for tremie concrete & La		0-hr shift, 1 shift per da	ay, 250 C	Y per day			
	1 Dredger - Subcontractor	7100 CY			7100	100 \$/cy		\$710,000
	2 Divers	29 Days	80 mhr/day		2320	49600 \$/day		\$1,438,400
	3 100 T Crane	29 Days			290	250 \$/hr		\$72,500
	4 Barge & Tug	29 Days			290	340 \$/hr		\$98,600
	5 Labor	29 Days	100 mhr/day	29	2900	72 \$/hr	1.05	\$219,240
	6 Decompression chamber	29 Days			696	62.5 \$/hr		\$43,500
	7 Muck Disposal - On lake bed							
3	Install formwork and bracing for Tunnel "Saddle"	1 LS	10 1	20				\$1,538,350
	Install 20-ft and 8-ft diameter "formwork", Pipe, and							
	1 Divers	20 Days	160 mhr/day		3200	54750 \$/day		\$1,095,000
	2 100 T Crane	20 Days			200	250 \$/hr		\$50,000
	3 Barge & Tug	20 Days			200	340 \$/hr		\$68,000
	4 Decompression chamber	20 Days			480	62.5 \$/hr		\$30,000
	5 Labor	20 Days	100 mhr/day	20	2000	72 \$/hr	1.05	\$151,200
	6 Form material 20-ft diameter	20 LF			20	4720 \$/LF		\$94,400
	7 8-ft Diameter Pipe Saddle	25 LF			25	850 \$/LF		\$21,250
	8 Bracing	1 LS			1	20000 LS		\$20,000
	9 Reinforcing Steel for "Saddle"	20 LF	500 lb/lf		10000	0.85 \$/lb		\$8,500
4	Tremie Saddle Concrete	1 LS	24 1	3				\$418,842
	Setup concrete operation & tremie concrete, 2 days	of tremie, 2 day	s of setup					
	1 Divers	3 Days	192 mhr/day		576	150 \$/hr		\$86,400
	2 100 T Crane	3 Days			30	49600 \$/day		\$148,800
	3 Barge & Tug	3 Days			30	340 \$/hr		\$10,200
	4 Plant support for setup	1 Days	240 mhr/day	1	240	72 \$/hr	1.05	\$18,144
	5 Concrete pump & piping	700 CY			700	10 \$/cy		\$7,000
	6 Tremie Concrete	2 Days	240 mhr/day	2	480	72 \$/hr	1.05	\$36,288
	7 Reinforcing steel	0 lf	0 lb/lf		0	0.85 \$/lb		\$0

2

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 4A - Dredge Over existing tunnel, Install Lakebed Piping, Connect to existing Tunnel - Partial Dewatering to 100 ft

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
	8 Concrete	700 CY			700	140 \$/cy		\$98,000
	9 Concrete Overtime fees	467 CY			467	30 \$/cy		\$14,010
5		iser Pipe	10 1	20				\$2,633,200
	Load piping on barge, lower & install							
	1 Divers	20 Days	80 mhr/day	20	1600	54750 \$/day		\$1,095,000
	2 100 T Crane	20 Days			200	250 \$/hr		\$50,000
	3 Barge & Tug	20 Days			200	340 \$/hr		\$68,000
	4 Labor	20 Days	100 mhr/day		2000	72 \$/hr	1.05	\$151,200
	5 Intake Piping - 6-ft ID 3/8-in Wall	640 LF			640	850 \$/LF		\$544,000
	6 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall	10 LF			1	25000 Ea		\$25,000
	7 Valves, operators, & protection	7 Ea			7	100000 Ea		\$700,000
6	Tremie Lake bottom Pipe Encasement		24 1	6				\$1,518,761
	Setup concrete operation & tremie concrete, 2 d	days of setup, 50 cy/	hr					
	1 Divers	6 Days	192 mhr/day		1152	49600 \$/day		\$297,600
	2 100 T Crane	6 Days			60	250 \$/hr		\$15,000
	3 Barge & Tug	6 Days			60	340 \$/hr		\$20,400
	4 Plant support for setup	1 Days	108 mhr/day	2	108	72 \$/hr	1.05	\$8,165
	5 Concrete pump & piping	6500 CY			6500	10 \$/cy		\$65,000
	6 Tremie Concrete	4 Days	240 mhr/day	4	960	72 \$/hr	1.05	\$72,576
	7 Concrete	6500 CY			6500	140 \$/cy		\$910,000
	8 Concrete Overtime fees	4334 CY			4334	30 \$/cy		\$130,020
9	Make piping connection to Existing tunnel		10 1	10				\$160,074
	Dewater Tower, break into existing Tunnel, For	m & place Transition						
	1 Dewatering Labor	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	2 Break into existing tunnel	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	3 Plant support for Reinforcing	2 Days	40 mhr/day		80	72 \$/hr	1.05	\$6,048
	4 Install custom formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	5 Pump Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	6 Strip & remove formwork, and patch	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
	7 Barge & Tug	10 Days			100	340 \$/hr	1.05	\$35,700
	8 Reinforcing steel furnish & install	2684 lbs			2684	1.5 \$/lb		\$4,026
	9 Custom formwork	1 LS			1	10000 LS		\$10,000
	10 Concrete	10 CY			10	140 \$/cy		\$1,400
	11 100 T crane	10 Days			100	250 \$/hr		\$25,000

