

FINAL REPORT **VOLUME 2: APPENDICES** October 2005

DYNAMIC STABILITY ANALYSIS OF CHABOT DAM Alameda County, California

Prepared for East Bay Municipal Utility District 375 Eleventh Street EBMUD Oakland, CA 94607

FINAL REPORT

VOLUME 2: APPENDICES

DYNAMIC STABILITY ANALYSIS OF CHABOT DAM

ALAMEDA COUNTY, CALIFORNIA

Prepared for

East Bay Municipal Utility District 375 Eleventh Street Oakland, California 94607

October 2005

URS Corporation 1333 Broadway, Suite 800 Oakland, California 94612

26814536.G0000

Appendix A Exploratory Drilling

Appendix A Exploratory Drilling

This appendix summarizes the exploratory drilling completed as part of the dynamic stability analysis of Chabot Dam. Nine rotary wash borings were drilled for this study. The borings were numbered in the order drilled, using nomenclature and numbering consistent with borings previously drilled by the District at the site. Borings WI-61 and WI-64 were drilled from the crest of the dam. Borings WI-59 and WI-62 were drilled from the downstream bench and sloping access road. Borings WI-60, WI-63, and WI-65 were drilled in the downstream toe area. Borings WI-66 and WI-67 were drilled near the upstream toe of the dam. The borings were initially located in the field by URS based on approximate measurement from available reference points. After drilling, a hand-held Trimble GPS receiver with built-in differential correction capabilities was used to record coordinates for each boring location. Comparison measurements taken at known reference points indicate a horizontal accuracy range for the GPS coordinates of about 5 feet. For the reservoir borings drilled from the barge, the GPS unit was first used to navigate the barge to within a few feet of the target boring locations. The actual boring coordinates were then recorded once the barge anchors and borehole casing were set in place.

The rotary wash borings were drilled by Taber Consultants of Sacramento, California, between May 3rd and May 29, 2004. The land-accessed borings were drilled using a Diedrich D-128 truck-mounted drill rig. The barge-accessed borings were drilled using a CME-45 skid-mounted drill rig. The same automatic trip hammer and NWJ drill rods were used on both rigs for drive sampling. The boring logs are attached, along with a legend for the symbols and terminology used in the logs.

The rotary-wash drilling was performed in general accordance with ASTM standard D-6066. The borings were advanced with a 4-7/8-inch-diameter drag bit with side discharge. For borings WI-63, 65, 66, and 67, a 94-mm casing advancer system was used to advance the holes. This system includes a removable plug at the tip of the bit, through which SPT, Modified California, and Pitcher Barrel samples were obtained.

The soils and rock encountered were logged and classified in accordance with ASTM standards. All samples were carefully sealed, labeled, and transported to the URS Pleasant Hill laboratory for review and testing.

During drilling, care was exercised to avoid high drilling pump pressures that might damage the embankment. In general, excessive circulating fluid pressures were not observed. Occasional losses of drilling fluid were observed, but the amounts were generally small. The largest fluid loss occurred in boring WI-60 at the downstream toe, in gravelly materials. For the barge borings, casing was installed from the barge to the surface of the embankment to ensure circulation return to the mud tub without loss into the reservoir. For the land borings, casing was installed in the top few feet of each boring. Bentonite and biodegradable drilling muds were used as needed for borehole stability.

The rotary wash borings were sampled at 2.5- to 5-foot intervals depending on material type. More closely spaced samples were obtained in granular materials and in shallower borings. Prior to each sample, the boring depth was checked for possible soil disturbance or slough at the bottom. Where observed, excessive slough was removed prior to sampling.

In the upstream, crest, and downstream bench borings, a Modified California (MC) split-spoon sampler (2.5-inch-ID) was used periodically to obtain samples for material gradation testing. A 2.85-inch-ID Pitcher barrel tube sampler was used to obtain relatively undisturbed samples for density and triaxial strength testing. A standard penetration test split spoon sampler (SPT) was

X:X_GEO\CHABOT DAM\TASK G -- ENGINEERING REPORT\DRAFT FINAL\DYNAMIC STABILITY ANALYSIS_R4.DOC\30-AUG-05\\OAK A-1

Appendix A Exploratory Drilling

also used, mainly in granular materials. Pitcher barrel sampling was performed where predominantly clayey soils were encountered.

The SPT sampling was performed in general accordance with ASTM standard D-1586. A 2-ft long split barrel SPT sampler with a 1.375-inch inside diameter was used. Sand catchers were used in the sampler shoe in some instances, in an effort to improve sample recovery. The SPT sampler was driven with an automatic 140-lb trip hammer with a 30-inch drop. The blow counts were recorded at 1-inch intervals to assess potential gravel impacts. The energy delivered by the SPT hammer to the sampler was measured/calibrated at the beginning of the investigations, to allow correction of the blow counts for hammer efficiency. Records of the hammer energy measurements are included in Appendix C.

The borings were advanced a minimum of 5 to 10 feet into bedrock. Where drive sample penetration was possible, SPT samples were taken to verify the type of bedrock. More resistant rock was cored using a 4-inch OD (HQ-size) core barrel. Selected borings were drilled about 25 to 30 feet into bedrock to allow downhole geophysical measurements within the dam foundation.

After the drilling and geophysical investigations were completed, each land boring was backfilled with cement grout and the ground surface was restored to its initial elevation. The reservoir borings were backfilled with drill cuttings supplemented with coarse sand. For the borings drilled through pavement, the pavement was patched with asphaltic concrete. Excess drill cuttings and fluid from the borings were disposed of on site at locations designated by the District. The land borings were staked and/or marked for subsequent surveying.

X:\X_GEO\CHABOT DAM\TASK G -- ENGINEERING REPORT\DRAFT FINAL\DYNAMIC STABILITY ANALYSIS_R4.DOC\30-AUG-05\\OAK m A-2

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Sheet 1 of 2

Key to Log of Boring

SAMPLES Unconfined Compressive Strength, psf % Log Sampling Resistance % pcf Recovery, Elevation feet MATERIAL DESCRIPTION **REMARKS AND** Dry Unit Weight, p Number Graphic Water Content, Depth, feet **OTHER TESTS** Type 12 3 7 10 1 2 4 5 6 8 9 11 **COLUMN DESCRIPTIONS** 1 Elevation: Elevation in feet referenced to mean sea level (MSL). 8 <u>Material Description:</u> Description of material encountered; may include density/consistency, moisture, color, and grain size. 2 **Depth:** Depth in feet below the ground surface. 9 Water Content: Water content of soil sample measured in 3 Sample Type: Type of soil sample collected at depth interval laboratory, expressed as percentage of dry weight of specimen. shown; sampler symbols are explained below. 10 **Dry Unit Weight:** Dry weight per unit volume of soil measured in 4 **Sample Number:** Sample identification number. laboratory, expressed in pounds per cubic feet (pcf). 5 Sampling Resistance: Number of blows required to advance 11 <u>Unconfined Compressive Strength:</u> Unconfined compressive driven sampler 12 inches beyond first 6-inch interval, or distance strength of soil sample measured in laboratory, expressed in psf. noted, using a 140-lb hammer with a 30-inch drop. Also, down 12 Remarks and Other Tests: Comments and observations regarding pressure to drive Pitcher barrel or tube sampler. drilling or sampling made by driller or field personnel. Other field and Recovery: Percentage of driven or pushed sample length laboratory test results, using the following abbreviations: 6 recovered; "NA" indicates data not recorded. Specific gravity Gs HD Hydrometer analysis, percent passing 5 microns 7 Graphic Log: Graphic depiction of subsurface material Liquid Limit (from Atterberg Limits test), percent LL encountered; typical symbols are explained below. <u>PI</u> Plasticity Index (from Atterberg Limits test), percent <u>SA</u> Sieve analysis, percent passing #200 sieve TX-CIU(R) Isotropically consolidated undrained triaxial test TYPICAL MATERIAL GRAPHIC SYMBOLS POORLY GRADED SAND POORLY GRADED SAND SILTY SAND (SM) CLAYEY SAND (SC) WITH SILT (SP-SM) (SP) WELL-GRADED SAND CLAY (CH) SILTY CLAY (CL/CL-ML) CLAY (CL) (SW) GRAVEL (GP/GW) SILT (ML) SILT (MH) CLAYEY SILT (ML) SERPENTINITE RHYOLITE GABBRO SHALE keydam 8/8/2004 **TYPICAL SAMPLER GRAPHIC SYMBOLS OTHER GRAPHIC SYMBOLS** Standard Penetration Test CHABOTDAM.GPJ; Shelby tube (3-inch OD, ∇ First water encountered at time of drilling and (SPT) unlined split spoon sampling (ATD) thin-wall, fixed head) (1.4-inch-ID) Modified California Static water level measured after drilling and ▼ Pitcher barrel with (2.5-inch-ID) with brass

sampling completed Change in material properties within a lithologic stratum ¥

cuttings

Grab or bulk sample from

liners

GENERAL NOTES

- 1. Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- 2. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Shelby tube liner

Figure A-1

Key to Log of Boring

Sheet 2 of 2

KEY TO DESCRIPTIVE TERMS FOR ROCK

ROCK WEATHERING / ALTERATION

Description	Recognition
Residual Soil	Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand
Completely Weathered/Altered	Original minerals of rock have been almost entirely decomposed to secondary minerals, although original fabric may be intact; material can be granulated by hand
Highly Weathered/Altered	More than half of the rock is decomposed; rock is weakened so that a minimum 2-inch-diameter sample can be broken readily by hand across rock fabric
Moderately Weathered/Altered	Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 2-inch-diameter sample cannot be broken readily by hand across rock fabric
Slightly Weathered/Altered Fresh/Unweathered	Rock is slightly discolored, but not noticeably lower in strength than fresh rock Rock shows no discoloration, loss of strength, or other effect of weathering/alteration

ROCK STRENGTH

Description	Recognition
Extremely Weak Rock	Can be indented by thumbnail
Very Weak Rock	Can be peeled by pocket knife
Weak Rock	Can be peeled with difficulty by pocket knife
Moderately Strong Rock	Can be indented 5 mm with sharp end of pick
Strong Rock	Requires one hammer blow to fracture
Very Strong Rock	Requires many hammer blows to fracture
Extremely Strong Rock	Can only be chipped with hammer blows
Very Strong Rock Extremely Strong Rock	Requires many hammer blows to fracture Can only be chipped with hammer blows

ROCK SCRATCH HARDNESS

Description	Recognition
Soft	Applicable only to plastic material
Friable	Can be easily crumbled by hand or reduced to powder; too soft to cut with a pocket knife
Low Hardness	Can be gouged deeply or carved with a pocket knife
Moderately Hard	Can be readily scratched by knife blade; scratch leaves heavy trace of dust and is readily visible after powder has been blown away
Hard	Can be scratched with a pocket knife only with difficulty; scratch produces little powder; traces of knife steel may be visible
Very Hard	Cannot be scratched with a pocket knife; knife steel marks are left on surface

ROCK FRACTURING

Description	Recognition	
Intensely Fractured	Fractures spaced less than 2 inches apart	
Highly Fractured	Fractures spaced 2 inches to 1 foot apart	
Moderately Fractured	Fractures spaced 1 foot to 3 feet apart	
Slightly Fractured	Fractures spaced 3 feet to 10 feet apart	
Massive	Fracture spacing greater than 10 feet	
	TTDC	Figure A-1
	UK3	

26814536.C0000

Project Number:

Project Location: Lake Chabot Dam, San Leandro, California

Log of Boring WI-59

Date(s) Drilled	5/3/04 and 5/4/04	Logged By	М. МсКее	Checked By	T. Feldsher			
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-7/8-inch drag bit	Total Depth of Borehole	99.0 feet			
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 210 feet MSL			
Groundwate Level(s)	^{er} Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop			
Borehole Backfill	Cement/bentonite grout	Location	West of paved access road at mid-slope downstream bench					

				SA	MPLES]					
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-210	-		1				Asphaltic concrete 1-1/2 inches thick SILTY SAND (SM) [Fill] Medium dense to dense, slightly moist, yellowish brown, trace fine gravel				Start drilling on 5/3/04.
		-		2				SILTY SAND WITH GRAVEL (SM) [Fill] Very dense, moist, bluish gray, medium to high plasticity fines, ~20% fine subangular gravel (serpentinite fragments)				
	-205	5— - -		3A 3B 4	41 10	100 22		→ → Becomes dense, with thin layers of yellowish brown, clayey gravel	15.0	115.0		LL=71, PI=28 SA: %F=31, %G=16
	-200	- 10-		5				CLAYEY SAND WITH GRAVEL (SC) [Fill] Dense, moist, brown, ~20% fine gravel				
		_		6	100 psi	79		CLAYEY GRAVEL WITH SAND (GC) [Fill] Moist, brown, fine to medium angular gravel (siltstone fragments)				
	-195	15_		7	8	33		CLAYEY SAND WITH GRAVEL (SC) [Fill] Loose to medium dense, moist, brown, medium to high plasticity fines, ~20% fine gravel (siltstone fragments)				
	100	-										
VI-59		-		8A 8B	19	83			15.6	118.6		LL=37, PI=17
iPJ; 8/8/2004 V	-190			9	9	33						5A. %F-20, %G-29
ABOTDAM.G		-						- Gravel grades fine to coarse, siltstone fragments to 2 inches				

Sheet 2 of 3 **Project Number:** 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Elevation feet pcf % Recovery, Depth, feet MATERIAL DESCRIPTION **REMARKS AND** Water Content, Dry Unit Weight, p Number **OTHER TESTS** Type 30 180 SILTY CLAYEY SAND (SC-SM) [Fill] (continued) 12A 23 72 SILTY CLAY (CL) [Fill] 12B Very stiff, moist, yellowish brown to pale yellow CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense to dense, slightly moist to moist, olive and olive 13 39 Ż 18 LL=37, PI=18 brown, fine gravel SA: %F=27, %G=8 175 35 Trace brick(?) fragments 200 psi 40 14 1 170 40 SILTY CLAYEY SAND WITH GRAVEL (SC-SM) [Fill] Dense, slightly moist, olive brown, fine-grained sand, fine gravel 15 46 67 SA: %F=19, %G=19 HD: 8%<5 microns 165 45 16A 74 61 16B LL=24, PI=7 8.3 -Sand grades medium- to coarse-grained, less clayey (possibly SA: %F=15, %G=21 pocket or lens) 17A 100 34 Łν SANDY CLAY WITH GRAVEL (CL) [Fill] Hard, moist, olive brown, fine gravel (siltstone fragments) 17B 160 50-Gs=2.71 LL=34, PI=17 SA: %F=53, %G=4 HD: 27%<5 microns 19.0 106.9 TX-CIU(R) 75 18 250 psi CLAYEY SAND (SC) [Fill] TX-CIU(R) WI-59 15.7 114.9 Medium dense to dense, moist, olive brown, few fine to coarse gravel LL=34, PI=16 to 2-1/2 inches (siltstone fragments) SA: %F=29, %G=9 155 55 Ă, 8/8/2004 19 56 15 TDAM.GP

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California

Log of Boring WI-59

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Log of Boring WI-59

Sheet 3 of 3

٢				SA	AMPLES							
		Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	143	60-		22 23A 23B	200 psi 20	50 61		CLAYEY SAND WITH GRAVEL (SC), dense, moist, dark yellowish brown, ~30-35% fine subangular gravel [Fill] (continued)	-			SA: %F=19, %G=27
	140	70-	-	24A 24B	25	67		POORLY GRADED GRAVEL (GP) [Fill] Medium dense, wet, gray, red, and brown to yellowish brown, meta-volcanic fragments	-			Drills gravelly 69-71 ft.
	135	75-		25	21	33		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense to dense, moist, bluish gray, black, and brown, high plasticity fines, with pockets or clasts of brown clay with fine gravel-size serpentinite fragments	-			LL=56, PI=25 SA: %F=21, %G=30 50-gallon fluid loss noted prior to drilling out to 74 ft after SPT.
	130	80-		26 27	300 psi 29	67 50		SANDY CLAY (CL/CH) [Fill] Very stiff, moist, bluish gray, black, and olive brown, medium to high plasticity	17.0	110.7		TX-CIU(R) LL=50, PI=24 SA: %F=50, %G=4 HD: 20%<5 microns Gs=2.66
	125	85-		28A 28B 29A 29B	32 21	100 100		SANDY CLAY (CL/CH) [Fill] Stiff to very stiff, moist, dark brown, medium to high plasticity, fine- to medium-grained sand SANDY CLAY (CL) [Fill?] Very stiff, moist, brown, trace serpentinite fragments	-			50-gallon fluid loss drilling 83.5-89 ft. APPROX. PRE-DAM GROUND SURVEY LEVEL AT 85 FEET. LL=35, PI=15 SA: %F=57, %G=4 HD: 25%<5 microns
TDAM.GPJ; 8/19/2004 WI-59	120	90-		30 31	250 psi 50/3"	47 56		RHYOLITE [Bedrock] Gray, yellowish brown, and brownish red, highly to moderately weathered, weak to moderately strong, highly to intensely fractured (close to extremely close fracture spacing), some iron oxide staining	-			

26814536.C0000

Project Number:

Project Location: Lake Chabot Dam, San Leandro, California

Log of Boring WI-60

Date(s) Drilled	5/4/04	Logged By	М. МсКее	Checked By	T. Feldsher		
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-7/8-inch drag bit	Total Depth of Borehole	104.8 feet		
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 179 feet MSL		
Groundwate Level(s)	er Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop		
Borehole Backfill	Cement/bentonite grout	Location	Downstream toe of dam east of paved access road				

- [SA	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
		U - -		1				SILTY CLAYEY SAND (SC-SM) [Fill] Medium dense, dry, yellowish brown, trace fine gravel	-			
	-175	- 5		2	17	33		■ ■ Becomes olive brown with yellow, brown, and reddish brown = mottles, trace to no gravel	-			
	-170	-		3	19	56			-			LL=25, PI=6 SA: %F=15, %G=12
		10- -		4	21	28			-			
	465	_		5A 5B	13	50		CLAYEY SAND WITH GRAVEL (SC) [Sluiced Fill] Loose, moist to very moist, olive brown, fine gravel	12.8	117.6		SA: %F=13, %G=26
	- 105	15-		6	4	22			-			
4 WI-60	400	=		7	10	50		CLAYEY SAND WITH GRAVEL (SC) [Sluiced Fill] Medium dense, moist to very moist, olive gray to olive brown, fine gravel	-			SA: %F=12, %G=52
GPJ; 8/8/200	- 100	20		8	11	22			-			30-gallon fluid loss drilling 19.6-22 ft.
ABOTDAM.		_		9	24	44			12.1			LL=33, PI=13 SA: %F=14, %G=32

Project Location: Lake Chabot Dam, San Leandro, California Sheet 2 of 4 **Project Number:** 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Elevation feet pcf % Recovery, Depth, feet MATERIAL DESCRIPTION **REMARKS AND** Water Content, Dry Unit Weight, p Number **OTHER TESTS** Type 30 CLAYEY SAND WITH GRAVEL (SC), medium dense, moist to very moist, olive gray to olive brown, ~20% fines [Sluiced Fill] (continued) ¥) 12 33 18 SA: %F=15, %G=23 Ľ, Ŷ 13A Pitcher sampling a bit 13B choppy, gravelly. 150 psi 20 145 Poor recovery; pushed a rock fragment at 35.5 ft. 35 Rhyolite rock fragment approx. 1-1/4 inches diameter 14 16 11 1 Hole sloughing; switch to 3.5-inch-OD casing pipe. No recovery in SPT 15 10 0 drive. Push SPT 37-39 ft to obtain 140 sample (2-3 inches). CLAYEY SAND WITH GRAVEL (SC) [Sluiced Fill] h Medium dense, moist to very moist, olive brown and brown, 40 16 serpentinite and rhyolite fragments 16 56 LL=34, PI=13 SA: %F=22, %G=23 Rhyolite rock fragment approx. 2-1/2 x 1-1/2 inches a rock fragment at 42 ft. Poor recovery; pushed 17 29 6 4 135 -Becomes less clayey and with few gravel LL=28, PI=8 45 18 22 50 SA: %F=33, %G=7 HD: 13%<5 microns

Log of Boring WI-60

Project: Dynamic Stability of Chabot Dam

CLAYEY SAND WITH GRAVEL (SC) [Wagon Fill?] Medium dense, moist, olive brown with yellowish brown and gray 1 mottling, rhyolite and serpentinite fragments 19 22 44 r 130 Slight decrease in clay content **50** Ø 20 22 50 SA: %F=19, %G=24 Becomes olive brown with bluish gray and yellowish brown mottling; mostly fine with trace medium gravel 39 21 22 SA: %F=17, %G=31 WI-60 125 1 4 SILTY CLAYEY SAND (SC-SM) [Alluvium?] 8/19/2004 55 22 27 67 Medium dense, moist to very moist, bluish gray and black, ~15% fines, trace fine gravel, with decayed (burnt?) roots or wood fragments to 1-3/8 inches diameter and 5 inches long TDAM.GP, 23 13 33 120

Project:Dynamic Stability of Chabot DamLog of Boring WI-60Project Location:Lake Chabot Dam, San Leandro, CaliforniaSheet 3 of 4Project Number:26814536.C0000Sheet 3 of 4

ſ				SA	AMPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
		-60		26	4	11		SERPENTINITE, bluish gray and white, highly to completely weathered, weak, moderately soft, moist [Colluvium?] (continued)	_			APPROX. PRE-DAM
		-		27A 27B	36	67		 POORLY GRADED SAND (SP) [Alluvium / Slough?] Dense, moist to very moist, brown, fine- to medium-grained sand CLAYEY SAND WITH GRAVEL (SC) [Colluvium?] Medium dense to dense, moist, dark gray, shale fragments 	-			66 FEET. SA: %F=17, %G=23
	-110	70		28	11	22		Becoming POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC)	-			50-gallon fluid loss drilling 67-69.5 ft. SA: %F=9, %G=68
		-	1	29	57/6"	67		SERPENTINITE, SHALE, and GABBRO [Bedrock] Bluish gray, highly weathered, weak, moderately soft to soft, clayey, moist	-			
	-105	75		30	55/6"	22			-			
	-100	- - 80 -		31	100/3.5"	100			-			
	-95	- 85- -		32	56/6"	100			-			
GPJ; 8/8/2004 WI-60	-90	- 90- -		33	100/5"	80		■ Becomes moderately soft, less clayey	-			
OTDAM	-85	-					(

Project Location: Lake Chabot Dam, San Leandro, California

Log of Boring WI-61

Project Number: 26814536.C0000

Date(s) Drilled	5/6/04 - 5/7/04; 5/10/04 - 5/11/04	Logged By	E. Ntambakwa / M. McKee	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-7/8-inch drag bit; NX core bit	Total Depth of Borehole	166.0 feet
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 250 feet MSL
Groundwate Level(s)	^{er} Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel; NX rock core barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Cement/bentonite grout	Location	Crest of dam		

ſ				SA	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-250	U- - -	-	1				Asphaltic concrete 2 inches thick CLAYEY SAND (SC) [Fill] Medium dense to dense, slightly moist, brown, few fine gravel, trace rhyolite fragments to 1-1/2 inches	-			Start drilling on 5/6/04.
	-245	5-		2	25	100		 	-			SA: %F=40, %G=11
	-240	- 10-		3A 3B	50	67		Medium dense to dense, moist, olive brown, few fine gravel	15.4	120.9)	SA: %F=36, %G=13
	-235	- - 15-		4	17 150 psi	67 20		SANDY CLAY (CL) [Fill] Very stiff, moist, brown to yellowish brown, medium plasticity, trace gravel to 1 inch (rhyolite fragments)	-			
TDAM.GPJ; 8/8/2004 WI-61	-230	20 -		6	19	67		- ─_₩──With clasts of gray, high plasticity clay -	-			
BC		-		1	0	22		 Medium stiff to stiff 	-			

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Log of Boring WI-61

Sheet 3 of 5

				SA	MPLES							
		reptn,	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
-10	55	- - -		16	13	28		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, dark yellowish brown, ~45% fines, ~15% fine gravel (serpentinite and rhyolite fragments)	-			
-18	80	70		17A 17B	30	67		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, olive brown to olive gray grading to brown with gray mottling at 71.5 ft, fine gravel (rhyolite fragments, trace serpentinite) Grades with medium gravel	15.7	122.1		SA: %F=41, %G=20
-17	75	- 75 -		18	200 psi	40		 	-			
		-	I	19	19	33			-			
-17	0	80— - -		20A 20B	28	89		SANDY CLAY (CL) [Fill] Very stiff, moist, brown, olive brown, and reddish brown	15.6	118.7		LL=34, PI=19 SA: %F=58, %G=5
-16	5	- 85— -		21	18	44		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, olive and gray, fine gravel (rhyolite with few serpentinite fragments)	-			SA: %F=29, %G=14
0TDAM.GPJ; 8/8/2004 WI-61	60	- 90 - -		22	250 psi	23		Becomes olive brown and gray; mostly fine with trace medium gravel	-			

Project:Dynamic Stability of Chabot DamLog of Boring WI-61Project Location:Lake Chabot Dam, San Leandro, CaliforniaSheet 5 of 5Project Number:26814536.C0000Sheet 5 of 5

		SA	AMPLES							
Elevation feet	Depth, feet	Type Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-	31	31	33		CLAYEY SAND WITH GRAVEL (SC) [Wagon Fill?] Dense, moist, dark olive and dark bluish gray, ~40% fines, ~30% fine gravel	-			APPROX. PRE-DAM SURVEY LEVEL AT 135 FEET.
-110	- 140 -	32 33	850 psi	100		RHYOLITE [Bedrock] Bluish green, slightly weathered, moderately strong, hard, intensely fractured	-			
-105	- - 145	Run 1		46			-			End drilling for 5/7/04 at 143 ft. Resume drilling on 5/10/04 with 4-inch-OD core barrel. Recover 2.6 ft of 3.9-ft run; RQD=0%.
	-	Run 2		8						Recover 1 inch of 1.0-ft run; RQD=0%.
-100	- 150 -	Run 3		44		Completely to highly weathered, weak, clayey, —— carbonaceous, trace calcite	-			Recover 2.3 ft of 5.0-ft run; RQD=0%.
-95	- - 155	Run 4		100		Becomes moderately weathered, weak; most visible fractures are tight, others have minor clay infilling				Recover 2.1 ft of 2.1-ft run; RQD=0%. End coring for 5/10/04; resume on 5/11/04.
	-	Run 5		62		 4 - 55-60 , J, T, NO, NO, PI 4 - 45-50°, J, VN, CI, Pa, PI-Ir, SR 4 - 40-45°, J, T, H+NO, PI-Ir 				Recover 1.8 ft of 2.9-ft run; RQD=0%.
2004 WI-61	- - 160	Run 6		76		 Becomes completely to moderately weathered, weak, soft to moderately hard 30-35°, J, N-MW, CI, Pa, Ir, SR 0°, J, MW, No, No, Ir, R Quartz veins to 0.1 inch wide 	-			Recover 1.9 ft of 2.5-ft run; RQD=0%.
rdam.GPJ; 8/8/2	-	Run 7		96		 ← 65°, J, W, Cl, Fi, Pl-Ir, SR ← Highly to moderately weathered, weak, intensely fractured ← 40°, J, W, Cl, Pa, Pl-Ir, SR; and 0°, J, T Cl, No, No, Ir ─ Very weak, soft, slightly clayey, intensely fractured 	-			Recover 2.4 ft of 2.5-ft run; RQD=0%.

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-62

Date(s) Drilled	5/12/04 and 5/13/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-3/4-inch drag bit (side discharge)	Total Depth of Borehole	140.0 feet
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 224 feet MSL
Groundwate Level(s)	er Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Cement/bentonite grout	Location	Downstream slope immediately west of	of paved acc	ess road

				SA	AMPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
				1				CLAYEY SAND WITH GRAVEL (SC) [Fill] Dry, grayish brown, medium plasticity fines, fine gravel	-			Start drilling on 5/12/04.
	-220	- 5— -		2	20	39		CLAYEY SAND WITH GRAVEL (SC) [Fill] Dense, moist, olive brown and gray, fine gravel (serpentinite fragments)	-			SA: %F=31, %G=21
	-215	-		3A		100		POORLY GRADED GRAVEL (GP) [Fill] Loose(?), moist, dark gray, fine angular to subangular gravel, trace fines	-			Drills loose, gravelly at 7 ft.
		10— - -		3B 3C 4	31	39		Dense, moist, bluish gray and brown, high plasticity fines, fine gravel (serpentinite and rhyolite fragments)	11.8	128.9		LL=64, PI=22 SA: %F=24, %G=23
	-210	- 15— -		5	16	22		Siltstone / shale fragment	-			
3/2004 WI-62	-205	-							-			
GPJ; 8/		20		6	150 psi	80		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, brown to yellowish brown with gray mottling	-			
BOTDAM.		-		7	6	44		Loose	-			LL=35, PI=15 SA: %F=26, %G=18

Sheet 2 of 5 **Project Number:** 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Dry Unit Weight, pcf Elevation feet % Recovery, Depth, feet MATERIAL DESCRIPTION **REMARKS AND** Water Content, Number **OTHER TESTS** Type 30 CLAY (CL) [Fill] Medium stiff, moist, grayish brown and yellowish brown rod 9 80 weight only 10A 10B 12 67 SANDY CLAY (CL) [Fill] SA: %F=51, %G=6 Stiff, moist, dark brown to olive brown, few fine gravel 190 35 Gravelly LL=29, PI=12 SA: %F=70, %G=0 11A 61 11 HD: 26%<5 microns 11B 12A CLAY (CL) [Fill] LL=39, PI=22 12B 78 10 Stiff, moist to very moist, brown to yellowish brown, few sand SA: %F=86, %G=0 CLAYEY SAND (SC) [Fill] Medium dense, moist, olive brown, few fine gravel 12C SA: %F=28, %G=9 185 è 40 h, -With ~10-15% gravel 13 150 psi 13 -180 Ý 45 SANDY CLAY (CL) [Fill] Medium stiff, moist, olive gray to olive brown, trace gravel 14 5 50 LL=36, PI=20 SA: %F=57, %G=1 175 CLAYEY SAND (SC) [Fill] Medium dense, slightly moist to moist, finely mottled reddish brown and yellowish brown, few fine gravel (bluish gray serpentinite 15 18 67 SA: %F=28, %G=10 50 1. fragments) −With ~10-15% gravel WI-62 rod 170 16 67 weight Ŕ only 55 8/8/2004 Becomes bluish gray, with trace fine gravel ¥ 17 17 33 TDAM.GP. 165

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California

Log of Boring WI-62

Sheet 3 of 5 **Project Number:** 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % **Graphic Log** Sampling Resistance, blows / foot Elevation feet pcf % Recovery, Depth, feet MATERIAL DESCRIPTION Dry Unit Weight, p **REMARKS AND** Water Content, Number **OTHER TESTS** Type 65 CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, olive brown and gray, medium plasticity fines, TX-CIU(R) LL=44, PI=22 23.8 101.5 67 20 150 psi fine gravel SA: %F=52, %G=5 Ŷ HD: 33%<5 microns 14.2 16.2 120.2 TX-CIU(R) LL=42, PI=21 21 23 39 SA: %F=27, %G=16 Gs=2.71 155 70 22A 25 72 22B SA: %F=24, %G=17 CLAYEY SAND (SC) [Fill] Medium dense, moist, olive gray and brown with yellowish brown and red fine mottling, ~50% fines, ~5% fine gravel 150 23 26 44 75 -With medium to coarse gravel (rhyolite fragments) 150 psi 350 psi 9 145 20 24 rod wt 450 psi 80-CLAYEY SAND (SC) [Fill] Dense, moist, bluish gray, fine- to medium-grained sand 25A 25B 41 83 25C 21.0 106.0 LL=28, PI=12 SA: %F=46, %G=0 CLAYEY SAND (SC) [Fill] Medium dense, moist, olive brown to grayish brown, trace fine gravel 26 23 50 SA: %F=44, %G=4 140 85 CLAYEY SAND (SC) [Fill] Medium dense, moist, yellowish brown, fine- to medium-grained sand 50 psi 27 to 27 100 psi WI-62 135 28 25 36 SANDY CLAY (CL) LL=31, PI=16 SA: %F=55, %G=0 90 8/8/2004 TDAM.GP 29A 29B 28 89 SILTY CLAY WITH SAND (CL) [Colluvium] 29C Stiff, moist, black, fine-grained sand LL=40, PI=20 _AYEY SAND (SC) [Colluvium] 130 30 17 50

Log of Boring WI-62

Project: Dynamic Stability of Chabot Dam

Project Location: Lake Chabot Dam, San Leandro, California

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Log of Boring WI-62

Sheet 4 of 5

1				SA	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
		-		32	32	50		SANDY CLAY (CL) [Colluvium] Very stiff to hard, moist, bluish gray and black, trace gravel	_			LL=32, PI=13 SA: %F=52, %G=3
	-120	- - - 105 -		33A 33B 34	40 24	78 67		CLAYEY SAND (SC) [Colluvium] Dense, moist, bluish gray, fine- to medium-grained sand CLAYEY SAND (SC) [Alluvium] Medium dense, very moist, bluish gray, medium- to coarse-grained sand, trace fine gravel (rhyolite fragments), some pockets of clean fine- to medium-grained sand	-			LL=27, PI=11 SA: %F=26, %G=2
	-115	- - 110- - -		5 36	rod wt 400 psi 100/3"	80 67		■ Rhyolite fragments, moderately weathered, moderately strong BASALT and RHYOLITE [Bedrock] Bluish gray and white, highly weathered, weak, soft, locally clayey	-			
	-110	- 115 -		37	107/2"	100			-			
	-105	- - 120 -		38	127/2"	50			-			
3PJ; 8/8/2004 WI-62	-100	- - 125 -	-						-			
SOTDAM.G	-95	-	-									

SAMPLES Dry Unit Weight, pcf Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Elevation feet % Recovery, Depth, feet **MATERIAL DESCRIPTION** Water Content, ⁴ **REMARKS AND** Number **OTHER TESTS** Type BASALT and RHYOLITE, bluish gray and white, highly to moderately weathered, weak, soft, locally clayey, some carbonate [Bedrock] (continued) ×∵× × 85 Very hard drilling at 139 ft. 1/ SERPENTINITE(?) [Bedrock] 40 140 Bottom of boring at 140.0 feet Refusal encountered at 140 ft; terminate hole on 5/13/04. 80 145 -75 150 -70 155 8/8/2004 WI-62 65 160

Project:Dynamic Stability of Chabot DamProject Location:Lake Chabot Dam, San Leandro, CaliforniaProject Number:26814536.C0000

Sheet 5 of 5

Log of Boring WI-62

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-63

Date(s) Drilled	5/14/04 and 5/15/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-3/4-inch drag bit (side discharge)	Total Depth of Borehole	67.9 feet
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 172 feet MSL
Groundwate Level(s)	er Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Cement/bentonite grout	Location	Downstream toe of dam east of paved	access road	

				<u>S</u> A	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-170	-		1				CLAYEY SAND WITH SILT AND GRAVEL (SC) [Fill] Medium dense, dry to slightly moist, yellowish brown, ~20% fines, ~15-20% fine gravel (rhyolite fragments)				Start drilling on 5/14/04.
	-165	5— - -		2A 2B	24	78		CLAYEY SAND WITH GRAVEL (SC) [Sluiced Fill] Medium dense, moist, olive to olive brown with yellowish brown and bluish gray fine mottles, ~15-20% fines, ~20-25% fine gravel				
		- 10-		3	12	33		to 1 inch)				
	-160	_		4 5A	10	33		GRAVEL WITH CLAY AND SAND (GP-GC) [Fill] Loose, very moist, reddish brown, ~45-55% fine to coarse gravel to 2 inches (gap-graded), medium- to coarse-grained sand,				SA: %F=18, %G=19
		15—		5B	9	72		~5-10% fines CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, reddish brown with yellowish brown and gray mottling				
WI-63	-155	_	I	6	16	50						
J; 8/8/2004		20-		7	16	39						SA: %F=16, %G=25
BOTDAM.GF	-150	_		8	20	39						

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Log of Boring WI-63

Sheet 2 of 3

ſ				SA	MPLES							
	Elevation feet	b Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-140			12	14	44		CLAYEY SAND WITH GRAVEL (SC), medium dense, moist, brown to reddish brown [Fill] (continued) GRAVEL WITH CLAY AND SAND (GP-GC) [Fill] Medium dense, very moist to wet, reddish brown to grayish brown, ~45-50% fine to medium gravel, ~10-15% fines	-			
		35-		13	15	22		CLAYEY SAND WITH GRAVEL (SC) [Fill]	-			
	-135	-		14	9	44			-			SA: %F=20, %G=21
		- - 40		15	5	44		CLAY WITH SAND (CH) [Sluiced Fill?] Medium stiff, moist, brown and gray	-			LL=60, PI=36 SA: %F=81, %G=0 HD: 50%<5 microns End drilling for
	-130	+0		16	150 psi to 200 psi	77		CLAYEY SAND WITH GRAVEL (SC) [Sluiced Fill?] Loose, moist to very moist, brown to grayish brown, well-graded sand, fine subangular gravel (rhyolite fragments)	16.8			5/14/04. Řesume drilling on 5/15/04. LL=39, PI=18 SA: %F=18, %G=13
		-		17A 17B	4	72		 Trace carbonate SILTY CLAY (CL-ML) [Sluiced Fill?] Soft, moist, very dark gray and olive, trace fine-grained sand 	-			
	-125	45-		18	22	28		CLAYEY SAND WITH GRAVEL (SC) [Fill?] Medium dense, moist, brown to olive brown with yellowish brown and reddish brown mottles	-			SA: %F=18, %G=31
		-		19	18	14		Increase in gravel size and content (pushed 1-1/2-inch rhyolite gravel during sampling)	-			
	-120	-		20	6	33		SILTY SAND (SM) [Weathered Bedrock?] Loose(?), moist, bluish gray to black, trace fine gravel (serpentinite and rhyolite fragments to 1/4 inch), organic odor (completely weathered serpentinite)	-			
04 WI-63		55-		21	22	22		SERPENTINITE [Bedrock] Bluish gray, olive, and white, completely to highly weathered, very weak to weak, very soft to soft, clayey, slightly moist to moist	-			
DAM.GPJ; 8/8/200	-115	-		22	23	50			-			
DTDA												

Project: Dynamic Stability of Chabot Dam Log of Boring WI-63 Project Location: Lake Chabot Dam, San Leandro, California Sheet 3 of 3 **Project Number:** 26814536.C0000 SAMPLES Dry Unit Weight, pcf Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Elevation feet % Recovery, MATERIAL DESCRIPTION Depth, feet Water Content, ⁴ **REMARKS AND** Number Type **OTHER TESTS** 65 SERPENTINITE, bluish gray, olive, and white, completely weathered, very weak to weak, very soft to soft, clayey, slightly moist to moist [Bedrock] (continued) 105 GABBRO [Bedrock] Bluish gray and white, more competent than above, carbonaceous Bottom of boring at 67.9 feet **1** 24 100/4.5" 67 End drilling on 5/15/04. 70 100 75 95 80-90 85 85 8/8/2004 WI-63 90-80

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-64

Date(s) Drilled	5/17/04 through 5/19/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-3/4-inch drag bit (side discharge)	Total Depth of Borehole	140.1 feet
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 250 feet MSL
Groundwate Level(s)	^{er} Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Cement/bentonite grout	Location	Crest of dam about 2/3 point east		

				SA	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-230			1				Asphaltic concrete 2 inches thick CLAYEY SAND WITH GRAVEL (SC) [Fill] Dense, moist, yellowish brown, fine to medium gravel				Start drilling on 5/17/04.
	-245	- 5 - -		2	32	50		CLAYEY SAND WITH GRAVEL (SC) [Fill] Dense, slightly moist, grayish brown with yellowish brown and reddish brown gravel, ~20% fines, ~35% fine gravel (rhyolite and serpentinite fragments)				
	-240	- 10 -		3A 3B	34	78		- ₩ Becomes olive brown, slightly more clayey				Drilling more clayey 10-15 ft.
WI-64	-235	- 15— - -		4	8	50		SANDY CLAY WITH GRAVEL (CL) [Fill] Medium stiff to stiff, moist, brown with gray and grayish brown mottling				
4ABOTDAM.GPJ; 8/8/2004	-230	- 20 - -		5	150 psi	77		- → Becomes grayish brown; gravel grades fine to medium (shale fragments)	19.9 22.9	107.3		TX-CIU(R) LL=44, PI=23 SA: %F=59, %G=12 HD: 37%<5 microns Gs=2.69

Log of Boring WI-64 Project Location: Lake Chabot Dam, San Leandro, California Sheet 2 of 5 26814536.C0000 **Project Number:** SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Dry Unit Weight, pcf Elevation feet % Recovery, **MATERIAL DESCRIPTION** Depth, feet **REMARKS AND** Water Content, Number **OTHER TESTS** Type 30 220 SANDY CLAY WITH GRAVEL (CL), stiff, moist, olive brown and gray with black clay clasts [Fill] (continued) 7A 7B 72 19 End drilling for 5/17/04 at 31.5 ft. Resume drilling on 5/18/04. 215 35 8A SANDY CLAY (CL) [Fill] Stiff, moist, bluish gray to olive black, ~60% medium plasticity fines, ~10-15% fine to coarse gravel (serpentinite fragments to 9 50 8B 1-3/8 inches) 210 40 TX-CIU(R) LL=42, PI=21 9 150 psi 67 18.6 20.0 109.9 SA: %F=49, %G=11 HD: 31%<5 microns Gs=2.66 205 45 10 61 15 Drills easy and smooth 45-50 ft. 200 **50** 11A Becomes reddish brown and yellow, with trace medium gravel and clasts of black clay; ~60-65% fines, ~10-15% gravel ¥ 11B 17 100 11C Becomes grayish brown WI-64 CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, moist, grayish brown Ì 195 55 8/8/2004 12 11 61 LL=41, PI=21 SA: %F=30, %G=20 TDAM.GP.

Project: Dynamic Stability of Chabot Dam

Project: Dynamic Stability of Chabot Dam Log of Boring WI-64 Project Location: Lake Chabot Dam, San Leandro, California Sheet 3 of 5 **Project Number:** 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Dry Unit Weight, pcf Elevation feet % Recovery, MATERIAL DESCRIPTION Depth, feet **REMARKS AND OTHER TESTS**

Sheet 4 of 5 Project Number: 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % Graphic Log Sampling Resistance, blows / foot Elevation feet pcf % Recovery, Depth, feet MATERIAL DESCRIPTION **REMARKS AND** Dry Unit Weight, p Water Content, Number **OTHER TESTS** Type 150 CLAYEY SAND WITH GRAVEL (SC) [Fill] Dense, moist, olive gray, fine to coarse gravel (rhyolite fragments 200 psi Ľ, 21 29 >2.85 inches) 500 psi Drills rocky to 105 ft (rhyolite fragments). APPROX. PRE-DAM GROUND SURVEY LEVEL AT 105 FEET. 145 105 22 32 33 Drills under weight of rod 105-110 ft. No recovery in Mod Cal drive; use sand catcher and 6-inch 140 110 23A 23B 23C CLAYEY SAND WITH GRAVEL (SC) [Fill] overdrive to recover 15 inches. 37 83 Ì Dense, moist, olive brown, brown, dark gray, and bluish gray, fine gravel (some bluish gray serpentinite fragments) 22.3 LL=41. PI=21 SA: %F=44, %G=15 135 115 24A CLAYEY SAND WITH GRAVEL (SC) [Fill?] Medium dense, slightly moist to moist, very dark gray to black, fine-grained sand, homogeneous, trace serpentinite fragments, 24B 24 33 SA: %F=27, %G=20 Ì Ŷ scattered wood fragments Drills very easy 115-120 ft; wood 25 fragments observed throughout interval. SILTY CLAYEY SAND (SC-SM) [Puddled Fill?] Medium dense, slightly moist to moist, olive brown with flecks of gray, fine-grained sand, homogeneous 120 130 100 psi 100 26 WI-64 125 125 8/8/2004 Becomes bluish gray with black burnt(?) wood fragments 27 12 44 SA: %F=44, %G=4 End drilling for 5/18/04 at 126.5 ft. Resume drilling on 5/19/04. TDAM.GP RHYOLITE [Bedrock] Drills hard 128-130 ft. , moderately to slightly weathered, weak to moderately strong, hard, very close fracture spacing, tight fractures

Log of Boring WI-64

Project: Dynamic Stability of Chabot Dam

Project Location: Lake Chabot Dam, San Leandro, California

Project:Dynamic Stability of Chabot DamProject Location:Lake Chabot Dam, San Leandro, CaliforniaProject Number:26814536.C0000

Log of Boring WI-64

Sheet 5 of 5

ſ				SA	MPLES	;						
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-115	-		29	51/6"	50		RHYOLITE, olive brown, reddish brown, and white, highly weathered, weak to moderately strong, hard, slightly clayey, very close fracture spacing, tight fractures [Bedrock] (continued)	-			
	-110	- 140-		30 31	100/1"	100		- y Becomes bluish gray and white	-			Very hard drilling at 139 ft. End drilling on
		-					-		-			5/19/04.
	-105	145 - -					-		-			
	-100	- 150— -					-		-			
	-95	- 155— -	-				-		-			
JTDAM.GPJ; 8/8/2004 WI-64	-90	- 160 - -							-			

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-65

Date(s) Drilled	5/19/04 and 5/20/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-1/2-inOD bit, 2-5/8-inOD internal bit in 94-mm casing advancer system	Total Depth of Borehole	65.3 feet
Drill Rig Type	Diedrich D128 (truck-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 168 feet MSL
Groundwate Level(s)	er Not measured due to drilling method	Sampling Method(s)	Grab, SPT, Modified California, Pitcher Barrel	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Cement/bentonite grout	Location	Downstream toe of dam about 60 ft ea	st of paved a	access road

ſ				SA	AMPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	405	U		1				CLAYEY SAND WITH GRAVEL (SC) [Fill] Slightly moist, yellowish brown, ~35-40% fines, ~25% gravel	-			Start drilling on 5/19/04.
	-165	-		2				Becomes moist, olive brown, less clayey; ~15-20% fines, ~15-20% fine subangular to subrounded gravel	-			
		5		3	22	61		— w — Medium dense —				
_	-160	-		4	30	44		Increase in gravel content (rhyolite tragments)	-			
		10— - -		5	17	44		CLAYEY SAND (SC) [Fill] Medium dense, moist, olive brown with yellowish brown and bluish gray mottling, few fine gravel	-			SA: %F=18, %G=11
╞	-155	-		6A 6B	11	78		SILTY SAND (SM) [Fill] Loose, wet, brown, ~15% fines	-			
		15— -		7	4	33		CLAY (CH) [Sluiced Fill] Medium stiff, moist, brown and gray, high plasticity Becomes soft, yellowish brown to olive	-			
)04 WI-65	-150	-		8	5	67		- Fecomes medium stiff, reddish brown and gray	-			LL=60, PI=38 SA: %F=97, %G=0
.GPJ; 8/8/20		20		9	100 psi	60		CLAY (CL) [Sluiced Fill] Soft to medium stiff, moist, olive brown, trace pockets of fine- to medium-grained sand (layers to 2 inches thick)	-			
BOTDAM	-145	-			push;			Lamination with seams of brown and olive, silty sand and silty clay				End drilling for 5/19/04 at 21.5 ft. Resume drilling on 5/20/04.

Project: Dynamic Stability of Chabot Dam							Chabot Dam	Log of Boring WI-65					
Proje	ect Lo	umb	on: er:	Lаке 268 ⁷	e Cha 1453	apot 6.C0	Dam, San Leandro, California 000	Sheet 3 of 3					
Elevation feet	D epth, feet	Type	SA Number	Sampling Resistance, Bar blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRI	PTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS	
-100	-		.0	100/4			 GABBRO, highly to moderately weathered [Bec Bottom of boring at 65.3 f - 	drock] (continued) feet	-			End drilling on 5/20/04.	
-95	70						-	-	-				
-90	75- - - - 80-	-					-		-				
-85							-	-	-				
- 80	- - - 90-						- - - -	- - -	-				
- 75	-	-					-	-	-				

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-66

Date(s) Drilled	5/25/04 through 5/27/04	Logged By	М. МсКее	Checked By	T. Feldsher		
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-1/2-inOD bit, 2-5/8-inOD internal bit in 94-mm casing advancer system	Total Depth of Borehole	65.5 feet		
Drill Rig Type	CME-45 (barge-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 179 feet MSL		
Groundwate Level(s)	^{er} Not measured	Sampling Method(s)	SPT, Modified California, Pitcher Barrel, Shelby Tube (push)	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop		
Borehole Backfill	Soil cuttings 65.5-38 feet, medium aquarium sand 38-10 feet	Location	Upstream side of dam toward left (east) abutment				

				SA	MPLES		1					
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION Mudline at ~46 ft below reservoir water level (el. 225.3 ft on 5/28/04)	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-175	U		1	rod weight only	33		SILTY CLAY / CLAY (CH) [Reservoir Sediment] Very soft, wet, dark gray to black, high plasticity, trace fine- to medium-grained sand				Start drilling on 5/25/04. Drilling from deck of barge approx. 1 ft above water line. Mudline is considered 0 depth for this log of boring.
		5		2A 2B	24	72		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, very moist, olive to olive brown, gray, and yellowish brown, fine to medium gravel (shale and rhyolite fragments), mixed texture	20.2			LL=37, PI=19 SA: %F=37, %G=14
	-170	- 10 -		3	16	44		Becomes less clayey				
	-165	- 15-		4 5A	200 psi	0 100		fragments to 2 inches)				No recovery in Pitcher barrel. Use Mod Cal sampler with sand catcher to retrieve sample at 14 ft.
WI-66		-		5B	13	67		SANDY CLAY (CL) [Fill] Very stiff, moist, black				SA: %F=73, %G=1
AM.GPJ; 8/8/2004	-160	20		6A 6B 6C 7	16 25	67 67		 ✓ With pockets of bluish gray, clayey sand, trace medium gravel (rhyolite fragments) ✓ Becomes bluish gray, with silt 				End drilling for 5/25/04 at 22 ft. Resume
ABOTC		-										Drills soft 23-24 ft. Gs=2 65

Project: Dynamic Stability of Chabot Dam Project Location: Lake Chabot Dam, San Leandro, California Project Number: 26814536.C0000