TLP

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
	12 Mancage	10 Days			100	2 \$/hr		\$200
	13 Dewatering pumps	10 Days			100	10 \$/hr		\$1,000
	14 Ventilation fans	10 Days			100	10 \$/hr		\$1,000
	15 Concrete Pump & piping	10 CY			10	10 \$/cy		\$100
11	Plug & demolish existing tower		10 1	9				\$594,548
	Implode tower onto lake bed							
	1 Plug formwork	1 LS						
	2 Install Formwork & pump Concrete	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	3 Concrete	20 CY			20	140 \$/cy		\$2,800
	4 100 T Crane	9 Days			90	250 \$/hr		\$22,500
	5 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
	6 Concrete Pump & piping	20 CY			20	10 \$/cy		\$200
	7 Supporting Labor	9 Days	100 mhr/day		900	72 \$/hr	1.05	\$648
	8 Demo Existing tower Subcontractor	1 LS		4	1	500000 Ea		\$500,000
12	Demobilization		10 1	10				\$425,600
	Demobilize cranes, barges, office, formwork, m	naterials, etc						
	1 Demobilize Plant & Equip	1 LS			1	300000 LS		\$300,000
	2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Restoration	1 LS			1	50000 LS		\$50,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	6.6 Mo	\$62,000 Mo	\$409,200
	1 Project Manager	1 Ea	6.6	13000 Mo	\$85,800
	2 Project Superintendent	1 Ea	6.6	12000 Mo	\$79,200
	3 Walker	3 Ea	6.6	10000 Mo	\$66,000
	4 Project Engineer	1 Ea	6.6	10000 Mo	\$66,000
	5 Office Manager	1 Ea	6.6	8000 Mo	\$52,800
	6 Field Engineer	2 Ea	6.6	9000 Mo	\$59,400

2 General Operations	1 LS	6.6 Mo	\$143,555 Mo	\$947,460
1 Office	1 Ea	6.6	450	\$2,970
2 Change House	1 Ea	6.6	450	\$2,970
3 Shop Containers	4 Ea	6.6	100	\$2,640
4 Power supply	1 Ea	6.6	400	\$2,640
5 Lights	1 Ea	6.6	100	\$660
6 Phones	1 Ea	6.6	250	\$1,650
7 Computers	1 Ea	6.6	250	\$1,650
8 Copier	1 Ea	6.6	200	\$1,320
9 Water	1 Ea	6.6	200	\$1,320
10 Sewer	1 Ea	6.6	1000	\$6,600
11 Access Road	1 LS	1	20000 LS	\$20,000
12 Vehicles	6 Ea	6.6	900	\$35,640
13 CAT 950 FEL	1 Ea	6.6	10000	\$66,000
14 Forklift	1 Ea	6.6	4000	\$26,400
15 RT30 Crane	1 Ea	6.6	12000	\$79,200
16 Living Costs	6 Ea	6.6	2000	\$79,200
17 Travel	1 Ea	6.6	1000	\$6,600
18 Insurance	1 LS	1	500000 LS	\$500,000
19 Permits	1 LS	1	10000 LS	\$10,000
20 Consultants	1 LS	1	50000 LS	\$50,000
21 Legal	1 LS	1	50000 LS	\$50,000

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 4B - Dewater Reservoir, Excavate Over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

tem	Description	Quantity	Hrs/Shift Shifts	s/Day	Days	Unit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		\$506,000
2	Dredge for Saddle & Lakebed Concrete	1 LS	10	1	15		\$196,000
3	Install formwork and bracing for Tunnel "Saddle" Concret	1 LS	10	1	10		\$245,000
4	Pour Saddle Concrete	1 LS	10	1	4		\$160,000
5	Install Lakebed piping, connect to new tunnel Riser Pipe	1 LS	10	1	21		\$1,516,000
6	Pour Lake bottom Pipe Encasement	1 LS	10	1	15		\$1,256,000
9	Make piping connection to Existing tunnel	1 LS	10	1	9		\$115,000
11	Plug & demolish existing tower	1 LS	10	1	9		\$595,000
12	Demobilization	1 LS	10	1	10		\$326,000
					118 Day	'S	
					5.9 Mor		\$4,915,000
13	Supervision	1 LS			5.9 Mo	\$62,034 Mo	\$366,000
14	General Operations	1 LS			5.9 Mo	\$154,915 Mo	\$914,000
15	General Requirements 10% of Direct	10 %					\$492,000
16	Home Office - 4-% of Direct	4 %					\$197,000
	Subtotal						\$6,884,000
17	Profit - 15% total	15%					\$1,033,000
18	Bond, Taxes, & Insurance	2 %					\$159,000
	Total (2008 Dollars)						\$8,076,000
19	Escalation Excluded - Recommend 5% per year						
20	Contingency	40%					\$3,231,000
	Dewater Reservoir						\$6,000,000
	Total Unescalated Construction Cost with Contingency						\$17,307,000
	Excludes Design Costs, CM Costs, and Owner Soft Costs						

Assume Excavated material deposited on reservoir floor. Assume \$300,000 additional to total unescalated cost if off-hauled. Assume Demolished Tower to remain on reservoir floor.