Log of Boring WI-66

Sheet 2 of 3

ſ				SA	MPLES							
	Elevation feet	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
		30-		11	36	0		CLAYEY SAND (SC) [Fill] Medium dense, wet, gray to bluish gray, fine-grained sand,				No recovery on drive at 30 ft. Push sampler
		-		12		40		~20-25% fines				back down to 31.6 ft with sand catcher and
	-145	-		13	22	33		CLAYEY SAND WITH GRAVEL (SC) [Fill] Medium dense, wet, olive gray, fine-grained sand, shale fragments, trace clasts of reddish brown, sandy clay	-			(disturbed sample). SA: %F=17, %G=38
		35-		14								APPROX. PRE-DAM
		-		15	34	22		Very stiff, moist to very moist, gray with bluish gray mottling, ~50-60% low to medium plasticity fines, ~10-15% fine gravel				GROUND SURVEY LEVEL AT 37 FEET.
	-140	40 –		16A 16B	26	61		(shale fragments)				LL=28, PI=10 SA: %F=51, %G=1
	-135	- - 45-		17A 17B	500 psi	0*		SANDY CLAY WITH GRAVEL (CL) [Colluvium / Alluvium?] Very stiff, moist to very moist, reddish brown to grayish brown, fine to medium, angular to subrounded gravel (quartz, rhyolite, and shale fragments); pocket of fine angular gravel at 43.2 ft	-			No recovery in Shelby tube at 42.5 ft. Use Mod Cal sampler with sand catcher to recover 11 inches.
	-130	-		18	19	39						LL=36, PI=19 SA: %F=62, %G=8
		50-		19A								
		-		19B	86	78		CLAYEY SAND WITH GRAVEL (SC) [Alluvium] Very dense, moist, grayish brown, ~30-35% fines, ~25% fine to				
		-		20	60/6"	58		Becomes yellowish brown, with sandstone and rhyolite fragments $$				
3PJ; 8/8/2004 WI-66	-125	55- -		21	59/6"	42		SHALE [Bedrock] Olive brown, highly weathered, moderately strong, slightly clayey, intensely fractured (extremely close fracture spacing)				
OTDAM.G	-120	-	-									

Proj Proje Proje	ect: ect Lo ect Ni	Dynai ocation umber:	mic St : Lake 268 ²	abili e Cha 1453	ty of abot 6.C00	^r Chabot Dam Dam, San Leandro, California 000	Log of Boring WI-66 Sheet 3 of 3					
Elevation feet	- 59 Depth, feet	Type Number	Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRI	PTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS	
-110	-	<u> </u>	118/6"	83		SHALE, completely to highly weathered, weak Bottom of boring at 65.5 f	[Bedrock] (continued) eet - - -	-			End drilling on 5/27/04.	
-105	70	-					-	-				
_100	75- - -						-	-				
	- 80 - - -	-				-	-	-				
-95	- 85- -	-				-	-	-				
.GPJ; 8/8/2004 WI-66	- 90- -	-				-	-	-				
	-					_	-	-				

Project: Dynamic Stability of Chabot Dam

Project Location: Lake Chabot Dam, San Leandro, California

Project Number: 26814536.C0000

Log of Boring WI-67

Sheet 1 of 3

Date(s) Drilled	5/27/04 through 5/29/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Rotary Wash	Drill Bit Size/Type	4-1/2-inOD bit, 2-5/8-inOD internal bit in 94-mm casing advancer system	Total Depth of Borehole	67.1 feet
Drill Rig Type	CME-45 (barge-mounted)	Drilling Contractor	Taber Consultants	Surface Elevation	approx. 174 feet MSL
Groundwate Level(s)	^{er} Not measured	Sampling Method(s)	SPT, Modified California, Pitcher Barrel, Shelby Tube (push)	Hammer Data	Automatic hammer; 140 lbs, 30-inch drop
Borehole Backfill	Soil cuttings 67.1-40 feet, medium aquarium sand 40-10 feet	Location	Upstream side of dam toward right (we	est) abutmer	nt

ſ			SA	MPLES							
Elevation	Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION Mudline at ~51 ft below reservoir water level (el. 225.3 ft on 5/28/04)	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
-17	0	-					SILT WITH CLAY (ML) [Reservoir Sediment] Very soft, wet, black	-			Start drilling on 5/27/04. Drilling from deck of barge approx. 1 ft above water line. Mudline is considered 0 depth for this log of boring.
-16	5 -		1	rod weight only	93		CLAYEY SILT (ML) [Reservoir Sediment] Very soft, wet, gray - SANDY CLAY (CH) [Fill?] Very soft, very moist, gray and bluish gray, high plasticity, some clasts of brown, sandy clay, scattered shale fragments	-			
	10- - -		2 3	rod weight only	60		Very soft, very moist, gray, homogeneous, trace fibrous wood or roots POORLY GRADED SAND (SP) [Fill?] Loose(?), wet, olive gray, fine- to medium-grained sand, trace silt	-			LL=44, PI=23 SA: %F=81, %G=0 HD: 49%<5 microns
-16	0 - 15-		4	14	22		CLAYEY SAND WITH GRAVEL (SC) [Fill] Loose, moist to very moist, yellowish brown and bluish gray, ~25% fines, ~30% fine to medium gravel (shale fragments)	-			
29-IM PC	-		5	2	33		 Becomes olive brown to grayish brown, more clayey SANDY CLAY WITH GRAVEL (CL) [Fill] Soft to medium stiff, very moist, gray with olive and yellowish brown mottling, fine to medium, angular to subangular gravel (shale fragments) 	-			When trying to sample at 16 ft with SPT, hole collapses below 14.5 ft. Drill out to resample.
AM.GPJ; 8/8/20(- 20- -		6A 6B	250 psi	96		■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	28.6 22.4	92.8		Gs=2.66 TX-CIU(R) LL=37, PI=19 SA: %F=64, %G=8 HD: 36%<5 microns
ABOTD,	-		7	0	56		Loose, very moist, gray and olive brown	-			SA: %F=16, %G=29

Project: Dynamic Stability of Chabot Dam Log of Boring WI-67 Project Location: Lake Chabot Dam, San Leandro, California Sheet 2 of 3 Project Number: 26814536.C0000 SAMPLES Unconfined Compressive Strength, psf % **Graphic Log** Sampling Resistance, blows / foot Elevation feet pcf % Recovery, Depth, feet MATERIAL DESCRIPTION Water Content, Dry Unit Weight, p Number Type 30

Project: Dynamic Stability of Chabot Dam

Appendix B Becker Penetration Testing

Appendix B Becker Penetration Testing

This appendix presents the results of the Becker Hammer Penetration Test (BPT) borings completed as part of the Chabot Dam dynamic stability analysis.

The purpose of the BPT borings was to obtain more reliable blow count data for gravelly soils present at the downstream toe of the dam. The BPT borings were drilled at adjacent locations by Great West Drilling of Fontana, California, on June 7 and 8, 2004. The Becker Penetration Tests were performed using an AP-1000 drill rig and a 6.5-inch-OD closed crowd-out bit, in accordance with the guidelines presented by Harder and Seed (1986). Blow counts and bounce chamber pressures were recorded for every foot of penetration. Re-drive tests were performed at about 20-foot intervals to allow corrections for casing friction losses. The Becker Hammer boring logs are attached.

Energy transfer measurements were performed continuously during the Becker hammer testing. The results of the energy measurements are included in Appendix D.

X:X_GEO\CHABOT DAM\TASK G -- ENGINEERING REPORT\DRAFT FINAL\DYNAMIC STABILITY ANALYSIS_R4.DOC\30-AUG-05\\OAK B-1

Project: Dynamic Stability of Chabot Dam

26814536.J0000

Project Number:

Becker Penetration Test BPT-1

Project Location: Lake Chabot Dam, San Leandro, California

Sheet 1 of 3

Date(s) Drilled	6/7/04	Logged By	S. Gambino	Checked By	T. Feldsher
Drilling Method	Becker Hammer Drill	Drill Bit Size/Type	6-5/8-inch-OD closed crowd-out bit	Total Depth of Borehole	79.5 feet
Drill Rig Type	AP-1000 (truck-mounted)	Drilling Contractor	Great West Drilling	Surface Elevation	approx. 179 feet MSL
Groundwate Level(s)	^{er} Not measured	Hammer and Throttle	Linkbelt 180, full throttle		
Borehole Backfill	Cement grout	Location	Downstream toe of dam, near WI-60		

					DI	/ F		F	REDRIVE	Ξ
Elevation feet	Depth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)	BIOWS ● ● Orig X ■ Rec 0 10 20	/ FOOT ginal Drive drive 30 40 5		Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	U	1054	10	12	•	· · · · · · · · · · · · · · · · · · ·	Positioned rig over test location at 0940; mast up and			
			12	10			casings on ng by 1030.			
			13	14	•					
175			15	14	•					
-175	5		15	15	•					
	5		14	13	•					
			14	13						
			15	15						
170		1056	15	14	•					
	10	1113	14	13	•					
			15	12	•					
			13	8	•					
			12	9	•					
165			15	10	•					
- 105	15		15	10	•					
	15		15	11	•					
			15	9 🛙			Pulled casing back for redrive, but hole	1119		0
			14	9 🛙	•		would not support weight of casing.			0
160		1114	13	8 🛙						0
	20	1126	10	8	•					
	20		12	6	•					
			12	6						
			13	8						

Project:Dynamic Stability of Chabot DamProject Location:Lake Chabot Dam, San Leandro, CaliforniaProject Number:26814536.J0000

Becker Penetration Test BPT-1

Sheet 2 of 3

\square					Ployre / Feet			REDRIVE	
Elevation feet	bepth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)	Original Drive Redrive 10 20 30 40 5	Comments	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	30-		14	7	•				
	-		14	8					
	-		15	8	•				
145	-		15	9	•				
- 145			14	7	•				
	35-		15	9	•				
			15	10	₹. •	For redrive, used float switch to lower casings	1142		0
			15	7	₹ •	without applying pressure, no wait inclion.			0
	_		15	7	▼ •	For redrive, seating blow only.			1
140	40	1152	10	8					
			13	6	↓ ↓ · · · · · · · · · · · · · · · · · ·				
	_		13	6					
	_		13	7	↓				
-135	_		15	7	 ● <u></u> : : : : : :				
	45		14	7	↓				
			14	6					
	_		16	8					
	_		17	11	.				
-130	_	1155	15	12					
	50-	1202	16		ļ				
	-		18	10					
	_		17	13	.				
	_		16						
-125	_		17		••••••••••••••••••••••••••••••••••••••				
	55		17	17	•				
			17						
	_		18	17	₹		1207		0
	_		17				 	12	4
-120	_	1205	17				1208	12	8
		1015	15	16			1		

Project:Dynamic Stability of Chabot DamBecker Penetration Test BPT-1Project Location:Lake Chabot Dam, San Leandro, CaliforniaSheet 3 of 3Project Number:26814536.J0000Sheet 3 of 3

\square						Dia	vo / 1				F	REDRIVE	
Elevation feet	Depth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)	• • •		Origin Redriv	r oot nal Drive ve 0 40	e 50	Comments	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	00		19	27			•						
			21	30			è						
			21	44					4				
110		1218	23	83				>	>•	•			
		1226	23	134				>	>•	•			
	70	•••••	24	119				>	>•	•			
	_	•••••	23	59		•••••	· · · · · ·	>	>●	•			
	_	•••••	24	56				>	>●	•			
	-	•••••	23	54		•••••	•••••	>	··· >●	•		•••••	
-105		•••••	23	48					∮			•••••	
	75	•••••	23	43		••••••	•••••••••••••••••••••••••••••••••••••••		/···		1248	12	5
	_	•••••	24	59]		>	·.\ >●	•			7
	-	•••••	25	69		\ X	·····	>	 >●	•			
	_	••••	26	253		•••••		>	··· >	Casing started vibrating at 78 ft.	1250		 75
-100	_	1240	27	252/6"		•••••		>	···	F	-		
	80-	•••••		• • • • • • • • • • • • •				••••	•••	Bottom of BPT-1 at 79.5 feet.			
	-	•••••				••••••	······································	· • • • • • • • • • • • • • • • • • • •	•••				
	_					·•••••		· · · · · · · · · · · · · · · · · · ·	•••				
	_	•••••				••••••		•••••	•••				
-95	_	•••••		• • • • • • • • • • • • •		·····		•••••	•••				
	85-	•••••			····	·····		····	•••				
	_	•••••				•••••		•••••	•••				
	_	•••••				· · · · · ·		····	•••				
	-	•••••				·····		••••					
-90	-	•••••				•••••	· · · · · ·	•••••	•••				
	90-	•••••				·:		••••					
	_	•••••		• • • • • • • • • • • • •		••••••	· · · · · ·	•••••	•••				
	-	•••••			····	•••••		•••••					
	-	•••••				••••••	: : :	•••••					
						:	:						

Project: Dynamic Stability of Chabot Dam

26814536.J0000

Project Number:

Project Location: Lake Chabot Dam, San Leandro, California

Becker Penetration Test BPT-2

Sheet 1 of 2

Date(s) Drilled	6/8/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Becker Hammer Drill	Drill Bit Size/Type	6-5/8-inch-OD closed crowd-out bit	Total Depth of Borehole	64.5 feet
Drill Rig Type	AP-1000 (truck-mounted)	Drilling Contractor	Great West Drilling	Surface Elevation	approx. 172 feet MSL
Groundwate Level(s)	er Not measured	Hammer and Throttle	Linkbelt 180, full throttle		
Borehole Backfill	Cement grout	Location	Downstream toe of dam, near WI-63		

					Ι.						REDRIVE	Ξ
Elevation feet	Depth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)			/S / F Drigina Redriv 0 30	al Drive e 40	50 Comments	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	U	0810	15	20		٩						
170			16	20								
			17	13		Ý						
			16	11								
	5		16	13		•						
	5		17	12		•						
-165	_		15	9)						
	_		14	5	•							
	_	0812	13	5	•				Stopped to add one section of casing.			
	10-	0836	~11	3	•				Half throttle used from 9 to 12 ft. Hammer would not fire.			
			~11	3	•				so transient that the pressure was difficult to read precisely.			
-160	_		~12	4	•							
	_		14	3	•		· · · · · · · · · · · · · · · · · · ·					
	_		14	5	•							
	15		11	6	•							
			14	9)						
-155	_		16	9 🛙)				0848		0
	_		16	12	.	•						0
	_	0839	15	10	×	•			For redrive, seating blows only.			2
	20	0900	14	8								
	20		15	5	•							
-150			14	6	•							
			15	6	•							

Project:Dynamic Stability of Chabot DamProject Location:Lake Chabot Dam, San Leandro, CaliforniaProject Number:26814536.J0000

Becker Penetration Test BPT-2

Sheet 2 of 2

\square							F	REDRIVE	
Elevation feet	b Depth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)	BIOWS / FOOT ● ─● Original Drive ▼ ■ Redrive 0 10 20 30 40 50		Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	50		14	10					
-140	_		14	7					
	_		14	6	•				
	_		14	5	•				
	35		13	5					
			12	7					
-135	_		12	5			0916		0
	_		12	5					0
	_	0915	13	6		Stopped to perform redrive and add casing.			0
	40-	0928		0		Dropped slowly under casing and hammer weight.			
			14	4					
-130	_		10						
	_		12	7	• • • • • • • • • • • • • • • • • • •				
	_		12	5					
	45-		13	6	•				
			12	4					
-125	_		12	5					
	_		12	8					
	_		14	13		Stopped to add one section of casing.			
	50-	0933	16						
		0942	17		•				
-120	_		16	9	•				
	_		16	11					
	_		17	11	•				
	55		16	9	•				
			17				0946	12	0
-115	_		18					12	4
	_		18					12	3
	_		18					16	7

Project: Dynamic Stability of Chabot Dam

26814536.J0000

Project Number:

Project Location: Lake Chabot Dam, San Leandro, California

Becker Penetration Test BPT-3

Sheet 1 of 2

Date(s) Drilled	6/8/04	Logged By	М. МсКее	Checked By	T. Feldsher
Drilling Method	Becker Hammer Drill	Drill Bit Size/Type	6-5/8-inch-OD closed crowd-out bit	Total Depth of Borehole	62.9 feet
Drill Rig Type	AP-1000 (truck-mounted)	Drilling Contractor	Great West Drilling	Surface Elevation	approx. 170 feet MSL
Groundwate Level(s)	^{er} Not measured	Hammer and Throttle	Linkbelt 180, full throttle		
Borehole Backfill	Cement grout	Location	Downstream toe of dam, near WI-65		

ſ											REDRIVE		
Elevation feet	Depth, feet	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)			OWS ● Or I Re 20	rigina edrive 30	al Drive e 40	50 Comments	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)
	0	1340	13	22					•				
			18	19			•						
			17	19									
			18	23									
_165	5		20	21			, j						
105	5		21	16			٠						
			21	17			•						
	_		18	14		•							
		1343	18	17			\			Stopped to add one section of casing.			
160	-160 10	1355	18	16			•						
			18	12		•							
	_		16										
	_		10	6									
	_		11	4									
_155	15		10	2									
			8	3									
	_		8	3							1357		0
	_		8	3									0
	_	1356	8	4						Stopped to perform redrive and add casing.			0
-150	20	1409	12	5									
	20		12	7	,	• •			· · · · · · · · · · · · · · · ·				
			14	4		••••							
			14	4									

Project:Dynamic Stability of Chabot DamProject Location:Lake Chabot Dam, San Leandro, CaliforniaProject Number:26814536.J0000

								REDRIVE	
Elevation feet	Ý Ý Ó Ó ú 1 1 1 ú 1 1 1 ú 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1		Original Drive Redrive 10 20 30 40 5	Comments	Time, 24-hr clock	Bounce Pressure, psig	Blows/foot (Nb)		
140	30		16	8	•				
			16	8	•				
			16	10	•				
			15	11					
125	25		15	15					
155	35		16	12	 				
			16	12	X •		1426	8	5
			17	13	★ •			12	8
		1424	17	16		Stopped to perform redrive and add casing.		14	7
_130	40-	1434	20	10	│				
130	40		17	11	•				
			19	11	•				
			19	10	•				
			19	10	•				
-125	<u> 15</u>		18	12					
125	43		19	12					
	_		19	11					
	_		20	13					
	_	1437	21	16		Stopped to add one section of casing.			
-120	50-	1448	22	32					
	50		21	27					
	_		20	24	<u> </u> ,				
	_		18	19	│ • • •				
	_		19	21	│ <u> </u>				
_115	55		20	18					
	55		20	17					
			20	23	↓ ↓ →		1452	15	14
			20	20				16	13
		1450	22	29		Stopped to perform redrive and add casing.		17	16
1		4504	1 10						

Appendix C SPT Energy Measurements

2230 Lariat Lane, Walnut Creek, CA 94596 PHONE: 925-944-6363 FAX: 925-476-1588 EMAIL: SA@AbeEngineering.com

May 17, 2004

Taber Consultants 3911 W. Capital Ave West Sacramento, CA 95691

ABE Engineering

Attn: Mr. Andy Taber

Re: SPT Energy Measurements Chabot Reservoir Castro Valley, California May 2, 2004

Job No. 04020

Dear Andy,

This report presents the results of SPT (Standard Penetration Test) energy measurements obtained for the project referenced above on May 2, 2004. Dynamic measurements were made with a PDA (Pile Driving Analyzer) during SPT sampling for soil boring DH3 at depths ranging from 10 ft to 60 ft. The objective of the dynamic measurements was to determine the energy transfer ratio (ETR) or efficiency of the SPT systems, which is used to normalize the SPT N values to a standard efficiency of 60% (N_{60}).

DYNAMIC TESTING AND FIELD DETAILS

Drill Rig and SPT Hammer Description

The Drilling and SPT sampling was performed by Taber Consulting. The SPT hammer was a Diedrich automatic hammer, which has a 140 lb, rams and, 30-inch nominal drop heights, and theoretical potential energies of 350 ft-lbs. The SPT rod was NW-J rod supplied in 5-ft lengths and standard split spoon and Cal-modified samplers were used. Further details regarding the SPT equipment are beyond the scope of this report and should be obtained from the driller.

Dynamic Test Instrumentation

Dynamic measurements of strain and acceleration were taken on a 2-ft long section of NW rod, which was attached to the top of the sample rod string just below the hammer. The rod section was instrumented with two strain bridges and two piezoresistive accelerometers. By averaging the measurements taken from opposite sides of the rod, the effects of non-uniform hammer impacts to the recorded signals were minimized.

Strain and acceleration signals were conditioned and converted to force and velocity records by a PAK Model, Pile Driving Analyzer[®] (PDA). This dynamic testing equipment is the same equipment that is routinely used for conventional pile driving analysis. The dynamic force and velocity records were the basis of the computed energy results presented in this report. In the field the force and velocity records from the PDA were viewed on a graphic LCD screen to evaluate data quality. A representative sample of the force and velocity records was also digitally stored on disc for back up.

Taber/Chabot Dam- Job No. 04020

DISCUSSION OF DYNAMIC TEST RESULTS

Calculation of Energy Transfer

The energy transferred to the instrumented rod section was computed from the dynamic force and velocity records by the EFV method, which uses both the force and velocity records to calculate the maximum transferred energy as:

$$EFV = \int F(t) V(t) dt$$

The integration is performed over the time period from which the energy transfer begins (non-zero) and terminates at the time when the energy transfer reaches a maximum value. This method is theoretically correct for all rod lengths regardless of the 2L/c stress wave travel time (L is the rod length and c is the stress wave speed in the rod) and the number of non-uniform rod corrections. This calculation is the method we use to compute the energy transfer ratio, ETR, which is computed as:

ETR= EFV / Rated Hammer Energy

Dynamic Test Results

The PDA calculated results are given in Appendix A and include the energy transfer (EFV), the energy transfer ratio (ETR), the hammer blow rate (BPM), the maximum impact force (FMX), and the maximum rod velocity (VMX). For each sample depth interval, the average, maximum, minimum and standard deviation of each value are given in Appendix A. Other information includes the sample depth interval, the total number of blows for the reported depth interval, and the equivalent blow count for the depth interval (not the same as the N Value). The ETR for the automatic hammer averaged 84% for a total of 359 sample blows and ranged from 71% to 87% for the various depth intervals.

I appreciate the opportunity to be of assistance to you on this project. Please contact me if you have any questions regarding this report, or if I may be of further service.

Very truly yours, ABE Engineering

Steven K. Abe, P.E.

Stevent

APPENDIX A

Dynamic Measurement Results

Info: Taber-DIEDRICH/NW												
ETR: Energ EFV: Max T FMX: Max N	gy Trans Fransfe: Measured	sfer I rred I d Fore	Ratio Energy ce	VMX: Max Measured Velocity EF2: Energy by F^2 Method BPM: Blows Per Minute								
BL# end bl/ft	depth ft	TYPE	#Bls	ETR %	EFV ft-lb	FMX kips	VMX ft/sec	EF2 ft-lb	BPM bl/min			
13 12.50-	- 14.00	AVG STD MAX MIN	12 12 12 12	71 3 76 66	249 10 266 234	39.5 0.6 40.5 38.4	12.7 0.3 13.1 12.3	195 6 207 186	35.2 0.4 36.0 34.8			
36 16.50-	- 18.00	AVG STD MAX MIN	22 22 22 22	79 2 82 74	277 8 287 262	38.5 0.9 40.2 36.8	12.8 0.3 13.1 12.1	214 6 222 199	36.6 0.4 37.3 35.5			
50 18.00-	- 19.50	AVG STD MAX MIN	14 14 14 14	79 2 82 75	279 9 287 263	41.1 0.8 42.4 39.2	13.1 0.3 13.6 12.6	216 7 223 202	35.8 0.4 36.5 35.2			
66 25.00-	- 26.50	AVG STD MAX MIN	15 15 15 15	80 3 83 74	281 9 292 261	41.7 0.6 42.8 40.6	12.5 0.2 12.9 12.1	219 6 230 205	36.1 0.4 37.2 35.7			
96 30.00-	- 31.50	AVG STD MAX MIN	29 29 29 29	79 2 82 72	277 9 290 255	42.1 0.9 44.0 39.9	12.9 0.3 13.4 12.3	229 8 242 209	34.7 1.4 36.0 28.7			
113 31.50-	- 33.00	AVG STD MAX MIN	17 17 17 17	81 2 83 75	286 7 292 264	41.4 0.6 42.4 39.6	12.8 0.2 13.0 12.2	217 5 223 201	35.9 0.3 36.4 35.2			
181 43.00-	- 44.50	AVG STD MAX MIN	67 67 67 67	85 3 89 77	297 10 311 272	42.3 1.2 45.2 39.0	13.0 0.2 13.4 12.5	226 7 239 204	34.9 0.4 36.8 34.2			
253 47.00-	- 48.50	AVG STD MAX	71 71 71	87 4 92	305 14 323	40.9 2.4 43.9	13.2 0.4 13.9	224 12 243	35.7 0.7 37.8			

Pile: B4

Proj: Chabot Reservoir Pg1

	MIN	71	68	239	34.5	11.7	176	34.9
295 48.50- 50.00	AVG	42	89	312	42.3	13.5	223	36.0
	STD	42	3	12	1.0	0.3	9	0.5
	MAX	42	93	327	43.8	14.0	237	37.6
	MIN	42	78	274	38.8	12.6	196	35.2

Pile: B4 Info: Tabe	r-DIEDH	RICH/1	NW		Pro	j: Chabot	Reservoi	r	Pg2
BL# end bl/ft	depth ft	TYPE	#Bls	ETR %	EFV ft-lb	FMX kips	VMX ft/sec	EF2 ft-lb	BPM bl/min
320 54.50-	56.00	AVG STD MAX MIN	24 24 24 24	85 5 91 66	299 19 318 233	39.7 1.4 41.6 35.5	13.2 0.4 13.9 11.9	208 14 227 169	35.7 0.4 37.0 35.2
359 58.50-	60.00	AVG STD MAX MIN	38 38 38 38	87 4 93 74	305 13 326 260	39.4 1.0 41.6 37.8	13.7 0.3 14.3 12.6	217 8 230 191	34.8 0.3 35.7 34.0

SATISTICS FOR ALL DATA

	ETR	EFV	FMX	VMX	EF2	BPM
	010	ft-lb	kips	ft/sec	ft-lb	bl/min
AVG	84	294	41.0	13.1	220	35.4
STD	5	19	1.9	0.4	12	2.0
MAX	93	327	45.2	14.3	243	37.8
MIN	66	233	34.5	11.7	169	0.0
#BLS	359	359	359	359	359	359

```
DRIVEN (2004-May-03 : B4.Q02)
```

Appendix D BPT Energy Measurements

ABE Engineering

2230 Lariat Lane, Walnut Creek, CA 94596 PHONE: 925-944-6363 FAX: 925-476-1588 EMAIL: SA@AbeEngineering.com

Dynamic Pile Test Report

Company:	Great West Drilling, Inc. 15777 Valley Blvd. Fontana, CA 92335	Date:	June 28, 2004
Attn:	Mr. Jim Benson	From:	Steve Abe
Re:	Becker Penetration Testing		
	Chabot Dam		
	Castro Valley, CA		
	June 7-8, 2004	A	BE Job No. 04028

This report presents dynamic measurement results obtained for three BPT (Becker Penetration Test) borings performed for the project referenced above on June 7 and 8, 2004. The primary test objective was to measure the energy transfer or efficiency of the Becker Hammer. The dynamic testing was performed with a Model PAK Pile Driving Analyzer (PDA) according to the ASTM D4945 test standard. During dynamic monitoring, PDA calculations for soil resistance and hammer performance were made according to the Case Method.

Drill System and Becker Hammer Details

Great West Drilling, Inc. performed the Becker drilling. The hammer was an ICE model 180 double acting diesel hammer that has a maximum rated energy of 8,130 ft-lbs and a ram weight of 1,730 lbs. The hammer is equipped with a pressure gage to display the bounce chamber pressure, which provides a crude approximation of the hammer energy based on charts provided by the hammer manufacturer.

The BPT drill pipe consists of 10-ft long sections of 6.625- inch O.D. by 0.625-inch wall pipe with threaded connections. The hammer impact, and stress wave propagation, occurs only on the outer pipe. The inner pipe floats inside the outer pipe and the annular space between the inner and outer pipes acts as a conductor for compressed air to bring drill spoils to the surface during open bit drilling. These BPT tests were performed with a closed end bit.

DYNAMIC TEST RESULTS

The following PDA computed Case Method results were computed for each BPT boring. The results are summarized for all borings in Table 1 and complete printed and plotted results are attached as Appendix A.

- EMX- The Maximum energy transfer to the pile/drill pipe.
- ETR- The energy transfer ration (EMX / maximum rated hammer energy)
- FMX- The maximum impact force.
- RX9- The static soil resistance estimate for a damping value of 0.90.
- RTL- The total soil resistance (static and dynamic) not reduced for damping.
- BPM- The hammer blow rate.

For each 1-ft penetration increment, the average, maximum, minimum, and standard deviations of the above Case Method calculations are printed. The printed results also include blow counts, which were computed by the PDA based on penetration depths, which were entered as I observed them during driving. These blow counts will likely differ from those recorded by others and were not reentered to agree with filed logs taken by others.

Table 1: Summary of PDA Results

BPT1						
	EFV	ETR	RX9	RTL	FMX	BPM
	Ft-Lbs.	00	Kips	Kips	Kips	Bl./Min.
AVG	347	42	101	145	151	93.3
STD	54	7	57	66	40	6.4
MAX	455	56	190	231	226	103.9
MIN	153	18	0	1	37	46.5
#BLS	2168	2168	2168	2168	2168	2168
BPT2						
	EFV	ETR	RX9	RTL	FMX	BPM
	Ft-Lbs.	010	Kips	Kips	Kips	Bl./Min.
AVG	301	37	83	86	122	95.3
STD	75	9	85	72	56	2.6
MAX	433	53	228	212	216	111.2
MIN	98	12	0	0	16	64.4
#BLS	902	902	902	902	902	902
BPT3						
	EFV	ETR	RX9	RTL	FMX	BPM
	Ft-Lbs.	00	Kips	Kips	Kips	Bl./Min.
AVG	350	43	73	131	149	94.6
STD	58	7	49	58	49	1.6
MAX	466	57	184	213	239	104.0
MIN	121	14	0	0	42	88.0
#BLS	1136	1136	1136	1136	1136	1136

I appreciate the opportunity to assist you with this project. Please contact me if you have any questions regarding these results, or if we may be of further service.

Very truly yours, ABE Engineering

Steve Abe, P.E.

Steven M, No. C 055277 Exp. <u>[2/09</u> CIVIL OF CALIFO

APPENDIX A

PDA Case Method Results

Ъдì

Proj: CHABOT DAM

ABE Engineering Pile: BPT1

Info: BECKER HAMMER

EFV: Max Transferred EnergyRTL: Total Capacity (J=0)ETR: Energy Transfer RatioFMX: Max Measured ForceRX9: RMX Capacity (J=0.9)BPM: Blows Per Minute										
BL# end 105	bl/ft 11	depth ft 9.00	TYPE AVG STD MAX MIN	#Bls 105 105 105 105	EFV ft-lb 274 51 387 153	ETR % 33 6 47 18	RX9 kips 26 7 35 11	RTL kips 29 6 42 15	FMX kips 68 19 105 37	BPM bl/min 94.5 10.5 101.3 47.7
129	8	12.00	AVG STD MAX MIN	24 24 24 24	324 20 353 273	40 3 43 33	27 7 35 15	28 5 36 19	80 8 91 62	96.3 0.9 98.3 94.7
136	7	13.00	AVG STD MAX MIN	7 7 7 7	286 14 304 269	35 2 37 33	19 3 25 15	22 3 26 17	68 6 75 59	97.7 1.0 98.5 96.0
146	10	14.00	AVG STD MAX MIN	10 10 10 10	341 46 398 268	42 6 49 33	28 4 36 23	27 4 33 21	87 11 98 71	91.2 15.3 99.0 47.9
155	9	15.00	AVG STD MAX MIN	9 9 9 9	350 25 387 319	43 3 47 39	26 4 34 20	26 6 38 21	90 4 97 86	79.6 23.8 96.4 47.8
165	10	16.00	AVG STD MAX MIN	10 10 10 10	324 21 358 296	40 3 44 36	27 3 34 23	25 7 36 16	89 4 95 85	95.9 0.3 96.4 95.3
175	10	17.00	AVG STD MAX MIN	10 10 10 10	322 22 351 285	39 3 43 35	21 4 25 15	19 5 27 14	83 3 88 79	96.2 0.3 96.7 95.8
182	7	18.00	AVG STD MAX MIN	7 7 7 7	358 9 371 342	44 1 45 42	21 0 22 21	31 1 32 28	83 2 87 80	96.4 0.5 97.0 95.6
190	8	19.00	AVG STD MAX MIN	8 8 8	291 38 357 229	36 5 44 28	13 2 16 10	23 4 29 15	72 9 83 57	91.3 17.4 99.6 48.3
193	3	20.00	AVG STD MAX MIN	3 3 3 3	281 79 355 197	34 10 43 24	36 20 48 13	42 19 60 22	64 9 70 53	99.5 3.8 103.9 96.7

Pile: BPT1 Info: BECKER HAMMER

BL#	11/0	depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/it	It		1.0	it-lb	×0	kips	kips	kips	bl/min
203	10	21.00	AVG	10	261	32	18	52	69	97.6
			STD	10	29	4	6	10	4	1.0
			MAX	10	309	38	26	67	76	99.5
			MIN	10	215	26	11	36	64	96.3
214	11	22.00	AVG	11	261	32	20	49	68	97.5
			STD	11	24	3	7	11	6	0.5
			MAX	11	303	37	33	72	84	98.5
			MIN	11	208	25	10	29	57	96.9
225	11	23.00	AVG	11	282	34	36	83	94	91.1
			STD	11	10	1	9	15	10	13.7
			MAX	11	298	36	50	104	105	96.3
			MIN	11	257	31	20	52	70	49.7
239	14	24.00	AVG	14	285	35	30	72	93	95.0
209	± 1	21.00	STD	14	10	1	6	24	5	0 4
			MAX	1 4	299	36	42	96	103	95 6
			MTN	1 /	265	30	22	17	87	99.0 97 1
			I'I I IN	14	205	52		Ι,	07	J
259	10	26.00	AVG	20	300	37	28	74	86	95.6
			STD	20	7	1	5	4	6	0.7
			MAX	20	316	39	39	84	95	97.2
			MIN	20	288	35	21	68	74	94.6
270	11	27.00	AVG	11	306	37	34	94	102	95.2
			STD	11	12	1	3	7	8	0.6
			MAX	11	328	40	39	105	112	96.1
			MIN	11	287	35	27	78	86	94.4
279	9	28 00	AVG	9	297	36	33	98	107	95 4
215	<i>J</i>	20.00	2170 9.170	g	11	1	3	11	то, о	03
			MAV	G	315	30 T	36	110	103	95 6
			MAX	9	278	34	29	85	96	94.9
200	1 1			1 1	070	2.2	2.0	0.4	100	
290		29.00	AVG		270	33	28	94	102	95.5
			STD		12		2	8	6	0.2
			MAX	11	295	36	32	110	114	96.0
			MIN	11	255	31	24	81	91	95.3
296	6	30.00	AVG	6	249	30	24	65	94	96.0
			STD	6	20	3	6	31	12	0.6
			MAX	6	280	34	31	99	109	97.0
			MIN	6	225	27	18	33	80	95.3
304	8	31.00	AVG	8	257	31	21	16	87	91.4
			STD	8	21	3	7	7	5	17.2
			MAX	8	2.8.4	.3.5	35	27	93	98.0
			MTN	8	229	28	14	_ , 7	79	48 9

Pile: BPT1 Info: BECKER HAMMER

BL# end	bl/ft	depth ft	TYPE	#Bls	EFV ft-lb	ETR	RX9 kips	RTL kips	FMX kips	BPM bl/min
313	9	32 00	AVG	9	260	32	25	13	90	97 7
515	5	52.00	7170 970	9	200	5	10	±9 6	9	1 3
			MAX	9	332		<u>т</u> 0 Д Д	27	103	99 1
			MTN	G	210	26	15	27	78	95 6
			1*1 ± 1N	9	210	20	ТĴ	0	70	90.0
366	7	39.00	AVG	53	278	34	29	34	99	95.5
			STD	53	32	4	10	23	13	6.6
			MAX	53	352	43	47	77	126	97.5
			MIN	53	192	23	4	1	70	48.6
420	6	47 00	AVG	54	270	33	9	44	99	96 7
120	Ŭ	1,.00	CT2	54	48	6	כ ר	26	25	67
			MAV	51	367	15	27	104	156	0./ 00.2
			MIN	54	211	4J 26	27	17	150 67	10.3
			IM⊥ IN	54		20	0	⊥ /	07	49.3
426	6	48.00	AVG	6	337	41	15	82	138	96.0
			STD	6	10	1	2	6	7	0.2
			MAX	6	350	43	19	93	148	96.3
			MIN	6	321	39	13	73	127	95.8
432	6	49.00	AVG	6	32.6	40	15	73	129	95.8
102	Ũ	10.00	STD	6	13	2	1	3	۲ 2	0 2
			MAX	6	341	42	16	77	132	96 0
			MIN	6	311	38	13	69	125	95.6
155	1 1	51 00	7 T T C	22	205	27	2.4	БG	111	05 2
400	$\perp \perp$	51.00	AVG	20	303	57	24	11	1 5	90.0
			SID	20	48	6	4		10	
			MAX	23	346	42	33	77	130	98.0
			MIN	23	183	22	16	34	69	91.3
485	15	53.00	AVG	30	300	37	27	68	116	95.3
			STD	30	13	2	3	9	4	0.1
			MAX	30	331	40	32	79	121	95.6
			MIN	30	278	34	20	47	109	95.0
498	1.3	54.00	AVG	13	303	37	2.6	73	118	95.1
100	20	0100	STD	13	8	1	1	5		0 2
			MAX	13	320	3 9 	28	80	124	95 5
			MIN	13	288	35	25	65	108	94.9
	1.0		7 7 7 ~	1 (0.0		110	
J⊥4	ТЮ	55.00	AVG	16	286	35	29	69	116	95.0
			STD	16	24	3	3	ΤÜ	9	0.1
			MAX	16	321	39	34	82	129	95.2
			MIN	16	246	30	24	52	104	94.9
535	21	56.00	AVG	21	259	32	28	59	109	94.8
			STD	21	18	2	3	4	5	0.2
			MAX	21	312	38	36	67	119	95.2
			MTN	21	232	28	22	53	102	944

Pile: BPT1 Info: BECKER HAMMER

BL#	b1/f+	depth	TYPE	#Bls	EFV ft_lb	ETR °	RX9	RTL	FMX	BPM
ena EE1	DI/IL 1C	E7 00	7,570	1.6	IL-ID 2E0	б О 1	KIDS 26	KIDS E O	KIPS 100	
331	10	57.00	AVG	10	259	3 L 1	20	59	108	94.8
			SID	10	9				4	0.2
			MAX	16 16	278	34	31	65	116	95.3
			MIN	Τ6	242	29	22	54	102	94.4
571	20	58.00	AVG	20	274	34	31	65	108	94.8
			STD	20	23	3	6	12	12	0.4
			MAX	20	316	39	45	91	132	95.6
			MIN	20	231	28	23	52	90	94.1
630	14	62.00	AVG	59	317	39	43	110	134	94.9
			STD	59	27	3	13	29	19	0.5
			MAX	59	377	46	62	163	170	96.4
			MIN	59	211	26	23	60	104	94.3
671	20	64 00	AVG	41	312	38	53	112	139	94 6
071	20	01.00	STD	4 1	13	20	17	17	12	0 6
			MAX	4 1	225	ے 1	78	143	160	96 1
			MTN	чт Д 1	280	34	23	83	117	93 8
			1.1 T IV	41	200	JF	2.0	0.5		55.0
694	23	65.00	AVG	23	303	37	56	139	162	94.1
			STD	23	15	2	11	11	10	0.3
			MAX	23	341	42	72	160	187	94.6
			MIN	23	277	34	38	126	149	93.6
723	29	66.00	AVG	29	293	36	72	143	162	94.0
			STD	29	35	4	11	8	10	0.3
			MAX	29	348	42	87	155	176	94.9
			MIN	29	212	26	42	123	135	93.4
750	27	67 00	AVG	27	288	35	76	151	169	92 0
100	27	0,.00	STD	27	10	1	, °	±0± 6	±05 7	9 0
			MAX	27	306	37	80	166	181	94 0
			MIN	27	272	33	70	137	156	46.9
7 O F				4 5		4.0	100	170	100	
195	45	68.00	AVG	43	332	43	109	12	199	93.5
			SID	43	24 205	4	1 2 O	106	13 21.6	0.2
			MAX	45	395	48	130	196 151	216	93.8
			MIN	45	280	34	/6	151	169	93.3
876	81	69.00	AVG	81	378	46	134	196	211	93.2
			STD	81	21	3	9	5	5	0.1
			MAX	81	412	50	148	208	226	93.4
			MIN	81	288	35	117	184	196	93.1
1005	129	70.00	AVG	129	366	45	151	179	170	92.6
			STD	129	35	4	7	17	10	4.1
			MAX	129	410	50	162	225	186	93.6
			MIN	129	176	21	110	143	122	46.6

Pile: BPT1

Info: BECKER HAMMER

]	2	g	5

BL#		depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/ft	ft			ft-lb	00	kips	kips	kips	bl/min
1128	123	71.00	AVG	123	375	46	129	164	168	93.1
			STD	123	12	1	7	6	6	0.1
			MAX	123	404	49	151	180	186	93.3
			MIN	123	335	41	118	150	153	93.0
1245	58	73.00	AVG	117	364	45	105	172	177	89.3
			STD	117	12	2	7	13	9	13.1
			MAX	117	403	49	121	190	192	93.4
			MIN	117	326	40	91	143	152	46.5
1367	40	76.00	AVG	122	351	43	87	173	174	91.0
			STD	122	10	1	4	6	5	10.1
			MAX	122	376	46	98	184	185	93.4
			MIN	122	327	40	80	157	160	46.5
1492	125	77.00	AVG	125	364	45	108	177	175	92.6
			STD	125	14	2	19	10	7	5.9
			MAX	125	405	50	159	203	194	93.4
			MIN	125	330	40	84	156	157	46.6
1791	299	78.00	AVG	299	410	50	161	216	182	92.6
			STD	299	19	2	11	6	8	5.4
			MAX	299	455	56	177	228	204	93.6
			MIN	299	360	44	128	188	162	46.5
2168	628	78.60	AVG	377	372	46	158	186	160	93.2
			STD	377	46	6	27	39	16	2.4
			MAX	377	439	54	190	231	187	94.1
			MIN	377	228	28	81	99	101	46.6

BL# COMMENTS 366 pull up 584 pull up

DRIVEN (2004-Jun-07 : BPT1.MDF)

Pile Info	e: BPT2 d: BECK	? Ker hamm	IER			Proj: CHABOT DAM				Pg1
EFV ETR RX9	: Max I : Energ : RMX (Transfer Jy Trans Capacity	red b sfer b v (J=0	Energy Ratio D.9)		RTL: I FMX: M BPM: E				
BL#		depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/ft	ft			ft-lb	olo	kips	kips	kips	bl/min
22	22	1.00	AVG	21	204	25	42	42	87	96.4
			STD	21	52	6	3	8	21	1.5
			MAX	21	257	31	46	53	110	99.3
			MIN	21	98	12	34	18	40	94.4
39	17	2.00	AVG	17	220	27	32	41	88	95.1
			STD	17	15	2	3	3	7	0.2
			MAX	17	251	31	37	45	100	95.6
			MIN	17	194	24	26	35	77	94.9
53	14	3.00	AVG	14	244	30	25	36	86	95.5
			STD	14	31	4	1	3	10	0.5
			MAX	14	284	35	29	41	99	97.2
			MIN	14	206	25	24	30	66	94.9
65	12	4.00	AVG	12	254	31	23	31	87	95.6
			STD	12	15	2	3	2	5	0.2
			MAX	12	283	34	27	33	92	96.0
			MIN	12	228	28	15	26	75	95.3
78	13	5.00	AVG	13	268	33	27	27	83	95.8
			STD	13	14	2	3	1	7	0.8
			MAX	13	294	36	30	30	90	97.0
			MIN	13	252	31	22	25	71	94.3
91	13	6.00	AVG	13	229	28	28	27	80	95.3
			STD	13	12	1	2	4	8	0.2
			MAX	13	253	31	31	32	90	95.6
			MIN	13	215	26	24	21	68	95.0
102	11	7.00	AVG	11	254	31	20	21	67	96.3
			STD	11	10	1	3	3	4	0.4
			MAX	11	267	33	25	25	71	96.9
			MIN	11	237	29	16	15	59	95.5
113	11	8.00	AVG	11	202	25	15	11	45	98.4
			STD	11	35	4	6	4	10	1.1
			MAX	11	246	30	23	16	61	100.1
			MIN	11	130	16	8	4	33	96.9
115	2	9.00	AVG	2	148	18	9	9	38	99.7

			STD	2	4	0	1	1	3	0.1
			MAX	2	151	18	9	9	40	99.8
			MIN	2	145	18	8	8	36	99.6
169	5	19.00	AVG	52	224	27	22	23	74	97.5
			STD	52	48	6	7	11	19	2.7
			MAX	52	287	35	34	44	99	105.8
			MIN	52	102	12	7	1	33	95.5

ABE Engineering

Pile: BPT2

Info: BECKER HAMMER

BL#	b1/f+	depth ft	TYPE	#Bls	EFV ft_lb	ETR 2	RX9 kips	RTL	FMX	BPM bl/min
2/18	DI/IC 0	27 00	λuc	70	10^{-10}	20	24	22	ктр5 71	
240	9	27.00	AVG CTD	79	20	<u>ک</u> ع	24	22	/ I 0	90.4
			MAV	79	212	20	2 C C	0	9	0.9
			MAA	79	313 164	20	33 15	44	95 40	99.0
			MIN	19	164	ZU	10		48	91.7
257	9	28.00	AVG	9	200	24	27	14	67	96.5
			STD	9	17	2	3	3	6	0.3
			MAX	9	233	28	31	18	76	96.9
			MIN	9	177	21	23	9	59	96.1
265	8	29.00	AVG	8	165	20	19	9	59	97.0
			STD	8	12	2	4	2	2	0.2
			MAX	8	178	22	23	12	62	97.2
			MIN	8	144	17	14	7	56	96.7
271	6	30 00	AVG	6	253	31	22	25	77	96 5
211	0	50.00	0110 0TD	6	65	8	22	5	13	0 4
			MAY	6	296	36	34	33	26	97 0
			MTN	6	129	16	15	20	51	97.0
			1.1 1 11	0	129	ΤŪ	ТĴ	20	JI	55.0
277	6	31.00	AVG	6	258	32	24	19	85	97.4
			STD	6	13	2	4	2	5	0.5
			MAX	6	277	34	31	21	88	98.0
			MIN	6	239	29	19	16	77	96.7
285	8	32.00	AVG	8	244	30	15	16	78	97.5
			STD	8	17	2	6	3	5	0.3
			MAX	8	260	32	23	20	85	98.0
			MIN	8	209	25	4	9	70	97.0
295	10	33.00	AVG	10	237	29	25	17	73	98.0
			STD	10	8	1	8	3	3	0.1
			MAX	10	248	30	38	21	77	98.3
			MIN	10	222	27	11	11	66	97.8
298	З	34 00	AVG	З	221	27	17	15	71	98 0
290	0	51.00	DTP	3	13	27	12	±9 6	2	0 1
			MAX	3	234	28	25	20	73	98 1
			MIN	3	208	25	4	9	70	98.0
200	Л		777	л	010		0	1 0	<u> </u>	
JUZ	4	35.00	AVG	4	210 C	۷ ک ۱	U 1		0/0	2.5K
			SID	4	6		1	ح ۱ -		0.3
			MAX	4			\perp	15	69	98.8
			MIN	4	207	25	U	9	65	98.1
309	7	36.00	AVG	7	224	27	0	11	63	98.8
			STD	7	10	1	0	2	3	0.5
			MAX	7	239	29	0	14	66	99.3
			MTN	7	209	2.5	0	7	59	98.1

Pile: BPT2

Info: BECKER HAMMER

 BL#		depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/ft	ft			ft-lb	010	kips	kips	kips	bl/min
311	2	37.00	AVG	2	282	34	0	13	73	98.7
			STD	2	1	0	0	2	4	0.2
			MAX	2	283	34	0	14	75	98.8
			MIN	2	281	34	0	11	70	98.5
314	3	38.00	AVG	3	233	28	10	12	67	98.0
			STD	3	33	4	9	2	7	1.3
			MAX	3	271	33	16	13	72	99.5
			MIN	3	211	26	0	10	59	97.0
319	5	39.00	AVG	5	211	26	1	10	62	98.9
			STD	5	30	4	2	2	3	1.4
			MAX	5	247	30	4	12	66	101.0
			MIN	5	169	20	0	8	59	97.0
322	1	41.00	AVG	3	187	23	0	11	49	102.5
			STD	3	27	3	0	2	9	7.6
			MAX	3	206	25	0	13	59	111.2
			MIN	3	156	19	0	10	41	96.9
325	3	42.00	AVG	3	146	18	0	14	42	103.9
			STD	3	15	2	1	1	3	0.7
			MAX	3	157	19	1	14	45	104.5
			MIN	3	129	16	0	13	39	103.2
330	5	43.00	AVG	5	171	21	0	22	46	102.1
			STD	5	13	2	0	13	4	1.2
			MAX	5	189	23	0	42	51	103.6
			MIN	5	152	18	0	7	42	100.5
336	6	44.00	AVG	6	197	24	0	43	60	98.8
			STD	6	17	2	0	7	13	0.7
			MAX	6	223	27	0	53	81	99.6
			MIN	6	176	21	0	33	45	97.7
343	7	45.00	AVG	7	169	21	0	29	48	100.5
			STD	7	14	2	0	3	2	0.3
			MAX	7	182	22	0	34	50	100.8
			MIN	7	146	18	0	26	45	100.0
345	2	46.00	AVG	2	181	22	0	28	50	100.7
			STD	2	6	1	0	3	1	0.1
			MAX	2	185	22	0	30	51	100.8
			MIN	2	177	21	0	26	49	100.6
350	5	47.00	AVG	5	152	18	2	26	47	100.0
			STD	5	31	4	4	5	4	0.6
			MAX	5	190	23	8	30	54	100.8
			MIN	5	126	15	0	20	42	99.5

Pile: BPT2 Info: BECKER HAMMER

BL#	12] / £+	depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
ena	DI/IC 10	10 00		1.0		б О Г	KIPS 1 F	KIDS	KIDS	DI/MIN
360	ΤU	48.00	AVG	10	207	25	15	52	/ 1	97.5
			STD	10	37	5	8	25	24	3.1
			MAX	10	297	36	25	/0	92	106.0
			MIN	10	157	19	0	0	16	95.3
374	14	49.00	AVG	14	215	26	17	70	88	96.5
			STD	14	23	3	5	8	9	0.5
			MAX	14	269	33	27	90	108	97.0
			MIN	14	185	22	10	63	77	95.3
389	15	50.00	AVG	15	310	38	24	38	97	91.4
			STD	15	70	9	4	4	11	11.0
			MAX	15	371	45	31	44	106	97.5
			MIN	15	150	18	16	27	70	64.4
395	6	51.00	AVG	6	318	39	20	41	100	95.7
	-		STD	6	8	1	2	4	4	0.1
			MAX	6	333	41	2.4	4.5	106	95.8
			MIN	6	312	38	17	34	95	95.5
106	1 1	52 00	7170	1 1	210	20	1.0	25	0.4	
400		52.00	AVG	⊥⊥ 1 1	SIU 11	J O 1	19	55	24	90.0
			SID	⊥⊥ 1 1			3	2 4 2	3	0.2
			MAX	11	287	40 35	20 16	42 29	99 88	96.S 95.6
			11110	<u> </u>	207	55	τŬ	29	00	50.0
415	9	53.00	AVG	9	304	37	20	35	92	95.8
			STD	9	9	1	3	3	2	0.2
			MAX	9	318	39	25	40	96	96.1
			MIN	9	294	36	16	32	90	95.5
426	11	54.00	AVG	11	313	38	21	37	96	95.7
			STD	11	12	1	4	3	2	0.2
			MAX	11	330	40	27	40	98	96.1
			MIN	11	293	36	15	33	93	95.3
437	11	55.00	AVG	11	297	36	13	37	93	96.1
107		00.00	STD	11	237	1	±0 6	5	30	0 3
			MAX	11	307	38	22	46	99	96.4
			MIN	11	284	35	0	30	89	95.6
116	0	56 00	7170	0	207	20	21	10	101	05 7
440	9	56.00	AVG	9	507	20	J L 1 0	42	TOT	95.7
			SID	9	14			9	100	1.0
			MAX	9	328	40	61 14	28	108	97.0
			IM ⊥ IN	9	284	35	14	32	94	94.4
470	24	57.00	AVG	24	294	36	57	67	99	94.5
			STD	24	13	2	11	8	3	0.2
			MAX	24	321	39	69	79	103	95.2
			MIN	24	279	34	35	51	90	94.1