1

TLP

Briones Dam Inlet/Outlet Tower Retrofit

Engineers/Consultants

Option 4B - Dewater Reservoir, Excavate Over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10				\$505,840
	Move in cranes, office, formwork, materials, Ri							
	1 Mobilize Plant & Equip	1 LS			1	400000		\$400,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
2	Dredge for Saddle & Lakebed Concrete	1 LS	10 1	15				\$195,720
	Excavate over existing tunnel for concrete & La		shift, 1 shift per day, 5	00 CY pe	r day			
	1 Excavation Qty	7100 CY			7100			
	2 D8 Dozer for spreading muck	15 Days			150	200 \$/hr		\$30,000
	3 100 T Crane	15 Days			150	250 \$/hr		\$37,500
	4 Cat 375 Excavator	15 Days			150	250 \$/hr		\$37,500
	5 Labor	15 Days	80 mhr/day	15	1200	72 \$/hr	1.05	\$90,720
	6 Muck Disposal - On lake bed							
3	Install formwork and bracing for Tunnel "Saddle	e" 1 LS	10 1	10				\$244,750
	Install 20-ft and 8-ft diameter "formwork", Pipe,		ifts, 1 shift per day					
	1 100 T Crane	10 Days			100	250 \$/hr		\$25,000
	2 Labor	10 Days	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Form material 20-ft diameter	20 LF	roo min/day	10	20	4720 \$/LF	1100	\$94,400
	4 8-ft Diameter Pipe Saddle	25 LF			25	850 \$/LF		\$21,250
	5 Bracing	1 LS			1	20000 LS		\$20,000
	9 Reinforcing Steel for "Saddle"	20 LF	500 lb/lf		10000	0.85 \$/lb		\$8,500
		20 11	000 10/11		10000	0.00 4/10		φ0,000
4	Pour Saddle Concrete	1 LS	10 1	4				\$159,250
	Setup concrete operation & tremie concrete, 2	days of pour, 2 days	of setup					
	1 100 T Crane	4 Days			40	250 \$/hr		\$10,000
	2 Plant support for setup	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	3 Concrete pump & piping	700 CY	2		700	10 \$/cy		\$7,000
	4 Tremie Concrete	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	5 Concrete	700 CY	- ,		700	140 \$/cy		\$98,000
	6 Concrete Overtime fees	467 CY			467	30 \$/cy		\$14,010
						00 <i>q</i> , 0j		. , .

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 4B - Dewater Reservoir, Excavate Over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Item Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
Install Pipe bedding & install Pipe				40	000 # #		\$ 0,000
1 D8 Dozer for spreading muck	1 Days		1	10	200 \$/hr		\$2,000
2 100 T Crane	21 Days			210	250 \$/hr		\$52,500
3 Labor	20 Days	120 mhr/day	20	2400	72 \$/hr	1.05	\$181,440
4 Intake Piping - 6-ft ID 3/8-in Wall	640 LF			640	850 \$/LF		\$544,000
5 Intake Piping - 8-ft x 6-ft Tee 1/2-in Wall	10 LF			1	25000 Ea		\$25,000
6 Valves, operators, & protection	7 Ea			7	100000 Ea		\$700,000
7 Bedding	361 cy			361	30 \$/cy		\$10,830
6 Pour Lake bottom Pipe Encasement		10 1	15				\$1,255,920
Setup concrete operation & pour concrete, 2 days	s of setup, 50 cy/hr						
1 100 T Crane	15 Days			150	250 \$/hr		\$37,500
2 Plant support for setup	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
3 Concrete pump & piping	6500 CY	-		6500	10 \$/cy		\$65,000
4 Pour Concrete	13 Days	100 mhr/day	13	1300	72 \$/hr	1.05	\$98,280
5 Concrete	6500 CY	•		6500	140 \$/cy		\$910,000
6 Concrete Overtime fees	4334 CY			4334	30 \$/cy		\$130,020
9 Make piping connection to Existing tunnel		10 1	9				\$114,094
Break into existing Tunnel, Form & place Transition	on						
1 Break into existing tunnel	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
2 Plant support for Reinforcing	2 Days	40 mhr/day		80	72 \$/hr	1.05	\$6,048
3 Install custom formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
4 Pump Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
5 Strip & remove formwork, and patch	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
6 Reinforcing steel furnish & install	2684 lbs	•		2684	1.5 \$/lb		\$4,026
7 Custom formwork	1 LS			1	10000 LS		\$10,000
8 Concrete	10 CY			10	140 \$/cy		\$1,400
9 100 T crane	9 Days			90	250 \$/hr		\$22,500
10 Mancage	9 Days			90	2 \$/hr		\$180
11 Dewatering pumps	9 Days			90	10 \$/hr		\$900
12 Ventilation fans	9 Days			90	10 \$/hr		\$900
13 Concrete Pump & piping	10 CY			10	10 \$/cy		\$100
11 Plug & demolish existing tower		10 1	9				\$594,548
Implode tower onto lake bed							

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 4B - Dewater Reservoir, Excavate Over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
	1 Plug formwork	1 LS						
	2 Install Formwork & pump Concrete	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
	3 Concrete	20 CY			20	140 \$/cy		\$2,800
	4 100 T Crane	9 Days			90	250 \$/hr		\$22,500
	5 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
	6 Concrete Pump & piping	20 CY			20	10 \$/cy		\$200
	7 Supporting Labor	9 Days	100 mhr/day		900	72 \$/hr	1.05	\$648
	8 Demo Existing tower Subcontractor	1 LS		4	1	500000 Ea		\$500,000
12	Demobilization		10 1	10				\$325,600
	Demobilize cranes, barges, office, formwork, r	materials, etc						
	1 Demobilize Plant & Equip	1 LS			1	200000 LS		\$200,000
	2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	1000	72 \$/hr	1.05	\$75,600
	3 Restoration	1 LS			1	50000 LS		\$50,000

Engineers/Consultants

Briones Dam Inlet/Outlet Tower Retrofit

Option 4B - Dewater Reservoir, Excavate Over Existing Tunnel, Install Lakebed Piping, Connect to Existing Tunnel

Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	5.9 Mo	\$62,000 Mo	\$365,800
	1 Project Manager	1 Ea	5.9	13000 Mo	\$76,700
	2 Project Superintendent	1 Ea	5.9	12000 Mo	\$70,800
	3 Walker	3 Ea	5.9	10000 Mo	\$59,000
	4 Project Engineer	1 Ea	5.9	10000 Mo	\$59,000
	5 Office Manager	1 Ea	5.9	8000 Mo	\$47,200
	6 Field Engineer	2 Ea	5.9	9000 Mo	\$53,100