Pile: BPT2 Info: BECKER HAMMER

BL#		depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/ft	ft			ft-lb	00	kips	kips	kips	bl/min
486	16	58.00	AVG	16	371	46	29	56	113	94.7
			STD	16	25	3	4	8	7	0.1
			MAX	16	397	49	38	64	120	94.9
			MIN	16	327	40	24	31	101	94.6
501	15	59.00	AVG	15	393	48	29	66	120	94.5
			STD	15	7	1	3	5	2	0.1
			MAX	15	403	49	34	74	124	94.7
			MIN	15	382	47	23	53	117	94.4
515	14	60.00	AVG	14	358	44	25	64	112	95.0
			STD	14	45	6	5	12	10	1.0
			MAX	14	404	49	29	76	121	98.5
			MIN	14	226	27	8	26	86	94.4
561	46	61.00	AVG	46	325	40	21	48	103	95.6
			STD	46	21	3	7	9	5	0.6
			MAX	46	370	45	37	67	114	96.7
			MIN	46	274	33	10	33	94	94.3
570	9	62.00	AVG	9	318	39	30	62	104	95.2
			STD	9	10	1	6	10	7	0.3
			MAX	9	329	40	39	77	114	95.6
			MTN	9	301	37	23	52	97	94.7
				2	001	0.1	20	01		J I I I
585	15	63.00	AVG	15	318	39	39	74	107	95.0
			STD	15	6	1	5	4	4	0.2
			MAX	15	328	40	46	81	112	95.5
			MIN	15	307	37	28	68	99	94.7
619	34	64.00	AVG	34	352	43	89	108	134	93.9
			STD	34	12	2	49	25	21	0.7
			MAX	34	377	46	176	155	171	95.3
			MIN	34	327	40	40	71	102	92.8
905	572	64.50	AVG	286	376	46	205	187	198	93.2
			STD	286	18	2	8	11	8	0.1
			MAX	286	433	53	228	212	216	93.4
			MIN	286	314	38	172	155	172	93.0
					<u> </u>		±, □		± , 4	

BL# COMMENTS

534 58'

Info	Info: BECKER HAMMER									
EFV: Max Transferred EnergyRTL: Total Capacity (J=0)ETR: Energy Transfer RatioFMX: Max Measured ForceRX9: RMX Capacity (J=0.9)BPM: Blows Per Minute										
 BL#		depth	TYPE	#Bls	 EFV	ETR	 RX9	 RTL	FMX	BPM
end	bl/ft	ft			ft-lb	010	kips	kips	kips	bl/min
16	16	1.00	AVG	15	219	27	49	77	98	93.9
			STD	15	72	9	6	14	10	0.9
			MAX	15	378	46	63	110	122	94.7
			MIN	15	151	18	43	61	89	91.0
27	11	2.00	AVG	11	387	47	60	106	121	94.5
			STD	11	30	4	2	8	7	0.3
			MAX	11	435	53	64	117	132	94.9
			MIN	11	335	41	56	97	114	94.0
47	20	3.00	AVG	20	361	44	60	104	116	94.6
			STD	20	15	2	4	8	4	0.2
			MAX	20	387	47	66	118	124	95.0
			MIN	20	325	40	54	91	111	94.3
72	25	4.00	AVG	25	360	44	72	128	139	94.3
			STD	25	24	3	3	7	9	0.2
			MAX	25	397	49	76	140	154	94.7
			MIN	25	320	39	67	114	119	94.0
110	19	6.00	AVG	38	356	44	59	111	130	94.7
			STD	38	20	2	9	10	7	0.3
			MAX	38	395	48	74	133	143	95.5
			MIN	38	317	39	47	94	117	94.0
129	19	7.00	AVG	19	400	49	56	110	134	94.5
			STD	19	30	4	4	5	6	0.2
			MAX	19	449	55	61	122	142	94.9
			MIN	19	345	42	51	100	123	94.1
147	18	8.00	AVG	18	436	54	55	108	127	94.6
			STD	18	20	2	2	7	5	0.2
			MAX	18	466	57	60	119	138	95.0
			MIN	18	397	49	51	98	119	94.1
161	14	9.00	AVG	14	401	49	50	99	118	94.6
			STD	14	43	5	2	8	7	0.2
			MAX	14	465	57	53	112	135	94.9
			MIN	14	332	41	46	86	108	94.3
167	6	10.00	AVG	6	32.4	4 0	36	64	114	95.0

Proj: CHABOT DAM Pg1

			SID	0	64	Ö	9	10	4	υ.Ζ
			MAX	6	372	46	48	89	120	95.2
			MIN	6	197	24	27	51	110	94.6
179	12	11.00	AVG	12	367	45	34	47	114	95.2
			STD	12	20	2	2	4	3	0.2
			MAX	12	405	50	36	53	117	95.6
			MIN	12	340	42	31	41	107	94.9

ABE Engineering

Pile: BPT3

Pile: BPT3

Info: BECKER HAMMER

BL#		depth	TYPE	#Bls	EFV 5+-1b	ETR	RX9	RTL	FMX	BPM
100	0 0	12 00	AVC	0	261	б Л Л	KIDS 20	KTDS 20	KTD2	
100	9	12.00	AVG	9	201	44	<u>ک</u> ۵	30	90 10	90.9
			SID My V	9	20 406	4 5 0	25	4	エム 111	0.5
			MAA	9	406	30	30	27		96.6 05.5
			MIN	9	319	39	19	23	/5	95.5
196	8	13.00	AVG	8	275	34	11	13	62	97.5
			STD	8	30	4	8	3	6	1.0
			MAX	8	309	38	19	18	76	99.3
			MIN	8	215	26	0	9	55	96.4
198	2	14.00	AVG	2	210	26	0	13	58	100.1
			STD	2	1	1	0	6	1	0.1
			MAX	2	211	26	0	17	59	100.1
			MIN	2	209	25	0	8	57	100.0
202	4	15.00	AVG	4	203	25	0	10	56	100.0
	-	20.00	STD	4	8	1	0		1	0.5
			MAX	4	213	26	0	18	.57	100.6
			MIN	4	194	24	0	0	55	99.3
204	З	15 67	AVC	2	203	25	0	З	59	100 0
201	5	10.07		2	205	20	0	1	1	100.0
			SID MV A	2	206	25	0	4	1 60	100 0
			MIN	2	200	25	0	0	50 50	100.0
			MIIN	Ζ	200	25	U	0	28	100.0
208	3	17.00	AVG	3	190	23	0	16	54	96.3
			STD	3	10	1	0	1	2	7.2
			MAX	3	197	24	0	17	56	100.5
			MIN	3	179	22	0	15	52	88.0
210	2	18.00	AVG	2	197	24	0	18	57	100.3
			STD	2	6	1	0	4	1	1.1
			MAX	2	201	24	0	21	57	101.1
			MIN	2	193	23	0	15	56	99.6
213	4	18.75	AVG	3	205	25	0	10	60	100.0
			STD	3	2	0	0	6	3	0.0
			MAX	3	206	25	0	16	63	100.0
			MIN	3	203	25	0	5	58	100.0
215	1	20.00	AVG	1	156	19	0	5	42	101.8
217	2	21 00	AVG	2	180	22	0	13	48	100 5
		21.00	STD	2	1	0	0	3	5	0 7
			MAX	2	181	22	0	15	5 51	101 0
			MIN	2	179	22	0	11	44	100.0
220	З	22 00	7,170	З	О1 <i>Л</i>	26	0	1 ⊑	56	00 0
<u>د</u> ک U	J	22.00	AVG CTD	л С	۲ ۲ ۲ ک	ム U 1	0	с ТЭ	J U 1 1	0. ور ۱ ۱
			MVA	ہ د	0 201	エ クフ	0	ر 1 ۵	κα ΤΤ	100 1
			И Т И 1.1777	с С	200		0	エ <i>ジ</i> 1つ	10	
			T_T T TN	5	ムリジ	<u>ک</u> ک	U	LΟ	セン	シラ・ン

Pile: BPT3

Info: BECKER HAMMER

BL#	b1/f+	depth ft	TYPE	#Bls	EFV ft_lb	ETR 2	RX9	RTL	FMX	BPM bl/min
224	DI/IC	23 00 TC	7 VC	1	217	 Э.б	ктрз	LTD2 10	ктр5 57	
ΖΖ4	4	23.00	AVG	4	214	20	0	10	10	99.J
			SID	4			0	4		0.7
			MAX	4	231	28	0	23	/4	99.8
			MIN	4	197	24	0	15	48	98.3
227	3	24.00	AVG	3	210	26	0	16	55	99.3
			STD	3	12	2	0	3	6	0.6
			MAX	3	220	27	0	18	60	100.0
			MIN	3	197	24	0	12	49	98.8
232	5	25.00	AVG	5	196	24	1	13	51	99.6
			STD	5	14	2	2	3	2	0.4
			MAX	5	212	26	5	17	54	100.1
			MIN	5	173	21	0	9	49	99.1
237	5	26 00	AVG	5	195	24	2	11	49	100 3
	0	20.00	STD	5	9	1	ر ح	1	3	0 7
			MAX	5	206	25	5 7	13	54	101 0
			MTN	5	183	20	,	10	46	99 5
			1.1 1 11	5	105		0	ΤŪ	40	JJ.J
243	6	27.00	AVG	6	182	22	0	9	51	99.5
			STD	6	11	1	0	4	2	0.4
			MAX	6	192	23	0	13	53	100.1
			MIN	6	166	20	0	5	47	99.1
249	6	28.00	AVG	6	192	23	7	10	51	99.1
			STD	6	12	1	4	2	2	0.8
			MAX	6	210	25	11	12	54	100.5
			MIN	6	174	21	0	7	48	98.1
256	7	29.00	AVG	7	189	23	5	15	54	100.4
			STD	7	25	3	6	4	6	2.6
			MAX	7	213	26	13	19	62	104.0
			MIN	7	152	19	0	8	44	98.0
263	7	30 00	AVC	7	31.8	39	27	45	91	97 2
205	/	50.00	CTD	י ר	50	55	27	17) L 1 1	J7.Z
			SID MV A	י ר	362	0	3 Q 9	17 59	10 <i>1</i>	100 6
			MIN	י ר	210	44	10	10	104	100.0
			MIN	/	219	Ζ Ι	ΤO	13	69	96.0
268	5	31.00	AVG	5	333	41	25	44	94	96.4
			STD	5	11	1	5	6	1	0.2
			MAX	5	346	42	31	51	96	96.7
			MIN	5	317	39	20	36	92	96.1
275	7	32.00	AVG	7	324	39	23	40	92	96.5
			STD	7	10	1	3	5	2	0.2
			MAX	7	337	41	27	46	94	96.7
			MIN	7	312	38	19	32	89	96.3

Pile: BPT3 Info: BECKER HAMMER

BL# end	bl/ft	depth ft	TYPE	#Bls	EFV ft-lb	ETR %	RX9 kips	RTL kips	FMX kips	BPM bl/min
285	10	33 00	AVC	10	337	а Д 1	23	37	100	96 6
205	ΤŪ	55.00	AVG STD	10	16	-1	20	י ג ר	2 100	0.2
			MAV	10	10	ے 15	20	16	100	0.2
			MAA	10	200	40	20 10	40	100	90.9
			MIN	ΤU	313	38	19	20	96	96.3
297	12	34.00	AVG	12	325	40	21	34	102	96.5
			STD	12	11	1	3	6	3	0.1
			MAX	12	346	42	28	46	106	96.7
			MIN	12	312	38	16	24	95	96.3
311	14	35 00	AVG	14	314	38	19	36	100	96 2
911	± 1	00.00	0110 0172	1 /	8	1	2	8	±00 3	03
			MAV	1 /	300	3 Q T	2/	18	103	96 7
			MIN	14	300	37	16	19	95	95.8
322	11	36.00	AVG	11	307	37	21	39	98	96.2
			STD	11	11	1	4	2	4	0.2
			MAX	11	322	39	28	43	104	96.4
			MIN	11	290	35	16	35	91	96.0
335	13	37.00	AVG	13	334	41	20	43	107	95.9
			STD	13	18	2	3	6	5	0.3
			MAX	13	364	44	26	61	112	96.3
			MIN	13	299	37	15	37	97	95.2
348	13	38.00	AVG	13	379	46	2.4	61	119	95.1
010	10	00.00	STD	13	11	1	5	5	2	0 2
			MAX	13	397	19	29	70	121	95 5
			MIN	13	362	4)	16	51	11/	91 7
			INI T IN	T D	302	44	ΤÜ	JI	114	94.1
363	15	39.00	AVG	15	379	46	30	69	122	94.9
			STD	15	17	2	3	4	3	0.2
			MAX	15	415	51	35	75	126	95.2
			MIN	15	360	44	24	62	116	94.6
413	12	43 00	AVG	50	372	45	28	124	123	954
110	± 4	10.00	CTD	50	48	6	10		16	1 4
			MAX	50	463	57	42	160	1 4 1	99 0
			MIN	50	255	31	0	23	81	94.0
421	8	44.00	AVG	8	389	48	26	146	137	94.9
			STD	8	11	2	6	3	5	0.2
			MAX	8	409	50	31	148	141	95.3
			MIN	8	371	45	18	140	130	94.6
433	12	45.00	AVG	12	401	49	28	154	144	94.7
			STD	12	11	1	6	6	5	0.4
			MAX	12	414	51	37	160	150	95.3
			MTN	12	382	47	17	138	132	94.0

Pile: BPT3 Info: BECKER HAMMER

BL#	b1/f+	depth ft	TYPE	#Bls	EFV ft_lb	ETR 2	RX9 kips	RTL	FMX	BPM bl/min
епа 117	DI/IC 1/	16 00	λVC	1 /		っ ち ()	s2	ктр5 153	ктр5 1/13	
77/	Τđ	40.00	AVG CTD	1 /	1/	2	32	1/	17	03
			MAV	14 1/	142	5.4	2 7 2	160	150	0.5
			MAA	14 17	44Z 201	10	27 27	109	109 111	95.0
			I™I ⊥ IN	14	291	40	Ζ Ι	120		93.0
457	10	47.00	AVG	10	397	48	31	136	123	94.8
			STD	10	11	2	3	6	6	0.5
			MAX	10	414	51	37	146	134	95.5
			MIN	10	379	46	27	128	115	94.0
471	14	48.00	AVG	14	429	53	37	154	138	94.3
		10.00	STD	14	9	1	5		5	0.2
			MAX	14	442	54	48	163	147	94 7
			MIN	14	416	51	28	147	131	94.0
196	1 ⊑	40.00	7,770	1 ⊑	$A \cap A$	ΕO	1 1	1.6.0	1 / 1	0.4 1
400	15	49.00	AVG	15	404	50	41	100 E	141	94.1
			SID	15	31	4	8	C ۱ ٦ ۲	4	0.2
			MAX	15	434	53	59	1/5	150	94.4
			MIN	15	300	37	35	153	135	93.8
517	31	50.00	AVG	23	362	44	73	163	133	93.8
			STD	23	14	2	4	9	8	0.1
			MAX	23	394	48	82	181	150	94.1
			MIN	23	329	40	64	150	123	93.7
545	28	51.00	AVG	28	352	43	71	171	140	93.8
			STD	28	11	1	3	8	7	0.1
			MAX	28	373	46	80	184	152	94.1
			MIN	28	332	41	67	158	126	93.7
503	1 9	52 00	AVC	1 9	351	13	60	139	1 2 5	9/ 2
595	40	JZ.00	AVG CTD	40	24	40	5	30 T20	12	94.2
			SID Mav	40	24	10	ך כב	105	150	0.3
			MAX	40	299	49	75	183	100	94.7
			I™I ⊥ IN	40	211	20	50	90	109	93.1
607	14	53.00	AVG	14	385	47	61	118	135	94.0
			STD	14	13	2	4	11	9	0.2
			MAX	14	409	50	66	134	152	94.3
			MIN	14	359	44	51	102	124	93.7
620	13	54.00	AVG	13	377	46	60	126	143	94.1
			STD	13	14	2	3	5	5	0.1
			MAX	13	401	49	66	134	148	94.3
			MIN	13	352	43	57	118	133	93.8
621	1 /	55 00	7,170	1 /	306	10	55	1 7 0	1/2	91 0
004	Τ4	55.00	AVG CTD	1 /1	10	49 1	55	л ТСО	143 N	>4.U ∩ 1
			D T D	14 1/				4 1 つ /	4 1 E O	U.L
			MAN	14 14	414	D L	0U	101	100	94.l

Pile: BPT3 Info: BECKER HAMMER

					· 					
 BL#		depth	TYPE	#Bls	EFV	ETR	RX9	RTL	FMX	BPM
end	bl/ft	ft			ft-lb	00	kips	kips	kips	bl/min
651	17	56.00	AVG	17	396	48	50	125	139	94.1
			STD	17	10	1	3	5	4	0.1
			MAX	17	411	50	57	136	149	94.3
			MIN	17	380	47	45	117	133	94.0
673	22	57.00	AVG	22	399	49	58	129	141	93.9
			STD	22	12	2	5	5	5	0.1
			MAX	22	417	51	66	139	152	94.1
			MIN	22	377	46	52	119	133	93.7
696	23	58.00	AVG	23	399	49	65	133	144	93.8
			STD	23	11	2	2	4	4	0.1
			MAX	23	414	51	69	141	153	94.0
			MIN	23	379	46	62	127	137	93.7
726	30	59.00	AVG	30	376	46	68	138	144	93.7
			STD	30	21	3	2	6	4	0.1
			MAX	30	398	49	73	153	154	93.8
			MIN	30	279	34	64	129	138	93.4
800	74	60.00	AVG	74	306	37	50	117	140	94.9
			STD	74	30	4	32	40	40	1.3
			MAX	74	392	48	87	170	192	99.0
			MIN	74	226	27	0	51	74	93.6
845	45	61.00	AVG	45	346	42	94	173	193	93.7
			STD	45	29	4	7	12	10	0.2
			MAX	45	391	48	104	189	208	94.0
			MIN	45	294	36	80	150	173	93.4
913	68	62.00	AVG	68	394	48	121	191	216	93.4
			STD	68	17	2	14	5	6	0.1
			MAX	68	418	51	146	200	228	93.6
			MIN	68	355	43	100	179	202	93.2
1144	288	62.80	AVG	231	344	42	153	195	217	93.3
			STD	231	41	5	7	7	12	0.1
			MAX	231	424	52	184	213	239	93.6
			MIN	231	275	33	139	176	189	93.1

BL# COMMENTS

214 REDRIVE 16-19'

363 REDRIVE 36-39

726 REDRIVE 56-59'

DRIVEN (2004-Jun-08 : BPT3.MDF)

Appendix E Downhole Geophysical Surveys

geophysical services a division of Blackhawk Geometrics

CHABOT DAM BOREHOLES WI-59, WI-60, WI-61 AND WI-62 **SUSPENSION P & S VELOCITIES**

May 28, 2004

CHABOT DAM BOREHOLES WI-59, WI-60, WI-61 AND WI-62 SUSPENSION P & S VELOCITIES

Prepared for

Robert Y. Chew Geotechnical, Inc. 26062 Eden Landing Road, Suite 7 Hayward, CA 94545 (510) 783-1881 Project 2004-005

Prepared by

GEOVision Geophysical Services 1151 Pomona Road, Unit P Corona, California 92882 (909) 549-1234 Project 4309

> May 28, 2004 Report 4309-02

TABLE OF CONTENTS

INTRODUCTION	1
SCOPE OF WORK	2
SUSPENSION INSTRUMENTATION	3
SUSPENSION MEASUREMENT PROCEDURES	6
SUSPENSION DATA ANALYSIS	7
SUSPENSION RESULTS	9
SUMMARY	
Discussion of Suspension Results	9
Quality Assurance	10
Data Reliability	10

i

FIGURES

Figure 1.	Concept illustrati	on of P-S logging system	11
Figure 2.	Example of filtere	ed (1400 Hz lowpass) record	12
Figure 3.	Example of unfilt	ered record	13
Figure 4. I	Borehole WI-59,	Suspension P- and S _H -wave velocities	14
Figure 5. I	Borehole WI-60,	Suspension P- and S _H -wave velocities	16
Figure 6. I	Borehole WI-61,	Suspension P- and S _H -wave velocities	19
Figure 7. I	Borehole WI-62,	Suspension P- and S _H -wave velocities	22

TABLES

Table 1. Borehole locations and logging dates	2
Table 2. Logging dates and depth ranges	6
Table 3. Borehole WI-59, Suspension R1-R2 depth, p	vick times, and velocities
Table 4. Borehole WI-60, Suspension R1-R2 depth, p	pick times, and velocities 17
Table 5. Borehole WI-61, Suspension R1-R2 depth, p	pick times, and velocities
Table 6. Borehole WI-62, Suspension R1-R2 depth, p	pick times, and velocities

ï

APPENDICES

APPENDIX A: Suspension velocity measurement quality assurance suspension source to receiver analysis results

APPENDIX A FIGURES

Figure A-1.	Borehole WI-59, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-2
Figure A-2.	Borehole WI-60, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-4
Figure A-3.	Borehole WI-61, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-6
Figure A-4.	Borehole WI-62, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-9
	APPENDIX A TABLES	
Table A-1.	Borehole WI-59, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-3
Table A-2.	Borehole WI-60, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-5
Table A-3.	Borehole WI-61, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-7
Table A-4.	Borehole WI-62, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	.A-10

APPENDIX B: OYO Model 170 suspension velocity logging system NIST traceable calibration procedure

iii

INTRODUCTION

OYO suspension velocity measurements were performed in four land boreholes on and adjacent to the Lake Chabot Dam near San Leandro, California, as a component of the evaluation of the dynamic stability of Chabot Dam. Suspension logging data acquisition was performed between May 4 and 13, 2004 by Rob Steller and Tony Martin of GEOVision. The work was performed under subcontract with Robert Y. Chew Geotechnical, Inc., with Mark McKee as the field liaison for Robert Chew.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of suspension velocity measurements collected between May 4 and 13, 2004, in the uncased boreholes designated WI-59 through WI-62, as detailed below. The purpose of these studies was to supplement stratigraphic information obtained during Robert Chew's soil sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth, which, in turn, can be used to characterize ground response to earthquake motion.

BOREHOLE	DATE	GENERAL	HANDHELD GPS		
DESIGNATION	LOGGED	LOCATION	COORDINATES		
WI-59	5/4/04	MIDDLE OF DOWNSTREAM SLOPE	37.729198 N	122.122340 W	
WI-60	5/6/04	BOTTOM OF DOWNSTREAM SLOPE, SOUTH SIDE	37.728865 N	122.122282 W	
WI-61	5/11/04	CREST OF DAM	37.729580 N	122.122206 W	
WI-62	5/13/04	BOTTOM OF DOWNSTREAM SLOPE, NORTH SIDE	37.729285 N	122.122020 W	

Table 1. Borehole locations and logging dates

The OYO Model 170 Suspension Logging Recorder and Suspension Logging Probe were used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.64 ft intervals. The acquired data was analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is:

Guidelines for Determining Design Basis Ground Motions, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

SUSPENSION INSTRUMENTATION

Suspension soil velocity measurements were performed using the Model 170 Suspension Logging system, manufactured by OYO Corporation. This system directly determines the average velocity of a 3.28 ft high segment of the soil column surrounding the borehole of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the borehole producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.28 ft, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in this survey is 19 ft, with the center point of the receiver pair 12.1 ft above the bottom end of the probe. The probe receives control signals from, and sends the amplified receiver signals to, instrumentation on the surface via an armored 7 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data.

The entire probe is suspended by the cable and centered in the borehole by nylon "whiskers", therefore, source motion is not coupled directly to the borehole walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the borehole and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil and rock as it impinges upon the borehole wall. These waves propagate through the soil and rock surrounding the borehole, in turn causing a pressure wave to be generated in the fluid

surrounding the receivers as the soil waves pass their location. Separation of the P and S_{H} -waves at the receivers is performed using the following steps:

- 1. Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal.
- 3. The 7.02 ft separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (foot versus inch scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H -wave arrivals; reversal of the source changes the polarity of the S_H -wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Model 170 has six channels (two simultaneous recording channels), each with a 12 bit 1024 sample record. The recorded data is displayed on a CRT display and on paper tape output as six channels with a common time scale. Data is stored on 3.5 inch floppy diskettes for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the CRT or paper tape allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Model 170 digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix B.

SUSPENSION MEASUREMENT PROCEDURES

All four boreholes were logged as uncased boreholes filled with bentonite or polymer based drilling fluid. The borehole probe was positioned with the mid-point of the receiver spacing at grade, and the mechanical and electronic depth counters were set to zero. The probe was lowered to the bottom of the borehole, then returned to the surface, stopping at 1.64 ft intervals to collect data, as summarized below.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth was printed on paper tape, checked, and recorded on diskette before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at grade was verified prior to removal from the borehole.

BOREHOLE NUMBER	RUN NUMBER	DEPTH RANGE (FEET)	DEPTH AS DRILLED (FEET)	LOST TO SLOUGH/COLLAPSE (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
WI-59	1	85.3 – 8.2	98	0.6	1.64	5/4/04
WI-59	2	13.1 – 1.6	98	NA	1.64	5/4/04
WI-60	1	91.9 – 75.5	105	1.0	1.64	5/6/04
WI-60	2	62.3 – 11.5	105	NA	1.64	5/6/04
WI-60	3	1.6 –19.7	105	NA	1.64	5/6/04
WI-60	4	78.7 – 57.4	105	NA	1.64	5/6/04
WI-61	1	152.6 – 24.6	166	1.3	1.64	5/11/04
WI-61	2	24.3 – 1.6	166	NA	1.64	5/11/04
WI-62	1	126.8 -12.0	140	1.1	1.64	5/13/04
WI-62	2	9.8 –1.6	140	1.1	1.64	5/13/04

Table 2. Logging dates and depth ranges

SUSPENSION DATA ANALYSIS

The recorded digital records were analyzed to locate the first minima on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.28 ft segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data.

The P-wave velocity calculated from the travel time over the 7.02 ft interval from source to receiver 1 (S-R1) was calculated and plotted for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.15 ft to correspond to the mid-point of the 7.02 ft S-R1 interval, as illustrated in Figure 1. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 3.9 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

The recorded digital records were studied to establish the presence of clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves at different depths, ranging from 700 Hz in the slowest zones to 2000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H -wave signal being filtered.

Generally, the first maxima was picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by borehole inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H -wave velocity calculated from the travel time over the 7.02 ft interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.15 ft to correspond to the mid-point of the 7.02 ft S-R1 interval. Travel times were obtained by picking the first break of the S_H -wave signal at the near receiver and subtracting 3.9 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.28 ft interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 ft/sec. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with an 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

SUSPENSION RESULTS

Suspension R1-R2 P- and S_H -wave velocities are plotted in Figures 4 through 7. The suspension velocity data presented in these figures are presented in Tables 3 through 6. P- and S_H -wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A1 through A4 to aid in visual comparison. It must be noted that R1-R2 data is an average velocity over a 3.28 ft segment of the soil column; S-R1 data is an average over 7.02 ft, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Tables A1 to A4. Good correspondence between the shape of the P- and S_H -wave velocity curves is observed for both these data sets. The velocities derived from S-R1 and R1-R2 data are in excellent agreement, providing verification of the higher resolution R1-R2 data.

Calibration procedures and records for the suspension measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Both P- and S_H -wave velocities were measured using the OYO Suspension Method in four uncased land borings at depths up to 152.6 ft below grade on Chabot Dam near San Leandro, Califonia. All boreholes were located in a rural environment, and no significant signal contamination from cultural vibration was observed.

All four borings were within several hundred feet of each other, but the velocity profiles are quite

different. Saturated soil, as indicated by a Vp above 5400 ft/sec, is seen in all borings, though there are indications of perched water tables and drain zones in several of the borings. The basement rock encountered in three of the borings is quite variable in it's S_{H} -wave velocities, both within a boring and between borings, indicating significant weathering.

Quality Assurance

These velocity measurements were performed using industry-standard or better methods for both measurements and analyses. All work was performed under GEOVision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.28 ft interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of $\pm - 5\%$. Standardized field procedures and quality assurance checks add to the reliability of these data.

Not to Scale

Figure 1. Concept illustration of P-S logging system

Figure 2. Example of filtered (1400 Hz lowpass) record

Figure 4. Borehole WI-59, Suspension P- and S_H-wave velocities

Depth				Pick ⁻	Velocity						
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
0.5	1.6	11.96	12.48		9.32	9.66	7.12	366		1202	
1.0	3.3	11.82	12.06	8.55	9.48	9.40	7.28	400	787	1312	2583
1.5	4.9	12.48	12.32	8.59	10.18	9.70	7.18	407	709	1334	2327
2.0	6.6	12.84	12.68	8.59	9.98	9.96	7.21	358	725	1176	2377
2.5	8.2	12.96	13.28	8.50	10.02	10.36	7.09	341	709	1120	2327
3.0	9.8	13.02	13.06	8.45	10.08	10.28	6.87	350	633	1147	2076
3.5	11.5	13.60	13.56	8.50	10.90	10.74	7.10	362	714	1189	2343
4.0	13.1	13.46	13.54	8.18	10.56	10.64	6.93	345	800	1131	2625
4.5	14.8	13.40	13.26	8.25	10.30	10.34	6.85	332	714	1090	2343
5.0	16.4	13.22	13.14	8.18	10.14	10.24	6.95	334	813	1097	2667
5.5	18.0	13.10	13.38	7.95	10.08	10.14	6.81	319	877	1048	2878
6.0	19.7	13.00	13.08	8.18	9.66	9.86	6.92	305	794	1000	2604
6.5	21.3	13.36	13.32	8.53	10.16	10.00	7.37	307	862	1006	2828
7.0	23.0	13.36	13.34	8.57	10.50	10.56	7.41	355	862	1163	2828
7.5	24.6	13.28	13.10	8.65	10.16	10.36	7.42	341	813	1120	2667
8.0	26.2	13.14	13.18	8.91	10.20	10.34	7.46	346	690	1135	2263
8.5	27.9	13.16	13.12	8.99	9.68	9.78	7.25	293	575	962	1886
9.0	29.5	13.34	13.40	9.01	9.56	9.60	7.04	264	508	866	1665
9.5	31.2	12.86	12.88	8.75	9.56	9.66	6.96	307	559	1006	1833
10.0	32.8	12.32	12.36	8.38	9.50	9.64	6.86	361	658	1184	2158
10.5	34.4	12.08	12.10	8.18	9.34	9.44	6.75	370	699	1215	2294
11.0	36.1	11.82	11.90	7.99	8.84	8.94	6.67	337	758	1105	2485
11.5	37.7	11.50	11.60	7.89	8.56	8.64	6.60	339	775	1112	2543
12.0	39.4	11.06	11.18	7.78	8.40	8.50	6.49	375	775	1229	2543
12.5	41.0	10.90	11.02	7.63	8.48	8.60	6.51	413	893	1356	2929
13.0	42.7	10.86	10.96	7.61	8.62	8.74	6.49	448	893	1471	2929
13.5	44.3	10.76	10.92	7.64	8.74	8.88	6.51	493	885	1616	2903
14.0	45.9	11.04	11.14	7.46	8.74	8.88	6.43	439	971	1439	3185
14.5	47.6	11.40	11.42	7.55	9.04	9.18	6.44	435	901	1426	2956
15.0	49.2	11.56	11.64	7.54	9.00	9.12	6.44	394	909	1292	2983
15.5	50.9	11.68	11.76	7.70	9.06	9.16	6.52	383	847	1257	2780
16.0	52.5	11.38	11.44	7.40	8.84	8.96	6.25	398	870	1307	2853
16.5	54.1	11.16	11.24	7.19	8.56	8.66	6.12	386	935	1267	3066
17.0	55.8	10.98	11.10	7.05	8.34	8.46	5.92	379	885	1243	2903
17.5	57.4	10.68	10.74	6.69	8.08	8.18	5.54	388	870	1272	2853
18.0	59.1	10.62	10.66	6.44	8.16	8.26	5.34	412	909	1350	2983
18.5	60.7	10.34	10.34	6.06	8.18	8.30	5.17	476	1124	1562	3686
19.0	62.3	10.34	10.42	5.94	8.20	8.34	5.17	474	1299	1555	4261
19.5	64.0	10.56	10.66	5.70	8.46	8.54	5.17	474	1887	1555	6190
20.0	65.6	10.66	10.76	5.70	8.52	8.58	5.18	463	1923	1519	6309
20.5	67.3	10.86	10.90	5.70	8.62	8.68	5.18	448	1923	1471	6309
21.0	68.9	11.00	11.08	5.74	8.80	8.92	5.20	459	1852	1505	6076
21.5	70.5	11.20	11.30	5.74	8.90	8.98	5.19	433	1818	1420	5965
22.0	72.2	11.86	11.88	5.77	9.32	9.36	5.23	395	1852	1297	6076
22.5	73.8	11.90	12.02	5.80	9.48	9.54	5.25	408	1818	1339	5965
23.0	75.5	12.10	12.12	5.83	9.66	9.74	5.27	415	1786	1361	5859
23.5	77.1	11.90	12.00	5.81	9.60	9.62	5.24	427	1754	1402	5756
24.0	78.7	12.42	12.48	5.84	9.60	9.64	5.26	353	1724	1159	5657
24.5	80.4	12.43	12.52	5.84	9.36	9.48	5.24	327	1681	1074	5514
25.0	82.0	11.99	12.10	5.80	9.20	9.29	5.23	357	1754	1172	5756
25.5	83.7	11.04	11.14	5.82	8.61	8.66	5.27	407	1835	1336	6020
26.0	85.3	10.28	10.26	5.72	7.34	7.44	5.17	347	1818	1139	5965

Table 3. Borehole WI-59, Suspension R1-R2 depth, pick times, and velocities

CHABOT DAM BORING WI-60

Figure 5. Borehole WI-60, Suspension P- and S_H-wave velocities

Depth				Pick ⁻	Velocity						
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S⊢	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
0.5	16	21.90	21.60	12 66	15 15	14 80	9 72	148	340	484	1116
1.0	3.3	21.75	21.55	12.74	14.75	14.45	9.64	142	323	465	1058
1.5	4.9	22.60	22.55	11.58	14.95	14.75	9.16	129	413	425	1356
2.0	6.6	22.00	21.35	11.68	15.20	15.25	8.88	155	357	509	1172
2.5	8.2	21.10	21.05	11.08	15.75	15.45	8.50	183	388	599	1272
3.0	9.8	19.95	19.30	10.80	14.35	13.95	8.38	183	413	599	1356
3.5	11.5	18.65	18.45	10.38	14.30	14.35	8.14	237	446	777	1465
4.0	13.1	20.05	19.30	10.26	13.95	13.60	8.10	169	463	556	1519
4.5	14.8	18.45	18.90	10.18	13.25	13.80	8.00	194	459	637	1505
5.0	16.4	15.55	15.60	9.78	11.50	11.45	7.78	244	500	800	1640
5.5	18.0	17.40	17.65	9.72	13.00	13.50	7.92	234	556	767	1823
6.0	19.7	17.05	17.30	9.64	13.15	13.20	7.86	250	562	820	1843
6.5	21.3	14.14	14.24	9.51	11.08	10.94	7.72	314	559	1032	1833
7.0	23.0	14.14	14.68	8.88	10.16	10.88	7.09	257	559	843	1833
7.5	24.6	14.36	14.38	8.11	10.90	10.74	6.48	282	613	924	2013
8.0	26.2	14.36	14.24	7.71	11.20	10.98	5.89	312	549	1022	1803
8.5	27.9	14.46	14.68	7.09	11.16	11.24	5.63	297	685	974	2247
9.0	29.5	14.54	14.64	6.49	11.08	11.22	5.54	291	1053	954	3454
9.5	31.2	14.18	14.46	6.10	10.70	10.94	5.48	286	1613	937	5292
10.0	32.8	13.96	15.38	6.06	10.22	11.46	5.44	261	1613	857	5292
10.5	34.4	14.04	14.04	6.07	10.40	10.40	5.45	275	1613	901	5292
11.0	36.1	13.50	13.26	6.08	9.92	10.28	5.48	305	1667	1000	5468
11.5	37.7	13.42	13.50	6.01	10.04	10.16	5.41	298	1667	976	5468
12.0	39.4	13.44	13.24	5.92	10.06	10.10	5.35	307	1754	1006	5756
12.5	41.0	13.16	13.24	5.98	9.98	9.88	5.41	306	1754	1003	5756
13.0	42.7	12.66	12.94	6.00	9.78	9.76	5.42	330	1724	1083	5657
13.5	44.3	12.58	12.56	5.94	9.54	9.52	5.41	329	1887	1079	6190
14.0	45.9	12.58	12.66	6.21	9.50	9.48	5.68	319	1887	1048	6190
14.5	47.6	12.34	12.40	6.42	9.16	9.50	5.87	329	1818	1079	5965
15.0	49.2	12.12	12.06	6.20	9.24	9.28	5.61	353	1695	1159	5561
15.5	50.9	12.02	12.06	6.12	9.52	9.50	5.61	395	1961	1297	6433
16.0	52.5	11.58	11.76	6.25	9.54	9.88	5.74	510	1961	1674	6433
16.5	54.1	11.16	11.44	6.16	8.84	9.28	5.58	446	1724	1465	5657
17.0	55.8	11.40	11.28	6.33	8.74	8.58	5.43	373	1111	1224	3645
17.5	57.4	11.16	11.20	6.10	8.08	8.38	5.33	339	1299	1112	4261
18.0	59.1	11.52	12.32	6.22	8.24	9.00	5.64	303	1724	994	5657
18.5	60.7	10.64	12.24	6.34	8.04	9.62	5.79	383	1818	1257	5965
19.0	62.3	11.32	11.50	6.16	9.40	9.48	5.64	508	1923	1665	6309
19.5	64.0	14.44	14.40	6.29	12.72	12.88	5.68	617	1639	2025	5378
20.0	65.6	13.85	13.95	6.16	12.30	12.25	5.66	615	2000	2019	6562
20.5	67.3	13.94	13.86	6.01	11.72	11.82	5.46	469	1818	1540	5965
21.0	68.9	13.82	13.94	6.09	10.20	10.28	5.39	275	1429	901	4687
21.5	70.5	11.28	12.00	6.18	7.68	8.36	5.42	276	1316	906	4317
22.0	72.2	10.02	10.72	5.93	7.34	8.04	5.39	373	1852	1224	6076
22.5	73.8	9.78	9.71	5.97	7.34	7.18	5.42	402	1818	1320	5965
23.0	75.5	9.10	9.15	6.04	7.12	7.23	5.50	513	1852	1682	6076
23.5	77.1	8.88	8.88	5.87	6.76	6.87	5.32	484	1802	1589	5911
24.0	78.7	8.20	8.88	5.75	6.58	7.28	5.25	621	2000	2038	6562
24.5	80.4	7.70	7.67	5.66	6.33	6.23	5.19	712	2128	2335	6981
25.0	82.0	7.74	7.86	5.58	6.28	6.29	5.10	660	2083	2166	6835

Table 4. Borehole WI-60, Suspension R1-R2 depth, pick times, and velocities

De	pth			Pick	Velocity						
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
25.5	83.7	7.41	7.43	5.65	6.06	6.03	5.13	727	1942	2386	6371
26.0	85.3	7.12	7.35	5.64	5.96	6.22	5.09	873	1835	2865	6020
26.5	86.9	7.10	7.07	5.58	5.74	5.81	5.11	763	2128	2504	6981
27.0	88.6	7.11	7.19	5.46	6.15	6.20	5.06	1026	2532	3365	8306
27.5	90.2	7.10	7.12	5.46	6.07	6.06	5.03	957	2326	3140	7630
28.0	91.9	7.08	7.14	5.42	5.91	6.08	5.00	897	2381	2942	7812

Table 4, continued. Borehole WI-60, Suspension R1-R2 depth, pick times, and velocities

Figure 6. Borehole WI-61, Suspension P- and S_H -wave velocities

Depth				Pick ⁻	Velocity						
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
0.5	1.6	12.90	15.28	8.94	9.70	12.34	7.48	326	685	1069	2247
1.0	3.3	13.82	13.90	9.08	10.36	10.60	7.62	296	685	971	2247
1.5	4.9	16.70	16.86	9.08	13.16	13.28	7.42	281	602	922	1976
2.0	6.6	14.30	15.02	8.52	12.36	12.30	7.48	429	962	1408	3155
2.5	8.2	14.04	15.18	8.49	11.66	12.72	7.51	413	1020	1356	3348
3.0	9.8	15.88	16.02	8.80	12.60	12.62	7.51	299	775	982	2543
3.5	11.5	16.30	16.50	9.11	12.34	12.76	7.65	260	685	852	2247
4.0	13.1	16.45		9.00	13.20		7.76	308	806	1009	2646
4.5	14.8	16.35	17.25	8.94	13.70	14.35	7.54	360	714	1182	2343
5.0	16.4	17.15	18.60	9.12	13.65	14.50	7.50	263	617	863	2025
5.5	18.0	15.95	16.40	8.86	12.65	12.85	7.48	292	725	958	2377
6.0	19.7	16.55	17.05	8.86	13.85	14.55	7.80	385	943	1262	3095
6.5	21.3	16.80	17.76	9.05	14.18	14.70	8.04	352	990	1155	3248
7.0	23.0	17.20	18.32	9.36	13.38	14.08	7.76	248	625	814	2051
7.5	24.6	17.62	17.86	9.47	13.08	13.10	7.54	215	518	706	1700
8.0	26.2	16.80	17.00	9.22	11.92	12.10	7.62	204	625	671	2051
8.5	27.9	14.96	15.90	8.66	11.18	11.50	7.17	244	671	802	2202
9.0	29.5	14.48	15.28	8.49	10.54	11.02	7.03	244	685	800	2247
9.5	31.2	14.62	14.70	8.46	10.56	10.32	7.06	237	714	777	2343
10.0	32.8	14.08	14.18	8.35	10.34	10.54	6.95	271	714	889	2343
10.5	34.4	12.96	13.72	8.24	9.98	10.68	6.88	332	735	1090	2412
11.0	36.1	14.06	13.96	8.04	10.32	10.56	6.78	280	794	919	2604
11.5	37.7	14.64	14.22	8.04	10.98	11.10	6.75	295	775	968	2543
12.0	39.4	15.42	14.90	7.99	11.88	11.64	6.72	294	787	965	2583
12.5	41.0	15.36	15.40	8.04	12.22	12.26	6.78	318	794	1045	2604
13.0	42.7	15.90	15.54	8.02	12.48	12.48	6.72	309	769	1013	2524
13.5	44.3	16.04	15.82	8.04	11.88	11.72	6.78	242	794	794	2604
14.0	45.9	15.60	15.82	7.96	11.06	11.16	6.64	217	758	713	2485
14.5	47.6	14.72	14.98	7.79	10.26	10.52	6.50	224	775	736	2543
15.0	49.2	13.82	13.82	7.85	9.78	9.62	6.47	243	725	796	2377
15.5	50.9	13.22	13.26	7.76	9.48	9.52	6.50	267	794	877	2604
16.0	52.5	12.42	12.38	7.71	9.12	9.20	6.36	309	741	1013	2430
16.5	54.1	11.90	11.86	7.59	8.90	8.92	6.32	337	787	1105	2583
17.0	55.8	11.62	11.66	7.56	8.74	8.96	6.37	358	840	1176	2757
17.5	57.4	11.76	11.68	7.49	8.84	8.86	6.40	348	917	1143	3010
18.0	59.1	11.70	11.78	7.65	9.10	9.20	6.54	386	901	1267	2956
18.5	60.7	11.74	11.58	7.77	9.22	9.22	6.57	410	833	1345	2734
19.0	62.3	11.64	11.72	7.68	9.22	9.16	6.54	402	877	1318	2878
19.5	64.0	11.74	11.68	7.74	9.08	9.08	6.51	380	813	1247	2667
20.0	65.6	11.66	11.70	7.76	8.78	8.90	6.44	352	758	1155	2485
20.5	67.3	11.64	11.62	7.71	8.80	8.88	6.37	358	746	1176	2448
21.0	68.9	11.42	11.52	7.29	8.76	8.84	6.23	375	943	1229	3095
21.5	70.5	11.52	11.44	7.49	8.96	8.94	6.29	395	833	1297	2734
22.0	72.2	11.56	11.64	7.45	9.00	8.98	6.30	383	870	1257	2853
22.5	73.8	11.62	11.66	6.09	9.00	9.06	5.22	383	1149	1257	3771
23.0	75.5	11.50	11.64	6.72	8.94	9.00	5.67	385	952	1262	3125
23.5	77.1	11.36	11.42	7.16	8.66	8.78	6.11	375	952	1229	3125
24.0	78.7	11.34	11.42	6.18	8.66	8.68	5.03	369	870	1211	2853
24.5	80.4	11.32	11.34	6.11	8.68	8.60	5.18	372	1075	1220	3528
25.0	82.0	11.18	11.28	7.26	8.56	8.60	6.13	377	885	1238	2903

Table 5. Borehole WI-61, Suspension R1-R2 depth, pick times, and velocities

De	pth			Pick	Velocity						
	[]	Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
25.5	83.7	11.28	11.32	7.33	8.64	8.69	6.16	380	855	1245	2804
26.0	85.3	11.05	11.01	7.10	8.51	8.52	6.14	398	1036	1305	3400
26.5	86.9	10.82	10.87	7.03	8.18	8.20	5.95	377	926	1236	3038
27.0	88.6	10.52	10.51	6.69	7.93	8.02	5.69	394	1000	1292	3281
27.5	90.2	10.19	10.27	6.51	7.54	7.65	5.41	380	909	1245	2983
28.0	91.9	9.96	10.05	6.26	7.46	7.58	5.34	402	1087	1320	3566
28.5	93.5	9.69	9.81	6.00	7.55	7.66	5.18	466	1220	1530	4001
29.0	95.1	9.50	9.61	5.79	7.49	7.63	5.10	501	1449	1645	4755
29.5	96.8	9.64	9.72	5.74	7.74	7.86	5.11	532	1600	1745	5249
30.0	98.4	9.54	9.66	5.73	7.66	7.78	5.23	532	1980	1745	6497
30.5	100.1	9.60	9.72	5.72	7.65	7.81	5.20	518	1923	1700	6309
31.0	101.7	9.59	9.72	5.73	7.66	7.80	5.22	519	1980	1704	6497
31.5	103.3	9.63	9.78	5.71	7.49	7.63	5.20	466	1980	1530	6497
32.0	105.0	9.79	9.93	5.72	7.64	7.76	5.21	463	1961	1519	6433
32.5	106.6	9.83	9.87	5.88	7.94	8.01	5.38	533	2020	1750	6628
33.0	108.3	10.01	10.06	6.04	8.15	8.24	5.57	543	2128	1783	6981
33.5	109.9	10.26	10.31	6.46	8.43	8.47	5.94	545	1905	1788	6249
34.0	111.5	10.55	10.62	7.06	8.61	8.66	6.24	513	1220	1682	4001
34.5	113.2	11.04	11.06	6.35	8.90	8.90	5.55	465	1250	1526	4101
35.0	114.8	11.25	11.33	7.17	8.99	9.06	6.26	442	1105	1448	3625
35.5	116.5	11.19	11.27	7.20	8.93	8.96	6.16	438	962	1436	3155
36.0	118.1	11.14	11.20	7.22	8.80	8.82	6.14	424	930	1390	3052
36.5	119.8	11.03	11.07	7.13	8.45	8.49	6.00	388	881	1272	2891
37.0	121.4	10.88	10.91	6.97	8.16	8.15	5.84	365	885	1197	2903
37.5	123.0	10.62	10.71	6.71	8.13	8.15	5.64	396	930	1299	3052
38.0	124.7	10.25	10.30	6.47	8.04	8.06	5.59	449	1136	1475	3728
38.5	126.3	10.27	10.26	6.24	8.18	8.27	5.35	490	1117	1608	3666
39.0	128.0	10.37	10.39	6.04	8.40	8.59	5.13	531	1099	1740	3605
39.5	129.6	10.46	10.55	5.88	8.29	8.38	5.14	461	1342	1512	4404
40.0	131.2	10.84	10.94	5.68	8.77	8.86	5.16	482	1905	1581	6249
40.5	132.9	10.69	10.77	5.56	8.66	8.67	5.03	484	1905	1589	6249
41.0	134.5	8.67	8.64	5.46	6.46	6.51	4.94	461	1923	1512	6309
41.5	136.2	8.19	8.31	5.35	6.67	6.75	4.90	649	2247	2130	7373
42.0	137.8	9.46		5.26	7.26		4.78	455	2105	1491	6907
42.5	139.4	6.96		5.10	5.39		4.60	637	2000	2090	6562
43.0	141.1	6.95	6.96	5.02	5.78	5.92	4.57	905	2247	2969	7373
43.5	142.7	6.16	6.29	5.03	5.43	5.48	4.75	1299	3509	4261	11512
44.0	144.4	6.36	6.39	5.06	5.81	5.80	4.79	1754	3704	5756	12151
44.5	146.0	6.46	6.99	5.08	5.89	6.40	4.80	1724	3636	5657	11930
45.0	147.6	6.71	7.00	5.08	6.15	6.44	4.79	1786	3509	5859	11512
45.5	149.3	6.61	6.74	5.09	5.91	5.99	4.78	1379	3279	4525	10757
46.0	150.9	6.98	7.11	5.15	5.65	5.79	4.74	755	2469	2476	8101
46.5	152.6	6.32	6.50	5.13	5.36	5.52	4.79	1031	2941	3382	9650
i	· · · · · · · · · · · · · · · · · · ·					i					

Table 5, continued. Borehole WI-61, Suspension R1-R2 depth, pick times, and velocities

DEPTH (METERS)

CHABOT DAM BORING WI-62

DEPTH (FEET)