2	General Operations	1 LS	5.9 Mo	\$154,880 Mo	\$913,790
1	Office	1 Ea	5.9	450	\$2,655
2	Change House	1 Ea	5.9	450	\$2,655
3	Shop Containers	4 Ea	5.9	100	\$2,360
4	Power supply	1 Ea	5.9	400	\$2,360
5	Lights	1 Ea	5.9	100	\$590
6	Phones	1 Ea	5.9	250	\$1,475
7	Computers	1 Ea	5.9	250	\$1,475
8	Copier	1 Ea	5.9	200	\$1,180
9	Water	1 Ea	5.9	200	\$1,180
10	Sewer	1 Ea	5.9	1000	\$5,900
11	Access Road	1 LS	1	20000 LS	\$20,000
12	Vehicles	6 Ea	5.9	900	\$31,860
13	CAT 950 FEL	1 Ea	5.9	10000	\$59,000
14	Forklift	1 Ea	5.9	4000	\$23,600
15	RT30 Crane	1 Ea	5.9	12000	\$70,800
16	Living Costs	6 Ea	5.9	2000	\$70,800
17	Travel	1 Ea	5.9	1000	\$5,900
18	Insurance	1 LS	1	500000 LS	\$500,000
19	Permits	1 LS	1	10000 LS	\$10,000
20	Consultants	1 LS	1	50000 LS	\$50,000
21	Legal	1 LS	1	50000 LS	\$50,000

TLP

Option 5 - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - NO DEWATERING

tem	Description	Quantity	Hrs/Shift Shifts	/Day	Days Ur	nit Cost	Item Cost
1	Mobilization	1 LS	10	1	10		490720
2	Dredge for Tremied Anchor Concrete	1 LS	10	1	9		\$1,849,440
3	Install formwork and bracing for Anchor Concrete	1 LS	10	1	14		\$3,075,690
4	Tremie Anchor Concrete	1 LS	10	1	19		\$4,193,726
5	Install reinforcing and precast spools	1 LS	10	1	30		\$5,575,375
6	Tremie Concrete into Spool openings	1 LS	10	1	15		\$2,677,200
7	Prefabricate Spools	1 LS	10	1	105		\$1,370,638
8	Post-tensioning of new tower	1 LS	10	1	15		\$589,400
9	Make piping connection to Existing tunnel	1 LS	10	1	12		\$140,786
10	Plug & demolish existing tower	1 LS	10	1	9		\$344,848
11	Demobilization	1 LS	10	1	10		\$310,480
					248 Days		
					12.4 Months		\$20,619,000
14	Supervision	1 LS			12.4 Mo	\$62,000 Mo	\$768,800
15	General Operations	1 LS			12.4 Mo	\$98,106 Mo	\$1,216,520
22	General Requirements 10% of Direct	10 %					\$2,062,000
23	Home Office - 4-% of Direct	4 %					\$825,000
	Subtotal						\$25,492,000
24	Profit - 15% total	15%					\$3,824,000
25	Bond, Taxes, & Insurance	2 %					\$587,000
	Total (2008 Dollars)						\$29,903,000
26	Escalation Excluded - Recommend 5% per year						
27	Contingency & Escalation	40%					\$11,962,000
	Total Unescalated Construction Cost with Contingency Excludes Design Costs, CM Costs, and Owner Soft Cos						\$41,865,000

Assume Dredging material deposited on reservoir floor. Assume \$250,000 additional if off-hauled.

Option 5 - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - NO DEWATERING

tem	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10				<mark>\$490,720</mark>
	Move in cranes, barges, office, formwork, mate				4	400000		¢ 400 000
	1 Mobilize Plant & Equip	1 LS		40	1	40000	4.05	\$400,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/day	10	800	72 \$/hr	1.05	\$60,480
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
2	Dredge for Tremied Anchor Concrete	1 LS	10 1	9			0	<mark>\$1,849,440</mark>
	Dredge over existing tunnel for tremie concrete		1 shift per day, 350 CY	´per day				
	1 Dredger - Subcontractor	3000 CY			3000	100 \$/cy		\$300,000
	2 Divers	9 Days	80 mhr/day		720	157200 \$/day	9	\$1,414,800
	3 100 T Crane	9 Days			90	250 \$/hr		\$22,500
	4 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
	5 Labor	9 Days	100 mhr/day	9	900	72 \$/hr	1.05	\$68,040
	6 Decompression chamber	9 Days			216	62.5 \$/hr		\$13,500
	7 Muck Disposal - On lake bed							
3	Install formwork and bracing for Anchor Concre	ete 1 LS	10 1	14			\$	<mark>\$3,075,690</mark>
	Install 60-ft and 10-ft diameter "formwork" and	Brace, 10-hr shifts, 1	shift per day					
	1 Divers	14 Days	160 mhr/day		2240	179625 \$/day	4	\$2,514,750
	2 100 T Crane	14 Days			140	250 \$/hr		\$35,000
	3 Barge & Tug	14 Days			140	340 \$/hr		\$47,600
	4 Decompression chamber	14 Days			336	62.5 \$/hr		\$21,000
	5 Labor	14 Days	100 mhr/day	14	1400	72 \$/hr	1.05	\$105,840
	6 Form material 60-ft diameter	60 LF			60	4735 \$/LF		\$284,100
	7 Form material 10-ft diameter	60 LF			60	790 \$/LF		\$47,400
	8 Bracing	1 LS			1	20000 LS		\$20,000
4	Tremie Anchor Concrete	1 LS	10 1	19			\$	\$4,193,726
	Setup concrete operation & tremie concrete, 13	3 days of tremie, 2 da	ays of reinforcing, 4 day	s for post-	-tensionin	g ducts		
	1 Divers	19 Days	80 mhr/day		1520	157200 \$/day		\$2,986,800
	2 100 T Crane	19 Days			190	250 \$/hr		\$47,500
	3 Barge & Tug	19 Days			190	340 \$/hr		\$64,600
	4 Plant support for Reinforcing	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	5 Plant support for post tensioning ducts	4 Days	100 mhr/day	4	400	72 \$/hr	1.05	\$30,240
	5 Plant support for post tensioning ducts	i Dujo						
	5 Concrete pump & piping	6108 CY	····,		6108	10 \$/cy		\$61,080