Figure 7. Borehole WI-62, Suspension P- and S_H -wave velocities

Depth				Pick	Velocity						
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
0.5	1.6	10.56	10.54	7.83	7.70	7.90	6.58	364	800	1193	2625
1.0	3.3	10.18	10.16	7.61	7.70	7.86	6.49	418	893	1373	2929
1.5	4.9	10.34	10.42	7.51	8.32	8.30	6.65	483	1163	1585	3815
2.0	6.6	10.28	10.54	7.64	8.32	8.70	6.90	526	1351	1727	4434
2.5	8.2	10.88	10.90	7.89	8.74	8.90	6.97	483	1087	1585	3566
3.0	9.8	11.18	11.24	8.13	9.16	9.20	7.19	493	1064	1616	3490
3.5	11.5	11.72	11.68	8.36	9.44	9.24	7.12	424	806	1390	2646
4.0	13.1	12.26	12.36	7.97	9.52	9.68	6.85	369	893	1211	2929
4.5	14.8	12.42	12.58	8.43	9.70	9.72	7.07	358	735	1176	2412
5.0	16.4	12.70	12.92	8.59	10.18	10.18	7.41	380	847	1247	2780
5.5	18.0	13.28	13.20	8.91	10.78	10.52	7.75	386	862	1267	2828
6.0	19.7	13.56	13.32	8.97	10.46	10.72	7.83	351	877	1151	2878
6.5	21.3	14.06	14.34	9.45	11.20	11.06	8.16	326	775	1069	2543
7.0	23.0	16.04	17.26	9.37	12.34	13.76	7.88	278	671	911	2202
7.5	24.6	17.28	17.38	9.07	13.64	13.84	7.40	279	599	914	1965
8.0	26.2	17.86	17.92	8.96	14.34	14.50	7.29	288	599	945	1965
8.5	27.9	18.66	18.80	9.18	14.76	14.82	7.28	254	526	833	1727
9.0	29.5	19.44	19.56	8.83	14.62	14.58	7.11	204	581	670	1907
9.5	31.2	18.76	18.68	8.49	13.06	13.00	7.35	176	877	577	2878
10.0	32.8	17.96	17.98	8.59	11.88	12.04	7.27	166	758	546	2485
10.5	34.4	16.28	16.46	9.08	11.28	11.32	7.08	197	500	647	1640
11.0	36.1	16.16	16.14	8.77	10.94	10.86	7.11	190	602	625	1976
11.5	37.7	16.10	16.14	8.06	11.82	11.88	6.57	234	671	768	2202
12.0	39.4	14.68	14.72	8.12	11.72	11.74	6.58	337	649	1105	2130
12.5	41.0	14.56	14.68	8.11	11.36	11.46	6.58	312	654	1022	2144
13.0	42.7	14.34	14.54	7.96	10.66	10.64	6.49	264	680	866	2232
13.5	44.3	14.20	14.22	7.95	9.42	9.46	6.88	210	935	688	3066
14.0	45.9	13.48	13.56	7.80	9.32	9.46	6.94	242	1163	794	3815
14.5	47.6	12.20	12.25	8.07	9.20	9.24	6.79	333	781	1092	2563
15.0	49.2	11.86	11.94	8.11	9.10	9.14	6.70	360	709	1180	2327
15.5	50.9	11.66	11.70	8.02	8.84	8.96	6.66	360	735	1180	2412
16.0	52.5	11.56	11.56	7.97	8.88	8.90	6.66	375	763	1229	2504
16.5	54.1	11.42	11.44	7.85	8.92	8.94	6.63	400	820	1312	2689
17.0	55.8	11.32	11.42	7.71	8.82	8.94	6.49	402	820	1318	2689
17.5	57.4	11.28	11.36	7.58	8.76	8.86	6.38	398	833	1307	2734
18.0	59.1	11.20	11.36	7.53	8.70	8.82	6.20	397	755	1302	2476
18.5	60.7	10.98	11.06	7.22	8.58	8.72	6.04	422	844	1384	2769
19.0	62.3	10.72	10.88	7.00	8.34	8.52	5.83	422	851	1384	2792
19.5	64.0	10.52	10.62	6.69	8.10	8.20	5.63	413	948	1356	3110
20.0	65.6	10.34	10.36	6.26	7.90	8.02	5.38	418	1136	1373	3728
20.5	67.3	10.00		6.20	7.72	7.82	5.38	446	1212	1465	3977
21.0	68.9	9.78	9.76	5.97	7.58	7.68	5.28	467	1460	1533	4790
21.5	70.5	9.48	9.56	5.86	7.44	7.56	5.29	495	1754	1624	5756
22.0	72.2	9.64	9.70	5.74	7.58	7.68	5.20	490	1869	1608	6132
22.5	/3.8	9.98	10.18	5.91	/.98	8.12	5.36	493	1818	1616	5965
23.0	/5.5	10.24	10.34	5.97	8.26	8.30	5.42	498	1835	1632	6020
23.5	77.1	10.44	10.54	6.21	8.54	8.64	5.65	526	1786	1727	5859
24.0	/8.7	11.16		6.66	9.38	9.48	6.05	556	1653	1823	5423
24.5	80.4	11.70	11.76	6.94	9.62	9.70	6.32	483	1613	1585	5292
25.0	82.0	12.44	12.44	7.28	9.84	9.90	6.60	389	1460	1277	4790

Table 6. Borehole WI-62, Suspension R1-R2 depth, pick times, and velocities
De	pth	Pick Times							Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
25.5	83.7	12.32	12.38	7.70	9.92	10.02	6.57	420	885	1379	2903
26.0	85.3	12.28	12.38	7.53	9.62	9.70	6.26	375	787	1229	2583
26.5	86.9	12.32	12.40	7.38	9.04	9.12	5.71	305	601	1000	1970
27.0	88.6	11.80	11.86	6.95	8.58	8.72	5.55	314	714	1032	2343
27.5	90.2	11.16	11.36	6.37	8.36	8.54	5.45	356	1081	1168	3547
28.0	91.9	11.26	11.40	6.52	8.60	8.76	5.52	377	1005	1238	3297
28.5	93.5	11.72	11.72	6.22	8.92	9.00	5.62	362	1653	1189	5423
29.0	95.1	11.66	11.66	6.28	9.38	9.46	5.60	446	1471	1465	4825
29.5	96.8	11.66	11.76	6.26	9.98	10.10	5.64	599	1600	1965	5249
30.0	98.4	12.72	12.80	6.42	10.38	10.44	5.78	426	1550	1396	5087
30.5	100.1	13.54	13.58	6.55	10.30	10.36	5.46	310	917	1016	3010
31.0	101.7	13.60	13.54	6.38	10.20	10.30	5.41	301	1031	988	3382
31.5	103.3	12.36	12.66	5.72	9.12	9.60	5.15	317	1754	1042	5756
32.0	105.0	11.60	11.72	5.83	8.64	8.52	5.25	325	1709	1065	5608
32.5	106.6	11.94	12.02	5.76	8.44	8.56	5.19	287	1770	943	5807
33.0	108.3	10.06	11.08	5.69	6.54	7.54	5.02	283	1493	929	4897
33.5	109.9	10.77	10.87	5.58	7.84	7.85	5.03	336	1835	1103	6020
34.0	111.5		7.96	5.20	7.29	6.86	4.86	909	2941	2983	9650
34.5	113.2	7.47	7.99	5.22	6.37	6.71	4.84	840	2632	2757	8634
35.0	114.8	7.32	7.36	5.21	6.08	6.19	4.85	830	2740	2723	8989
35.5	116.5	7.36	7.16	5.17	6.24	6.14	4.84	935	2985	3066	9794
36.0	118.1		7.56	5.16		6.56	4.85	1000	3175	3281	10415
36.5	119.8	6.76	7.34	5.15	5.84	6.32	4.82	1031	3077	3382	10095
37.0	121.4	7.35	7.60	5.15	6.12	6.37	4.79	813	2778	2667	9113
37.5	123.0	7.59	7.72	5.15	6.15	6.40	4.78	725	2667	2377	8749
38.0	124.7	7.78	7.98	5.20	6.71	6.70	4.87	851	3030	2792	9942
38.5	126.3	7.09	7.43	5.26	6.12	6.27	4.91	939	2857	3081	9374

Table 6, continued. Borehole WI-62, Suspension R1-R2 depth, pick times, and velocities

24

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

VELOCITY (FEET/SECOND) R1-R2 Vs R1-R2 Vp S-R1 Vs S-R1 Vp DEPTH (METERS) **DEPTH (FEET)**

CHABOT DAM BORING WI-59

Figure A-1. Borehole WI-59, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data

	Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
2.1	373	711	6.8	1225	2334
2.6	367	707	8.5	1205	2319
3.1	342	743	10.1	1123	2438
3.6	331	778	11.8	1087	2552
4.1	333	786	13.4	1094	2580
4.6	322	828	15.0	1058	2717
5.1	323	819	16.7	1061	2687
5.6	327	854	18.3	1074	2803
6.1	322	868	20.0	1058	2848
6.6	324	841	21.6	1064	2759
7.1	326	801	23.2	1071	2627
7.6	346	778	24.9	1135	2552
8.1	339	680	26.5	1111	2232
8.6	322	666	28.2	1058	2184
9.1	324	660	29.8	1064	2164
9.6	326	674	31.4	1071	2211
10.1	348	680	33.1	1143	2232
10.6	356	714	34.7	1169	2342
11.1	365	759	36.4	1197	2489
11.6	365	783	38.0	1197	2570
12.1	376	828	39.6	1234	2717
12.6	406	865	41.3	1331	2836
13.1	438	919	42.9	1438	3017
13.6	461	908	44.6	1512	2979
14.1	459	879	46.2	1505	2882
14.6	441	897	47.9	1447	2942
15.1	423	897	49.5	1388	2942
15.6	412	927	51.1	1351	3042
16.1	398	931	52.8	1306	3056
16.6	401	916	54.4	1316	3004
17.1	404	923	56.1	1326	3030
17.6	420	960	57.7	1377	3150
18.1	442	995	59.3	1450	3266
18.6	465	1160	61.0	1525	3807
19.1	492	1437	62.6	1614	4715
19.6	494	1750	64.3	1622	5741
20.1	488	1855	65.9	1600	6085
20.6	475	1904	67.5	1558	6245
21.1	459	1904	69.2	1505	6245

	Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
22.1	435	1839	72.5	1427	6033
22.6	415	1824	74.1	1361	5983
23.1	404	1808	75.7	1326	5933
23.6	385	1764	77.4	1265	5788
24.1	376	1764	79.0	1234	5788
24.6	367	1722	80.7	1205	5650
25.1	365	1736	82.3	1197	5696
25.6	369	1736	83.9	1211	5696
26.1	376	1709	85.6	1234	5606
26.6	390	1839	87.2	1280	6033
27.1	435	1824	88.9	1427	5983
27.6	570	1955	90.5	1869	6414

21.6 447 1839 70.8 1468 6033						
	21.6	447	1839	70.8	1468	6033

Table A-1. Borehole WI-59, S - R1 quality assurance analysis P- and S_H -wave data

Figure A-2. Borehole WI-60, R1 - R2 high resolution analysis and S-R1 quality assurance analysis

	Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
2.1	190	438	6.8	625	1435
2.6	192	447	8.5	630	1468
3.1	193	487	10.1	633	1596
3.6	186	511	11.8	611	1675
4.1	179	534	13.4	588	1754
4.6	192	540	15.0	630	1771
5.1	199	565	16.7	653	1854
5.6	214	574	18.3	701	1883
6.1	225	590	20.0	738	1935
6.6	273	627	21.6	896	2058
7.1	295	596	23.2	969	1956
7.6	304	610	24.9	997	2000
8.1	297	644	26.5	975	2113
8.6	320	810	28.2	1050	2657
9.1	302	1043	29.8	992	3423
9.6	284	1356	31.4	932	4450
10.1	288	1517	33.1	944	4979
10.6	295	1669	34.7	967	5476
11.1	312	1722	36.4	1023	5650
11.6	316	1722	38.0	1038	5650
12.1	330	1764	39.6	1082	5788
12.6	347	1824	41.3	1137	5983
13.1	346	1808	42.9	1134	5933
13.6	343	1793	44.6	1126	5884
14.1	346	1793	46.2	1134	5884
14.6	359	1750	47.9	1179	5741
15.1	368	1793	49.5	1207	5884
15.6	374	1808	51.1	1227	5933
16.1	389	1793	52.8	1276	5884
16.6	389	1632	54.4	1276	5353
17.1	373	1550	56.1	1223	5085
17.6	373	1437	57.7	1223	4715
18.1	416	1476	59.3	1364	4843
18.6	448	1779	61.0	1471	5836
19.1	527	1736	62.6	1728	5696
19.6	480	1938	64.3	1575	6357
20.1	460	1709	65.9	1508	5606
20.6	386	1750	67.5	1267	5741
21.1	330	1709	69.2	1082	5606

	Velo	ocity		Velo	ocity
Depth (meters)	V-S _H (m/sec)	V-p (m/sec)	Depth (feet)	V- S _H (ft/sec)	V-p (ft/sec)
22.1	382	1887	72.5	1253	6191
22.6	478	1887	74.1	1568	6191
23.1	556	1887	75.7	1825	6191
23.6	610	1904	77.4	2000	6245
24.1	611	1946	79.0	2005	6385
24.6	644	1855	80.7	2113	6085
25.1	711	2038	82.3	2334	6685
25.6	775	2047	83.9	2543	6716
26.1	861	1855	85.6	2825	6085
26.6	912	2181	87.2	2991	7155
27.1	986	2438	88.9	3236	7999
27.6	1005	2398	90.5	3296	7867
28.1	1090	2346	92.1	3578	7697
28.6	1090	2226	93.8	3578	7302
29.1	1019	2466	95.4	3342	8090
29.6	1019	2438	97.1	3342	7999

21.6 365 1644 70.8 1197	5394

Table A-2. Borehole WI-60, S - R1 quality assurance analysis P- and $S_{\rm H}\mbox{-wave data}$

CHABOT DAM BORING WI-61

VELOCITY (FEET/SECOND)

Figure A-3. Borehole WI-61, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data

	Velo	ocity		Velo	ocity		Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p	Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)	(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
2.1	387	775	6.8	1269	2543	22.1	417	960	72.5	1366	3150
2.6	354	783	8.5	1161	2570	22.6	420	986	74.1	1377	3236
3.1	356	702	10.1	1169	2304	23.1	406	973	75.7	1331	3193
3.6	312	664	11.8	1024	2177	23.6	406	977	77.4	1331	3207
4.1	273	625	13.4	896	2052	24.1	406	964	79.0	1331	3164
4.6	242	689	15.0	794	2260	24.6	406	991	80.7	1331	3251
5.1	254	670	16.7	833	2197	25.1	426	1085	82.3	1399	3560
5.6	258	672	18.3	848	2204	25.6	431	1033	83.9	1415	3390
6.1	270	736	20.0	884	2413	26.1	430	1059	85.6	1410	3473
6.6	252	716	21.6	828	2350	26.6	431	1059	87.2	1415	3473
7.1	235	702	23.2	770	2304	27.1	423	1046	88.9	1388	3431
7.6	215	640	24.9	705	2100	27.6	429	1107	90.5	1407	3632
8.1	210	613	26.5	688	2011	28.1	461	1072	92.1	1513	3516
8.6	223	650	28.2	730	2132	28.6	507	1348	93.8	1663	4422
9.1	234	689	29.8	766	2260	29.1	554	1512	95.4	1816	4961
9.6	269	698	31.4	882	2289	29.6	559	1601	97.1	1833	5254
10.1	286	719	33.1	938	2357	30.1	559	1793	98.7	1833	5884
10.6	312	789	34.7	1024	2589	30.6	564	1879	100.3	1849	6164
11.1	316	816	36.4	1036	2676	31.1	525	1847	102.0	1724	6059
11.6	310	810	38.0	1019	2657	31.6	548	1855	103.6	1798	6085
12.1	326	810	39.6	1071	2657	32.1	534	1887	105.3	1754	6191
12.6	321	831	41.3	1052	2728	32.6	538	1839	106.9	1767	6033
13.1	300	861	42.9	985	2825	33.1	564	1929	108.5	1849	6328
13.6	270	868	44.6	884	2848	33.6	548	1904	110.2	1798	6245
14.1	251	844	46.2	823	2770	34.1	520	1625	111.8	1707	5333
14.6	244	854	47.9	799	2803	34.6	476	1437	113.5	1561	4715
15.1	265	868	49.5	869	2848	35.1	451	1183	115.1	1480	3880
15.6	286	893	51.1	938	2930	35.6	435	1077	116.7	1427	3533
16.1	326	893	52.8	1071	2930	36.1	414	1085	118.4	1359	3560
16.6	350	956	54.4	1148	3136	36.6	403	1031	120.0	1323	3382
17.1	373	908	56.1	1225	2979	37.1	409	1053	121.7	1341	3456
17.6	388	923	57.7	1274	3030	37.6	417	1107	123.3	1369	3632
18.1	412	964	59.3	1351	3164	38.1	447	1133	125.0	1468	3718
18.6	423	964	61.0	1388	3164	38.6	472	1183	126.6	1548	3880
19.1	415	935	62.6	1361	3069	39.1	491	1340	128.2	1611	4395
19.6	401	964	64.3	1316	3164	39.6	499	1405	129.9	1637	4608
20.1	391	900	65.9	1283	2954	40.1	483	1572	131.5	1586	5159
20.6	395	879	67.5	1297	2882	40.6	465	1863	133.2	1525	6111
21.1	398	879	69.2	1306	2882	41.1	458	1831	134.8	1502	6008
21.6	423	931	70.8	1388	3056	41.6	423	1938	136.4	1388	6357

Table A-3. Borehole WI-61, S - R1 quality assurance analysis P- and S_H -wave data

	Velo	ocity		Velo	ocity
Depth (meters)	V-S _H (m/sec)	V-p (m/sec)	Depth (feet)	V- S _H (ft/sec)	V-p (ft/sec)
42.1	414	2181	138.1	1359	7155
42.6	507	2398	139.7	1663	7867
43.1	743	2599	141.4	2438	8526
43.6	1167	2932	143.0	3828	9621
44.1	1348	3472	144.6	4422	11391
44.6	1550	3472	146.3	5085	11391
45.1	1240	3014	147.9	4068	9888
45.6	1048	2855	149.6	3439	9368
46.1	1064	2583	151.2	3490	8476
46.6	1028	2583	152.8	3374	8476
47.1	1064	2730	154.5	3490	8955
47.6	1148	2855	156.1	3767	9368
48.1	1315	3145	157.8	4315	10318

Table A-3, continued. Borehole WI-61, S - R1 quality assurance analysis P- and $S_{\rm H}\mbox{-wave data}$

Figure A-4. Borehole WI-62, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H-wave data

	Velo	ocity		Velo	ocity		Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p	Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)	(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
2.1	534	912	6.8	1754	2991	22.1	545	1904	72.5	1789	6245
2.6	519	897	8.5	1703	2942	22.6	568	1938	74.1	1864	6357
3.1	469	831	10.1	1538	2728	23.1	574	1938	75.7	1883	6357
3.6	452	804	11.8	1483	2637	23.6	562	1904	77.4	1844	6245
4.1	421	775	13.4	1380	2543	24.1	505	1808	79.0	1656	5933
4.6	390	707	15.0	1280	2319	24.6	474	1695	80.7	1554	5562
5.1	379	689	16.7	1245	2260	25.1	438	1466	82.3	1435	4810
5.6	372	728	18.3	1219	2389	25.6	379	1327	83.9	1245	4354
6.1	364	696	20.0	1195	2282	26.1	361	1031	85.6	1186	3382
6.6	335	687	21.6	1099	2253	26.6	350	899	87.2	1148	2948
7.1	311	642	23.2	1020	2106	27.1	350	921	88.9	1148	3023
7.6	322	629	24.9	1056	2064	27.6	361	1186	90.5	1186	3890
8.1	286	577	26.5	939	1893	28.1	405	1550	92.1	1328	5085
8.6	244	644	28.2	802	2113	28.6	445	1695	93.8	1459	5562
9.1	213	731	29.8	698	2397	29.1	462	1824	95.4	1515	5983
9.6	202	705	31.4	663	2312	29.6	438	1750	97.1	1435	5741
10.1	194	753	33.1	637	2472	30.1	405	1502	98.7	1328	4927
10.6	197	733	34.7	646	2405	30.6	377	1613	100.3	1236	5293
11.1	230	693	36.4	754	2275	31.1	339	1528	102.0	1112	5014
11.6	263	743	38.0	862	2438	31.6	322	1561	103.6	1056	5122
12.1	283	761	39.6	929	2498	32.1	326	1750	105.3	1069	5741
12.6	299	810	41.3	981	2657	32.6	335	1757	106.9	1099	5765
13.1	261	927	42.9	858	3042	33.1	377	2077	108.5	1236	6813
13.6	271	943	44.6	888	3095	33.6	438	2296	110.2	1435	7534
14.1	282	935	46.2	925	3069	34.1	580	2321	111.8	1904	7614
14.6	317	871	47.9	1039	2859	34.6	764	2696	113.5	2507	8844
15.1	377	835	49.5	1236	2738	35.1	822	2679	115.1	2697	8789
15.6	393	807	51.1	1290	2647	35.6	886	2730	116.7	2906	8955
16.1	402	822	52.8	1318	2697	36.1	904	2764	118.4	2966	9069
16.6	402	848	54.4	1318	2781	36.6	919	2782	120.0	3017	9127
17.1	411	893	56.1	1348	2930	37.1	889	2764	121.7	2918	9069
17.6	417	886	57.7	1369	2906	37.6	816	2800	123.3	2676	9186
18.1	417	916	59.3	1369	3004	38.1	912	2837	125.0	2991	9306
18.6	417	956	61.0	1369	3136	38.6	935	2855	126.6	3069	9368
19.1	424	1019	62.6	1391	3342	39.1	964	2893	128.2	3164	9493
19.6	431	1074	64.3	1413	3524	39.6	986	2893	129.9	3236	9493
20.1	441	1154	65.9	1447	3787	40.1	1064	2893	131.5	3490	9493
20.6	466	1307	67.5	1528	4289						
21.1	495	1486	69.2	1625	4876						
21.6	519	1722	70.8	1703	5650						

Table A-4. Borehole WI-62, S - R1 quality assurance analysis P- and S_H -wave data

APPENDIX B

OYO 170 VELOCITY LOGGING SYSTEM NIST TRACEABLE CALIBRATION PROCEDURE

B-1

TABLE B1

GEOVISION VELOCITY LOGGING EQUIPMENT DESCRIPTION AND CALIBRATION PROCEDURES

EQUIPMENT	FUNCTION	CALIBRATION	MAINTENANCE
		REQUIREMENTS	REQUIREMENTS
OYO Model 170 Suspension Logging Data Logger	Records data from probe and sends control signals to probe	Every twelve months, calibrate sample clock using an NTIS-traceable external signal counter and signal generator per attached procedure. (see Attachment B2)	Diagnose and repair by manufacturer's authorized representative if sample clock is out of specification or instrument fails.
OYO Model 170 Suspension Logging Probe	Suspended in borehole to provide both seismic source and sense wave arrivals at two locations 1 meter apart	No sensor calibration is necessary, as amplitude is not important to the velocity measurement.	Repair as needed by manufacturer-trained personnel.
Winch System (several interchangeable models available)	The winch and cable suspend the probe in the borehole and connect it to the data logger	No calibration required	Repair as needed. Lubricate moving parts frequently, and keep cable clean.

B-2

ATTACHMENT B2

CALIBRATION PROCEDURE FOR GEOVISION'S VELOCITY LOGGING SYSTEM

1.0 OYO Model 170 Data Logger Unit

1.1 Purpose

The purpose of this calibration procedure is to verify that the sample clock of the OYO Model 170 is accurate to within 1%.

1.2 Calibration Frequency

The calibration described in this procedure shall be performed every twelve months minimum.

1.3 Test Equipment

- Function Generator, Krohn Hite 5400B or equivalent
- Frequency Counter, HP 5315A or equivalent, current NIST traceable calibration
- Test cable, function generator to OYO 170 Data Logger input channels

1.4 Procedure

- Connect function generator to OYO Model 170 data logger using test cable
- Set up function generator to produce a 100.0 Hz, 0.250 volt peak square wave
- Record a data record with 100 microsecond sample period
- Measure the square wave frequency in the digital data using the data logger's screen display or utility software
- 1.5 Calibration Criteria

The measured square wave frequency in the digital data must fall between 99.0 and 101.0 Hz to be deemed acceptable. If outside this range, the data logger must be repaired and retested.

B-3

Calibration Report

Customer: GEOVISION Corona CA 92882

11562 Knott Avenue. Suite 3, Garden Grove, CA 92841 Ph. (714) 901-5659 Fax (714) 901-5649

Account: 15214

Instrument: BB9414 Digital Universal Test Center

Mfg: Tenma	Model: 72-5085	Serial #: MB00006378
Size:	Resltn:	Location:

Cust Ctrl:	Dept:	P.O.:
Job Number: L19625	Report Number: 146108	Report Date: 081903
Work Performed: Inspected	, cleaned, and calibrated.	Page 1 of 1

Work Performed: Inspected, cleaned, and calibrated.

Parts Replaced: None

Received Condition: In tolerance

Returned Condition: In tolerance

olitude ne wave distortion& flatness nare wave symmetry, rise & fall time
ne wave distortion& flatness nare wave symmetry, rise & fall time
are wave symmetry, rise & fall time
angle wave linearity
rise & fall time, output level

Ctrl #	Manufacture, Model #, & Description of standards used for calibration	Due Date	Traceability
T1300	Hewlett Packard 33120A Arbitary Waveform Ge	011704	83836
J8300	Hewlett Packard 8657A Signal Generator	052704	137792
P5300	Tektronix THS710 Oscilloscope w/DMM	030504	133387
L1600	Hewlett Packard 34401A Multimeter	121803	97906

Services provided conform to ANSI/NCSL Z540-1-1994, ISO 10012-1:1992 or ISO/IEC 17025 as applicable. All work performed complies with MPC Quality System QM 540-94, Rev 1e.