7 Reinforcing steel	24 lf	1715 lb/lf	41160	0.85 \$/lb	\$34,986
8 Concrete	6108 CY		6108	140 \$/cy	\$855,120

5	Install precast spools and reinforcing		10 1	30				<mark>\$5,575,375</mark>
	Install Reinforcing steel, and pre-cast spools, 15 sp	•	EL 413 to EL 593, reb	oar - 386	lb/mh			
	1 Install Reinforcing bars - Divers	15 Days	80 mhr/day	15	1200	157200 \$/day		\$2,358,000
	2 Pre-fabricate rebar cages	15 Days	100 mhr/day		1500	72 \$/hr	1.05	\$113,400
	3 Install Precast Spools - Divers	15 Days	120 mhr/day	15	1800	157200 \$/day	:	\$2,358,000
	4 Reinforcing Bars - purchase material	180 LF	2575 lbs/LF		463500	0.85 \$/lb		\$393,975
	5 Barge & Tug	30 Days			300	340 \$/hr		\$102,000
	6 Special Spool Floatation air bags	1 Ea			1	100000 Ea		\$100,000
	7 100 T Crane - On Barge	30 Days			300	250 \$/hr		\$75,000
	8 100 T Crane - On Land	30 Days			300	250 \$/hr		\$75,000
6	Tremie Concrete into Spool openings		10 1	15				\$2,677,200
	Tremie Concrete into Spool Openings from Surfac	e of new Tower, 18	30 LF					
	1 Divers	15 Days	80 mhr/day		1200	157200 \$/day	:	\$2,358,000
	2 100 T Crane	15 Days	,		150	250 \$/hr		\$37,500
	3 Barge & Tug	15 Days			150	340 \$/hr		\$51,000
	4 Concrete pump & piping	782 CY			782	10 \$/cy		\$7,820
	5 Tremie Concrete	15 Days	100 mhr/day	15	1500	72 \$/hr	1.05	\$113,400
	6 Concrete	782 CY	· · · · · · · · · · · · · · · · · · ·		782	140 \$/cy		\$109,480
						- • • •		÷,
7	Prefabricate Spools		10 1	105				\$1,370,638
	Pre-fabricate spools on site, 15 spools, formwork -	16sf/mh. rebar - 1	32lb/mh					••,•••
	1 Pre-fabricate rebar cages	45 Days	60 mhr/day	45	2700	72 \$/hr	1.05	\$204,120
	2 Install formwork	45 Days	60 mhr/day	45	2700	72 \$/hr	1.05	\$204,120
	3 Install Tensioning ductwork	45 Days	10 mhr/day		450	72 \$/hr	1.05	\$34,020
	4 100 T Crane	105 Days			1050	250 \$/hr		\$262,500
	5 Concrete pump & piping	520 CY			520	10 \$/cy		\$5,200
	6 Pour Spools	15 Days	30 mhr/day	15	450	72 \$/hr	1.05	\$34,020
	7 Reinforcing Bars - purchase material	180 LF	1986 lbs/LF		357480	0.85 \$/lb		\$303,858
	8 New valves	6 Ea			6	25000 Ea		\$150,000
	9 Valve Control System	1 Ea			1	100000 Ea		\$100,000
	•	520 CY			520	140 \$/cy		\$72,800
	9 Concrete	520 01						
0		520 01	10 4	15				¢520.400
8	Post-tensioning of new tower	320 01	10 1	15				<mark>\$589,400</mark>
8		1 LS	10 1	15	350000	1 LS		\$589,400 \$350,000

Jacobs Associates

 2 Labor - Support for post-tensioning 3 Barge & Tug 4 100 T Crane - On Barge 5 100 T Crane - On Land 	15 Days 15 Days 15 Days 15 Days	100 mhr/day	15	1500 150 150 150	72 \$/hr 340 \$/hr 250 \$/hr 250 \$/hr	1.05	\$113,400 \$51,000 \$37,500 \$37,500
9 Make piping connection to Existing tunnel		10 1	12				\$140,786
Dewater Tower, break into existing Tunnel, For							
1 Dewatering Labor	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
2 Break into existing tunnel	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
3 Plant support for Reinforcing	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
4 Install custom formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
5 Pump Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
6 Strip & remove formwork, and patch	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
7 Reinforcing steel furnish & install	2684 lbs			2684	1.5 \$/lb		\$4,026
8 Custom formwork	1 LS			1	10000 LS		\$10,000
9 Concrete	30 CY			30	140 \$/cy		\$4,200
10 100 T crane	12 Days			120	250 \$/hr		\$30,000
11 Mancage	12 Days			120	2 \$/hr		\$240
12 Dewatering pumps	1 Days			10	10 \$/hr		\$100
13 Ventilation fans	12 Days			120	10 \$/hr		\$1,200
14 Concrete Pump & piping	30 CY			30	10 \$/cy		\$300
10 Plug & demolish existing tower		10 1	9				\$344,848
Implode tower onto lake bed							
1 Plug formwork	1 LS						
2 Install Formwork & pump Concrete	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
3 Concrete	20 CY			20	140 \$/cy		\$2,800
4 100 T Crane	9 Days			90	250 \$/hr		\$22,500
5 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
6 Concrete Pump & piping	50 CY			50	10 \$/cy		\$500
7 Supporting Labor	9 Days	100 mhr/day		900	72 \$/hr	1.05	\$648
8 Demo Existing tower Subcontractor	1 LS		4	1	250000 Ea		\$250,000
11 Demobilization		10 1	10				\$310,480
Demobilize cranes, barges, office, formwork, ma	aterials, etc						
1 Demobilize Plant & Equip	1 LS			1	200000 LS		\$200,000
2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	800	72 \$/hr	1.05	\$60,480
3 Restoration	1 LS			1	50000 LS		\$50,000

TLP

Option 5 - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - NO DEWATERING

Item	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	12.4 Mo	\$62,000 Mo	\$768,800
	1 Project Manager	1 Ea	12.4	13000 Mo	\$161,200
	2 Project Superintendent	1 Ea	12.4	12000 Mo	\$148,800
	3 Walker	3 Ea	12.4	10000 Mo	\$124,000
	4 Project Engineer	1 Ea	12.4	10000 Mo	\$124,000
	5 Office Manager	1 Ea	12.4	8000 Mo	\$99,200
	6 Field Engineer	2 Ea	12.4	9000 Mo	\$111,600

2 General Operations	1 LS	12.4 Mo	\$98,106 Mo	\$1,216,520
1 Office	1 Ea	12.4	450	\$5,580
2 Change House	1 Ea	12.4	450	\$5,580
3 Shop Containers	4 Ea	12.4	100	\$4,960
4 Power supply	1 Ea	12.4	400	\$4,960
5 Lights	1 Ea	12.4	100	\$1,240
6 Phones	1 Ea	12.4	250	\$3,100
7 Computers	1 Ea	12.4	250	\$3,100
8 Copier	1 Ea	12.4	200	\$2,480
9 Water	1 Ea	12.4	200	\$2,480
10 Sewer	1 Ea	12.4	200	\$2,480
11 Access Road	1 LS	1	20000 LS	\$20,000
12 Vehicles	6 Ea	12.4	900	\$66,960
13 CAT 950 FEL	1 Ea	12.4	10000	\$124,000
14 Forklift	1 Ea	12.4	4000	\$49,600
15 RT30 Crane	1 Ea	12.4	12000	\$148,800
16 Living Costs	6 Ea	12.4	2000	\$148,800
17 Travel	1 Ea	12.4	1000	\$12,400
18 Insurance	1 LS	1	500000 LS	\$500,000
19 Permits	1 LS	1	10000 LS	\$10,000
20 Consultants	1 LS	1	50000 LS	\$50,000
21 Legal	1 LS	1	50000 LS	\$50,000

Option 5A - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - PARTIAL DEWATERING to 100 ft

Item	Description	Quantity	Hrs/Shift Shifts/Day	Days	Unit Cost Item Cost
1	Mobilization	1 LS	10 1	10	490720
2	Dredge for Tremied Anchor Concrete	1 LS	10 1	9	\$881,040
3	Install formwork and bracing for Anchor Concrete	1 LS	10 1	14	\$1,327,440
4	Tremie Anchor Concrete	1 LS	10 1	19	\$2,149,326
5	Install reinforcing and precast spools	1 LS	10 1	30	\$2,501,875
6	Tremie Concrete into Spool openings	1 LS	10 1	15	\$1,063,200
7	Prefabricate Spools	1 LS	10 1	105	\$1,370,638
8	Post-tensioning of new tower	1 LS	10 1	15	\$589,400
9	Make piping connection to Existing tunnel	1 LS	10 1	12	\$140,786
10	Plug & demolish existing tower	1 LS	10 1	9	\$344,848
11	Demobilization	1 LS	10 1	10	\$310,480
				248	Days
				12.4	Months \$11,170,000
14	Supervision	1 LS		12.4	Mo \$62,000 Mo \$768,800
15	General Operations	1 LS		12.4	
22	General Requirements 10% of Direct	10 %			\$1,117,000
23	Home Office - 4-% of Direct	4 %			\$447,000
	Subtotal				\$14,720,000
24	Profit - 15% total	15%			\$2,208,000
25	Bond, Taxes, & Insurance	2 %			\$339,000
	Total (2008 Dollars)				\$17,267,000
26	Escalation Excluded - Recommend 5% per year				
27	Contingency & Escalation	40%			\$6,907,000
	Dewater to 100 ft				\$4,000,000
	Total Unescalated Construction Cost with Contingency Excludes Design Costs, CM Costs, and Owner Soft Costs	6			\$28,174,000

Assume Dredging material deposited on reservoir floor. Assume \$250,000 additional if off-hauled.

Option 5A - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - PARTIAL DEWATERING to 100 ft

em	Description	Quantity	Hrs/Shift Shifts/Day	Days		Unit Cost		Item Cost
1	Mobilization	1 LS	10 1	10				\$490,720
	Move in cranes, barges, office, formwork, mate							
	1 Mobilize Plant & Equip	1 LS			1	400000		\$400,000
	2 Setup Plant & Equip (8 men)	10 Day	100 mhr/day	10	800	72 \$/hr	1.05	\$60,480
	3 Receive Materials	20 Day	20 mhr/day		400	72 \$/hr	1.05	\$30,240
2	Dredge for Tremied Anchor Concrete	1 LS	10 1	9				\$881,040
	Dredge over existing tunnel for tremie concrete	e Anchor, 10-hr shift,	1 shift per day, 350 CY	per day				
	1 Dredger - Subcontractor	3000 CY			3000	100 \$/cy		\$300,000
	2 Divers	9 Days	80 mhr/day		720	49600 \$/day		\$446,400
	3 100 T Crane	9 Days			90	250 \$/hr		\$22,500
	4 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
	5 Labor	9 Days	100 mhr/day	9	900	72 \$/hr	1.05	\$68,040
	6 Decompression chamber	9 Days			216	62.5 \$/hr		\$13,500
	7 Muck Disposal - On lake bed							
3	Install formwork and bracing for Anchor Concre		10 1	14			:	\$1,327,440
	Install 60-ft and 10-ft diameter "formwork" and							
	1 Divers	14 Days	160 mhr/day		2240	54750 \$/day		\$766,500
	2 100 T Crane	14 Days			140	250 \$/hr		\$35,000
	3 Barge & Tug	14 Days			140	340 \$/hr		\$47,600
	4 Decompression chamber	14 Days			336	62.5 \$/hr		\$21,000
	5 Labor	14 Days	100 mhr/day	14	1400	72 \$/hr	1.05	\$105,840
	6 Form material 60-ft diameter	60 LF			60	4735 \$/LF		\$284,100
	7 Form material 10-ft diameter	60 LF			60	790 \$/LF		\$47,400
	8 Bracing	1 LS			1	20000 LS		\$20,000
4	Tremie Anchor Concrete	1 LS	10 1	19				\$ <mark>2,149,326</mark>
	Setup concrete operation & tremie concrete, 1		ays of reinforcing, 4 day	s for post-	tensionin			
	1 Divers	19 Days	80 mhr/day		1520	49600 \$/day		\$942,400
	2 100 T Crane	19 Days			190	250 \$/hr		\$47,500
	3 Barge & Tug	19 Days			190	340 \$/hr		\$64,600
	4 Plant support for Reinforcing	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
	5 Plant support for post tensioning ducts	4 Days	100 mhr/day	4	400	72 \$/hr	1.05	\$30,240
	5 Concrete pump & piping	6108 CY			6108	10 \$/cy		\$61,080
	e e e construit e prime e prime g					72 \$/hr		+ -)

7 Reinforcing steel	24 lf	1715 lb/lf	41160	0.85 \$/lb	\$34,986
8 Concrete	6108 CY		6108	140 \$/cy	\$855,120

5	Install precast spools and reinforcing		10 1	30				\$2,501,875
	Install Reinforcing steel, and pre-cast spools, 15 s	pools @ 12-ft high,	EL 413 to EL 593, reb	oar - 386	lb/mh			
	1 Install Reinforcing bars - Divers	15 Days	80 mhr/day	15	1200	54750 \$/day		\$821,250
	2 Pre-fabricate rebar cages	15 Days	100 mhr/day		1500	72 \$/hr	1.05	\$113,400
	3 Install Precast Spools - Divers	15 Days	120 mhr/day	15	1800	54750 \$/day		\$821,250
	4 Reinforcing Bars - purchase material	180 LF	2575 lbs/LF		463500	0.85 \$/lb		\$393,975
	5 Barge & Tug	30 Days			300	340 \$/hr		\$102,000
	6 Special Spool Floatation air bags	1 Ea			1	100000 Ea		\$100,000
	7 100 T Crane - On Barge	30 Days			300	250 \$/hr		\$75,000
	8 100 T Crane - On Land	30 Days			300	250 \$/hr		\$75,000
6	Tremie Concrete into Spool openings		10 1	15				\$1,063,200
	Tremie Concrete into Spool Openings from Surfac	e of new Tower, 18	30 LF					
	1 Divers	15 Days	80 mhr/day		1200	49600 \$/day		\$744,000
	2 100 T Crane	15 Days			150	250 \$/hr		\$37,500
	3 Barge & Tug	15 Days			150	340 \$/hr		\$51,000
	4 Concrete pump & piping	782 CY			782	10 \$/cy		\$7,820
	5 Tremie Concrete	15 Days	100 mhr/day	15	1500	72 \$/hr	1.05	\$113,400
	6 Concrete	782 CY			782	140 \$/cy		\$109,480
7	Prefabricate Spools		10 1	105			Ś	\$1,370,638
	Pre-fabricate spools on site, 15 spools, formwork -							
	1 Pre-fabricate rebar cages	45 Days	60 mhr/day	45	2700	72 \$/hr	1.05	\$204,120
	2 Install formwork	45 Days	60 mhr/day	45	2700	72 \$/hr	1.05	\$204,120
	3 Install Tensioning ductwork	45 Days	10 mhr/day		450	72 \$/hr	1.05	\$34,020
	4 100 T Crane	105 Days			1050	250 \$/hr		\$262,500
	5 Concrete pump & piping	520 CY			520	10 \$/cy		\$5,200
	6 Pour Spools	15 Days	30 mhr/day	15	450	72 \$/hr	1.05	\$34,020
	7 Reinforcing Bars - purchase material	180 LF	1986 lbs/LF		357480	0.85 \$/lb		\$303,858
	8 New valves	6 Ea			6	25000 Ea		\$150,000
	9 Valve Control System	1 Ea			1	100000 Ea		\$100,000
	9 Concrete	520 CY			520	140 \$/cy		\$72,800
8	Post-tensioning of new tower		10 1	15				\$589,400
	11 U shaped ducts - 400 LF each	110			250000	110		¢250.000
	1 Post Tensioning Subcontractor	1 LS			350000	1 LS		\$350,000

Jacobs Associates

 2 Labor - Support for post-tensioning 3 Barge & Tug 4 100 T Crane - On Barge 5 100 T Crane - On Land 	15 Days 15 Days 15 Days 15 Days	100 mhr/day	15	1500 150 150 150	72 \$/hr 340 \$/hr 250 \$/hr 250 \$/hr	1.05	\$113,400 \$51,000 \$37,500 \$37,500
9 Make piping connection to Existing tunnel		10 1	12				\$140,786
Dewater Tower, break into existing Tunnel, For							
1 Dewatering Labor	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
2 Break into existing tunnel	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
3 Plant support for Reinforcing	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
4 Install custom formwork	2 Days	100 mhr/day	2	200	72 \$/hr	1.05	\$15,120
5 Pump Concrete	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
6 Strip & remove formwork, and patch	1 Days	100 mhr/day	1	100	72 \$/hr	1.05	\$7,560
7 Reinforcing steel furnish & install	2684 lbs			2684	1.5 \$/lb		\$4,026
8 Custom formwork	1 LS			1	10000 LS		\$10,000
9 Concrete	30 CY			30	140 \$/cy		\$4,200
10 100 T crane	12 Days			120	250 \$/hr		\$30,000
11 Mancage	12 Days			120	2 \$/hr		\$240
12 Dewatering pumps	1 Days			10	10 \$/hr		\$100
13 Ventilation fans	12 Days			120	10 \$/hr		\$1,200
14 Concrete Pump & piping	30 CY			30	10 \$/cy		\$300
10 Plug & demolish existing tower		10 1	9				\$344,848
Implode tower onto lake bed							
1 Plug formwork	1 LS						
2 Install Formwork & pump Concrete	5 Days	100 mhr/day	5	500	72 \$/hr	1.05	\$37,800
3 Concrete	20 CY			20	140 \$/cy		\$2,800
4 100 T Crane	9 Days			90	250 \$/hr		\$22,500
5 Barge & Tug	9 Days			90	340 \$/hr		\$30,600
6 Concrete Pump & piping	50 CY			50	10 \$/cy		\$500
7 Supporting Labor	9 Days	100 mhr/day		900	72 \$/hr	1.05	\$648
8 Demo Existing tower Subcontractor	1 LS		4	1	250000 Ea		\$250,000
11 Demobilization		10 1	10				\$310,480
Demobilize cranes, barges, office, formwork, ma	aterials, etc						
1 Demobilize Plant & Equip	1 LS			1	200000 LS		\$200,000
2 Tear down Plant & Equip (8 men)	10 Day	100 mhr/day	10	800	72 \$/hr	1.05	\$60,480
3 Restoration	1 LS			1	50000 LS		\$50,000

Option 5A - Dredge Over existing tunnel, Tremie Anchor Concrete, Install Precast tower spools & post tension - PARTIAL DEWATERING to 100 ft

tem	Description	Quantity	Months	Unit Cost	Item Cost
1	Supervision	1 LS	12.4 Mo	\$62,000 Mo	\$768,800
	1 Project Manager	1 Ea	12.4	13000 Mo	\$161,200
	2 Project Superintendent	1 Ea	12.4	12000 Mo	\$148,800
	3 Walker	3 Ea	12.4	10000 Mo	\$124,000
	4 Project Engineer	1 Ea	12.4	10000 Mo	\$124,000
	5 Office Manager	1 Ea	12.4	8000 Mo	\$99,200
	6 Field Engineer	2 Ea	12.4	9000 Mo	\$111,600

2 General Operations	1 LS	12.4 Mo	\$98,106 Mo	\$1,216,520
				•
1 Office	1 Ea	12.4	450	\$5,580
2 Change House	1 Ea	12.4	450	\$5,580
3 Shop Containers	4 Ea	12.4	100	\$4,960
4 Power supply	1 Ea	12.4	400	\$4,960
5 Lights	1 Ea	12.4	100	\$1,240
6 Phones	1 Ea	12.4	250	\$3,100
7 Computers	1 Ea	12.4	250	\$3,100
8 Copier	1 Ea	12.4	200	\$2,480
9 Water	1 Ea	12.4	200	\$2,480
10 Sewer	1 Ea	12.4	200	\$2,480
11 Access Road	1 LS	1	20000 LS	\$20,000
12 Vehicles	6 Ea	12.4	900	\$66,960
13 CAT 950 FEL	1 Ea	12.4	10000	\$124,000
14 Forklift	1 Ea	12.4	4000	\$49,600
15 RT30 Crane	1 Ea	12.4	12000	\$148,800
16 Living Costs	6 Ea	12.4	2000	\$148,800
17 Travel	1 Ea	12.4	1000	\$12,400
18 Insurance	1 LS	1	500000 LS	\$500,000
19 Permits	1 LS	1	10000 LS	\$10,000
20 Consultants	1 LS	1	50000 LS	\$50,000
21 Legal	1 LS	1	50000 LS	\$50,000

17 December, 2008

Jacobs Associates 465 California Street, Suite 1000 San Francisco, CA 94104-1824

Re: Briones Reservior Preliminary Pricing - EBMUD

Attn: Mr. Troy Page

Troy,

We have worked out budgetary pricing for the portion of the EBMUD Briones Reservoir Project that you requested for the following activities:

Option 1 (235 ft of fresh water)

- Task A
 - Work shift 10 hours
 - 4 working divers in the water for at least 80% of shift time
 - 20 shifts of work
 - Provide all dive labor and equipment only (does not include barge or marine support)

Cost per shift:

\$ 179,625/Weekday \$ 242,000/Saturday \$ 291,450/Sunday

- Task B
 - o Work shift 24 hours
 - o 2 working divers in the water for at least 80% of shift time
 - o 6 shifts of work
 - o Provide all dive labor and equipment only (does not include barge or marine support)

Cost per shift:

\$ 157,200/Weekday \$ 190,600/Saturday \$ 232,200/Sunday

Option 2 (100 ft of fresh water)

- Task A
 - Work shift 10 hours (recommend other shift length for better pricing or efficiency)
 - 4 working divers in the water for at least 80% of shift time
 - 20 shifts of work
 - Provide all dive labor and equipment only (does not include barge or marine support)

Cost per shift:

- Task B
 - Work shift 24 hours
 - 2 working divers in the water for at least 80% of shift time
 - o 6 shifts of work
 - Provide all dive labor and equipment only (does not include barge or marine support)

Cost per shift:

\$ 49,600/Weekday \$ 60,800/Saturday \$ 73,600/Sunday

\$ 54,750/Weekday \$ 75,800/Saturday \$ 91,250/Sunday

Please note that this is budgetary pricing only, based upon current prevailing wage rates for divers and tenders, and does not include costs for any marine support of the diving operations. We feel that efficiencies can be created when the work activities are more defined. Please feel free to contact me with any questions.

Regards,

VORTEX MARINE CONSTRUCTION, INC. Ì **Blaise Fettig**