Environmental: 73 Deg F / 45% Rh	Test Date: 081903
Uncertainty: Accuracy Ratio > 4:1	Cycle: 12
Cal Procedure: Manufacture Man	Due Date: 081904
Technician: HOMERO E. CARDONA	Quality Approval:
	Form Cert 2-25-02

All standards used are either traceable to the National Institute of Standards and Technology or have intrinsic accuracy. All services performed have used proper manufacturer and industrial service techniques and are warranted for no less than (30) days. This report may not be reproduced in part without written permission of Micro Precision's Quality Assurance Manager.

geophysical services a division of Blackhawk GeoServices

SEISMOGRAPH CALIBRATION DATA SHEET REV 7/11/02

INSTRUMENT DATA		
SYSTEM MFR: ంగం	MODEL NO.: 3331	
SERIAL NO .: 1200 4	CALIBRATION DATE: 8/21/03	
BY: Q. STELLER	DUE DATE: 8/21/04	
COUNTER MFR: TENMA	MODEL NO .: 72 - 5085	
SERIAL NO .: 100006378	CALIBRATION DATE: 8/19/03	
BY: MICROPRECISION (DUE DATE: 8/19/04	
FCTN GEN MFR: TENMA	MODEL NO .: 72 - 5085	
SERIAL NO .: mB 0000 6578	CALIBRATION DATE: 0/19/03	
BY: MICROPRECISION	AU DUE DATE: 8/19/04	
SYSTEM SETTINGS:		
GAIN:	10	
FILTER:	20 KHC	
RANGE:	100 msec	
DELAY:	0	
STACK: 1 (STD)	1	
PULSE:	1.6 MSEC	
DISPLAY:	VARIABLE	
SYSTEM: DATE = CORRECT DAT	& TIME 8/21/03 4:29 Pm	
PROCEDURE: SET FREQUENCY TO 100.0HZ SC 0.25 VOLT PEAK. RECORD BOTH PRINT WAVEFORMS FROM ANAL AND PAPER TAPES TO THIS FOR 99.0 AND 101.0 HZ.	AREWAVE WITH AMPLITUDE APPROXIMATELY ON DISKETTE AND PAPER TAPE. ANALYZE AND SIS UTILITY. ATTACH PAPER COPIES OF PRINTOUT 1. AVERAGE FREQUENCY MUST BE BETWEEN	

WAVEFORM FILE NO FREQUENCY TIME FOR TIME FOR TIME FOR 9 AVERAGE

AS LEFT

100.0

100.0

AS FOUND

			9 CYCLES	9 CYCLES	CYCLES	FREQ.
			Hn	Hr	V	
SQUARE	001	(00.0	90.0	90.0	90.0	100.0
SQUARE	002	(00.0)	90.0	90.0	90.0	100.0
SINE	003	100.0	90.0	90.0	90.0	100.0
SINE	004	(00.0	90.0	90.0	90.0	100.0

ROBERT STELLER 8/21/03 12/82 NAME DATE SIGNATURE CALIBRATED BY:

SEISMOGRAPH CALIBRATION DATA SHEET REV 7/11/02

INSTRUMENT	DATA		
SYSTEM MFR:	040	MODEL NO .:	3331
SERIAL NO .:	15014	CALIBRATION DATE:	8/21/03
BY:	R. STELLER	DUE DATE:	8/21/04
COUNTER MFF	R: TENMA	MODEL NO .:	72 - 5085
SERIAL NO .:	MB 00006378	CALIBRATION DATE:	8/19/03
BY:	MICROPRECISION CAL	DUE DATE:	8/19/04
FCTN GEN MF	R: TENMA	MODEL NO .:	72 - 5085
SERIAL NO .:	MB 00006378	CALIBRATION DATE:	8/19/03
BY:	MICHOPPECISION CAL	DUE DATE:	8/19/04
SYSTEM SETT	INGS:		
GAIN:		10	
FILTER:		20 KHZ	
RANGE:		100 mse	C
DELAY:		0	
STACK: 1 (STD)	l	
PULSE:		1.6 m	SEL
DISPLAY:		VARI	ABLE
SYSTEM: DATE	E = CORRECT DATE & TIME	8/21/04 4	4:13 Pm
PROCEDURE: SET FREQUEN 0.25 VOLT PEA PRINT WAVEF	ICY TO 100.0HZ SQUAREWA K. RECORD BOTH ON DISK ORMS FROM ANALYSIS UTI	VE WITH AMPLITUDE A ETTE AND PAPER TAPE LITY. ATTACH PAPER C	PPROXIMATELY E. ANALYZE AND COPIES OF PRINTOUT
	DEC TO THE FORM AVED	ACE EDEOLIENCY MUS	

AND PAPER TAPES TO THIS FORM. AVERAGE FREQUENCY MUST BE BETWEEN 99.0 AND 101.0 HZ.

AS FOUND

CALIBRATED BY:

100.0

AS LEFT

100.0

WAVEFORM	FILE NO	FREQUENCY	TIMEFOR	I IIME FOR	TIME FOR 9	AVERAGE
	1 1		9 CYCLES	9 CYCLES	CYCLES	FREQ.
			Hn	Hr	V	
SQUARE	101	100.0	90.0	90.0	90.0	100.0
SQUARE	102	100.0	90.0	90.0	90.0	100.0
SINE	105	100.0	90.1	90.0	90.0	100.0
SINE	104	100.0	90.0	90.0	89.9	100.0

ROBERT STELLER 8/21/03 Ref SUMATURE

SEISMOGRAPH CALIBRATION DATA SHEET REV 7/11/02

INSTRUMENT I	DATA		
SYSTEM MFR:	040	MODEL NO .:	3331
SERIAL NO .:	19029	CALIBRATION DATE:	8/21/03
BY:	R. STELLER	DUE DATE:	8/21/04
COUNTER MFF	R: TENMA	MODEL NO .:	72- 5085
SERIAL NO .:	MB 00006378	CALIBRATION DATE:	8/19/03
BY:	MICHOPPECISION CAL	DUE DATE:	8/19/04
FCTN GEN MF	R: TENMA	MODEL NO .:	72 - 5085
SERIAL NO .:	MB00006378	CALIBRATION DATE:	8/19/03
BY:	MICROPRECISION CAL	DUE DATE:	8/19/04
SYSTEM SETT	INGS:		
GAIN:		10	
FILTER:		20 KHZ	
RANGE:		100 MSEC	
DELAY:		0	
STACK: 1 (STD)	l	
PULSE:		1.6 msec	
DISPLAY:		VARIABL	k
SYSTEM: DATE	E = CORRECT DATE & TIME	8/21/03 4	:39 Pm
PROOFFURE			

PROCEDURE:

SET FREQUENCY TO 100.0HZ SQUAREWAVE WITH AMPLITUDE APPROXIMATELY 0.25 VOLT PEAK. RECORD BOTH ON DISKETTE AND PAPER TAPE. ANALYZE AND PRINT WAVEFORMS FROM ANALYSIS UTILITY. ATTACH PAPER COPIES OF PRINTOUT AND PAPER TAPES TO THIS FORM. AVERAGE FREQUENCY MUST BE BETWEEN 99.0 AND 101.0 HZ.

AS FOUND

100.0

AS LEFT

100.0

WAVEFORM	FILE NO	FREQUENCY	INMEFOR	I I ME FOR	TIME FOR 9	AVERAGE
			9 CYCLES	9 CYCLES	CYCLES	FREQ.
10			Hn	Hr	V	
SQUARE	201	100.0	90.0	90.0	90.0	100.0
SQUARE	202	100.0	90.0	90.0	90.0	100.0
SINE	203	100.0	90.1	90.0	90.0	100.0
SINE	204	(00.0	90.0	90.0	90.1	100.0

8/21/03 R ROBERT STELLER NAME

CALIBRATED BY:

Appendix F Laboratory Testing

Appendix F Laboratory Testing

This appendix presents the results of laboratory tests completed as part of the Chabot Dam dynamic stability analysis.

The laboratory tests were conducted at the URS Pleasant Hill Laboratory. Prior to conducting the tests, the soil and rock samples were visually inspected in the laboratory. Appropriate tests were selected to assist in subsequent evaluation of material properties for use in the dynamic stability analyses. The types of tests performed are listed below, along with the ASTM standard procedure designations.

- In-Situ Moisture-density (ASTM D2216, D2937)
- Sieve analysis (ASTM D422)
- Hydrometer analysis (ASTM D422)
- Atterberg Limits (ASTM D4318)
- Consolidated-undrained (CIU) triaxial strength with pore pressure measurements (ASTM D4267).
- Unconfined compressive strength (ASTM D2166)

The laboratory tests were generally conducted in accordance with the noted ASTM standards. Consolidation pressures for the CIU tests were selected based on estimated overburden pressures at each sample depth and location. The test results are summarized in Table F-1. Summary plots of plasticity data are presented in Figures F-1 through F-5. Summary plots of gradation data are presented in Figures F-6 through F-25. The detailed lab sheets for the shear strength tests are also attached. Abbreviated test results for each sample are also included in the boring logs at the appropriate depths.

X:\X_GEO\CHABOT DAM\TASK G -- ENGINEERING REPORT\DRAFT FINAL\DYNAMIC STABILITY ANALYSIS_R4.DOC\30-AUG-05\\OAK $\,$ F-1

Sample Information		ample Information					Sieve / Hydrometer				Atterberg Limits			Triax	tial CIU		
Boring Number	Sample Number	Depth, feet	Elevation, feet	USCS Group Symbol	In Situ Water Content, %	In Situ Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	<5µ, %	LL	PL	PI	Max. Shear Stress, psi	Effective Confining Pressure, psi	Gs	Unconfin Compress Strengtl psf
WI-59	3B	6-6.5	204.0	SM	15.0	115.0	16	54	31		71	43	28				
WI-59	8B	17.5-18	192.5	SC	15.6	118.6	29	51	20		37	20	17				
WI-59	10	22.5-25	186.5	SC	19.0	112.3	12	67	20								
WI-59	13	31.5-33	178.0	SC			8	65	27		37	19	18				
WI-59	15	43-44.5	166.5	SC-SM			19	62	19	8							
WI-59	16B	48-48.5	162.0	SC-SM	8.3		21	64	15		24	17	7				
WI-59	18T	52.5-53.5	157.5	CL	19.0	106.9	4	43	53	27	34	17	17	27.5	41.7	2.71	
WI-59	18B	53.5-54.5	156.5	SC	15.7	114.9	9	63	29		34	18	16	72.0	83.3		
WI-59	21	60-61.5	149.5	SC			11	58	32								
WI-59	23B	67-68	143.0	SC			27	54	19								
WI-59	25	72.5-74	137.0	SM			30	49	21		56	31	25				
WI-59	26B	78-79	132.0	CL/CH	17.0	110.7	4	46	50	20	50	26	24	87.2	111.1	2.66	
WI-59	29B	86-86.5	124.0	CL			4	40	57	25	35	20	15				
WI-60	3	7-8.5	171.5	SC-SM			12	73	15		25	19	6				
WI-60	5B	12.5-13	166.5	SC-SM	12.8	117.6	26	60	13								
WI-60	7	17-18.5	161.5	GC			52	36	12								
WI-60	9	22-23.5	156.5	SC	12.1		32	54	14		33	20	13				
WI-60	12	29.5-31	149.0	SC			23	62	15								
WI-60	16	39.5-41	139.0	SC			23	55	22		34	21	13				
WI-60	18	44.5-46	134.0	SC			7	60	33	13	28	20	8				
WI-60	20	49.5-51	129.0	SC			24	57	19								
WI-60	21	52-53.5	126.5	SC			31	52	17								
WI-60	24	59.5-61	119.0	SC			21	59	20								
WI-60	27B	67.5-68.5	111.5	SC			23	61	17								
WI-60	28	69.5-71	109.0	GP-GC			68	23	9								
WI-61	2	5-6.5	244.5	SC			11	49	40								
WI-61	ЗA	8-8.5	242.0	SC	15.4	120.9	13	51	36								
WI-61	8B	26-56.5	224.0	CL	19.4	108.7	5	31	64		42	16	26				2,520
WI-61	10B	36-36.5	214.0	CL	19.0	110.6					41	20	21				2,400

TARIE F-1

I

	Sample Information				In Situ	In Situ	Si	Sieve / Hydrometer			Atte	rberg L	imits	Triax	tial CIU		Unconfined
Boring Number	Sample Number	Depth, feet	Elevation, feet	USCS Group Symbol	Water Content, %	Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	<5μ, %	LL	PL	PI	Max. Shear Stress, psi	Effective Confining Pressure, psi	Gs	Compressive Strength, psf
WI-61	11B	41-42.5	209.0	CL	14.5	119.8	7	43	50	28	38	18	20	21.8	27.8	2.70	
WI-61	13B	51-51.5	199.0	CL	20.5	109.6					37	17	20				2,440
WI-61	15B	61-62.5	189.0	SC	11.8	129.6	19	39	42	21	35	17	18	33.0	55.6	2.78	
WI-61	17B	71-71.5	179.0	SC	15.7	122.1	20	38	41								
WI-61	20B	81-81.5	169.0	CL	15.6	118.7	5	36	58		34	15	19				
WI-61	21	85-86.5	164.5	SC			14	56	29								
WI-61	23	95-96.5	154.5	SC			25	57	18								
WI-61	26C	111-111.5	139.0	SC	16.7	118.2	15	55	30								
WI-61	27	115-116.5	134.5	SC			18	43	40		41	21	20				
WI-61	29	125-126.5	124.5	SC			20	37	43		36	18	18				
WI-62	2	5-6.5	218.5	SC			21	47	31								
WI-62	3C	10-10.5	214.0	SM	11.8	128.9	23	52	24		64	42	22				
WI-62	7	21.5-23	202.0	SC			18	56	26		35	20	15				
WI-62	8	26-27.5	197.5	SC			19	55	26								
WI-62	10B	33-33.5	191.0	CL			6	43	51								
WI-62	11B	37-37.5	187.0	CL			0	30	70	26	29	17	12				
WI-62	12A	37.5-38	186.5	CL			0	14	86		39	17	22				
WI-62	12C	38.5-39	185.5	SC			9	62	28								
WI-62	14	45-46.5	178.5	CL			1	42	57		36	16	20				
WI-62	15	49-50.5	174.5	SC			10	63	28								
WI-62	18B	61-61.5	163.0	SC	15.1		18	65	18		33	20	13				
WI-62	20T	65-66	159.0	CL	23.8	101.5	5	43	52	33	44	22	22	34.4	55.6	2.71	
WI-62	20B	66.5-67.5	157.0	SC	14.2	120.2	16	57	27					57.9	138.9		
WI-62	20B	66.5-67.5	157.0	SC	16.2						42	21	21				
WI-62	22B	73-73.5	151.0	SC			17	59	24								
WI-62	25C	81.5-82	142.5	SC	21.0	106.0	0	54	46		28	16	12				
WI-62	26	83-84.5	140.5	SC			4	51	44								
WI-62	28	88.5-90	135.0	CL			0	44	55		31	15	16				
WI-62	30	93.5-95	130.0	SC			9	45	46		40	20	20				

URS

TABLE F-1

Lake Chabot Dam, San Leandro, California

	Sample	Informatio	n			1. 0.	Si	eve / Hy	ydromet	er	Atte	rberg L	imits	Triax	ial CIU		lless
Boring Number	Sample Number	Depth, feet	Elevation, feet	USCS Group Symbol	Water Content, %	Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	<5μ, %	LL	PL	PI	Max. Shear Stress, psi	Effective Confining Pressure, psi	Gs	Compressiv Strength, psf
WI-62	31B	97.5-100	126.5	SM	15.8	112.8	4	52	44	15				79.2	83.3	2.58	
WI-62	31B	97.5-100	126.5	SM	17.6						46	33	13				
WI-62	32	100-101.5	123.5	CL			3	45	52		32	19	13				
WI-62	34	105.5-107	118.0	SC			2	72	26		27	16	11				
WI-63	4	10.5-12	161.0	SC			19	63	18								
WI-63	7	18-19.5	153.5	SC			25	59	16								
WI-63	9B	24-24.5	148.0	SC			18	61	20	10	31	19	12				
WI-63	11	28-29.5	143.5	SC			23	61	16								
WI-63	14	35.5-37	136.0	SC			21	60	20								
WI-63	15	38-39.5	133.5	СН			0	19	81	50	60	24	36				
WI-63	16	40-42.5	131.0	SC	16.8		13	69	18		39	21	18				
WI-63	18	45.5-47	126.0	SC			31	51	18								
WI-64	5B	20-22.5	229.0	CL	19.9	107.3	12	29	59	37				11.0	13.9	2.69	
WI-64	5B	20-22.5	229.0	CL	22.9						44	21	23				
WI-64	9B	40-42.5	209.0	SC	18.6	109.9	11	40	49	31				36.0	83.3	2.66	
WI-64	9B	40-42.5	209.0	SC	20.0						42	21	21				
WI-64	12	55-56.5	194.5	SC			20	50	30		41	20	21				
WI-64	15C	71-71.5	179.0	SC	13.0		25	58	17		33	17	16				
WI-64	16	75-76.5	174.5	SC			19	62	18								
WI-64	19B	90.5-91	159.5	SC	16.6		15	61	24		43	21	22				
WI-64	20	95-96.5	154.5	SC			10	71	19								
WI-64	23C	111-111.5	139.0	SC	22.3		15	40	44		41	20	21				
WI-64	24B	115.5-116	134.5	SC			20	53	27								
WI-64	27	125-126.5	124.5	SC-SM			4	52	44								
WI-65	5	10-11.5	157.5	SC			11	70	18	1						<u> </u>	
WI-65	8	17.5-19	150.0	СН			0	3	97		60	22	38				
WI-65	10	22.5-24.5	144.7	CL			0	14	86	33							
WI-65	12B	28-29	140.0	SC			21	51	28	1							
WI-65	14	32 5-34	135.0	SC			31	53	16								

I

				SU	MMAF	ry of		BOR	ΑΤΟ	RY 1	IES	Γ DA	ATA				
	Sample	Informatio	n				Si	eve / Hy	ydromet	er	Atte	rberg L	imits	Triax	ial CIU		Unconfined
Boring Number	Sample Number	Depth, feet	Elevation, feet	USCS Group Symbol	Water Content, %	Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	<5μ, %	LL	PL	PI	Max. Shear Stress, psi	Effective Confining Pressure, psi	Gs	Compressive Strength, psf
WI-65	19	45-46.5	122.5	SC			23	62	15								
WI-65	22	52.5-54	115.0	SC			26	51	23								
WI-65	23	55-56.5	112.5	SC			0	82	18								
WI-65	25	57.5-59	110.0	SC			23	58	19								
WI-66	2B	7-7.5	172.0	SC	20.2		14	49	37		37	18	19				
WI-66	5B	15.5-16.5	163.5	CL			1	27	73								
WI-66	8T	24-25	155.0	CL	17.3	112.1	0	42	58					30.8	13.9	2.65	
WI-66	8T	24-25	155.0	CL	17.2						27	17	10				
WI-66	8B	25-26	154.0	SC	12.5	122.4	16	42	42	19				32.9	27.8		
WI-66	8B	25-26	154.0	SC	22.4						28	17	11				
WI-66	13	33-34.5	145.5	SC			38	45	17								
WI-66	16B	39-40	140.0	CL			1	48	51		28	18	10				
WI-66	18	46-47.5	132.5	CL			8	30	62		36	17	19				
WI-67	2	10-12.5	163.0	CL			0	19	81	49	44	21	23				
WI-67	6A	19.5-21	154.5	CL	28.6	92.8	8	27	64	36				15.0	55.6	2.66	
WI-67	6A	19.5-21	154.5	CL	22.4						37	18	19				
WI-67	7	21.5-23	152.0	SC			29	55	16								
WI-67	9A	26.5-27.5	147.5	SC			15	53	32								
WI-67	14B	41-41.5	133.0	SC	16.7		28	40	32		34	20	14				
WI-67	18A	50.5-51	123.5	CL	20.7		0	31	69		32	16	16				

URS

TABLE F-1SUMMARY OF LABORATORY TEST DATA

____CHABOTDAM.GPJ; 08/19/2004

Dynamic Stability of Chabot Dam Lake Chabot Dam, San Leandro, California

Sheet 4 of 4

Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	PI	Classification
WI-59	3B	6-6.5		15	71	43	28	Silty Sand with Gravel (SM)
WI-59	8B	17.5-18		16	37	20	17	Clayey Sand with Gravel (SC)
WI-59	13	31.5-33		12	37	19	18	Clayey Sand (SC)
WI-59	16B	48-49.5	*	8	24	17	7	Silty Clayey Sand with Gravel (SC-SM)
WI-59	18T	52.5-53.5	•	19	34	17	17	Sandy Clay (CL)
WI-59	18B	53.5-54.5	•	16	34	18	16	Clayey Sand (SC)
WI-59	25	72.5-74	0	15	56	31	25	Silty Sand with Gravel (SM)
WI-59	26B	78-79		17	50	26	24	Sandy Clay (CL/CH)
WI-59	29B	86-86.5	\otimes		35	20	15	Sandy Clay (CL)
WI-60	3	7-8.5	\oplus	9	25	19	6	Silty Clayey Sand (SC-SM)
WI-60	9	22-23.5		12	33	20	13	Clayey Sand with Gravel (SC)
WI-60	16	39.5-41	Θ	16	34	21	13	Clayey Sand with Gravel (SC)
Dynamic St Lake Chabo 26814536.C0	ability of C ot Dam, Sar 0000	habot D Leandro	am o, Califc	ornia				PLASTICITY CHART
				1	LIR	S -		Figure F-1

Т

	Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	PI	Classification
$\left \right $	WI-60	18	44.5-46	•		28	20	8	Clayey Sand (SC)
	WI-61	8B	26-56.5		19	42	16	26	Sandy Clay (CL)
	WI-61	10B	36-36.5		19	41	20	21	Sandy Clay (CL)
	WI-61	11B	41-42.5	*	15	38	18	20	Sandy Clay (CL)
	WI-61	13B	51-51.5	•	20	37	17	20	Sandy Clay (CL)
	WI-61	15B	61-62.5	0	12	35	17	18	Clayey Sand with Gravel (SC)
	WI-61	20B	81-81.5	0	16	34	15	19	Sandy Clay (CL)
	WI-61	27	115-116.5	\triangle	16	41	21	20	Clayey Sand with Gravel (SC)
	WI-61	29	125-126.5	\otimes	12	36	18	18	Clayey Sand with Gravel (SC)
	WI-62	3C	10-10.5	\oplus	12	64	42	22	Silty Sand with Gravel (SM)
	WI-62	7	21.5-23		15	35	20	15	Clayey Sand with Gravel (SC)
	WI-62	11B	37-37.5	$\mathbf{\Theta}$		29	17	12	Sandy Clay (CL)
	Dynamic St .ake Chabo :6814536.C0	ability of C t Dam, Sar)000	habot D Leandr	am o, Califo	ornia				PLASTICITY CHART
2	26814536.CC	0000			1	UR	S -		Figure F-2

Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	PI	Classification
WI-62	12A	37.5-38	•	28	39	17	22	Clay (CL)
WI-62	14	45-46.5		22	36	16	20	Sandy Clay (CL)
WI-62	18B	61-61.5		15	33	20	13	Clayey Sand with Gravel (SC)
WI-62	20T	65-66	*	24	44	22	22	Sandy Clay (CL)
WI-62	20B	66.5-67.5	•	16	42	21	21	Clayey Sand with Gravel (SC)
WI-62	25C	81.5-82	•	21	28	16	12	Clayey Sand (SC)
WI-62	28	88.5-90	0	15	31	15	16	Sandy Clay (CL)
WI-62	30	93.5-95		19	40	20	20	Clayey Sand (SC)
WI-62	31B	97.5-100	\otimes	18	46	33	13	Silty Sand (SM)
WI-62	32	100-101.5	\oplus	18	33	19	14	Sandy Clay (CL)
WI-62	34	105.5-107		15	27	16	11	Clayey Sand (SC)
WI-63	9B	24-24.5	Θ		31	19	12	Clayey Sand with Gravel (SC)
Dynamic St Lake Chabo 26814536 C(ability of C ot Dam, Sar	habot D n Leandr	am o, Califo	ornia				PLASTICITY CHART
20014000.00					ITP	S _		Figure F-3

Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	PI	Classification
WI-63	15	38-39.5	•		60	24	36	Clay with Sand (CH)
WI-63	16	40-42.5		17	39	21	18	Clayey Sand (SC)
WI-64	5B	20-22.5		23	44	21	23	Sandy Clay (CL)
WI-64	9B	40-42.5	*	20	42	21	21	Clayey Sand (SC)
WI-64	12	55-56.5	•	17	41	20	21	Clayey Sand with Gravel (SC)
WI-64	15C	71-71.5	0	13	33	17	16	Clayey Sand with Gravel (SC)
WI-64	19B	90.5-91	0	17	43	21	22	Clayey Sand with Gravel (SC)
WI-64	23C	111-111.5	\triangle	22	41	20	21	Clayey Sand with Gravel (SC)
WI-65	8	17.5-19	\otimes	36	60	22	38	Clay (CH)
WI-66	2B	7-7.5	\oplus	20	37	18	19	Clayey Sand (SC)
WI-66	8T	24-25		17	27	17	10	Sandy Clay (CL)
WI-66	8B	25-26	•	22	28	17	11	Clayey Sand with Gravel (SC)
Dynamic St Lake Chabo 26814536.C0	ability of C ot Dam, Sar 0000	habot D Leandr	am o, Califo	ornia				
					UR	5-		

Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	PI	Classification
WI-66	16B	39-40	•	17	28	18	10	Sandy Clay (CL)
WI-66	18	46-47.5		17	36	17	19	Sandy Clay (CL)
WI-67	2	10-12.5			44	21	23	Clay with Sand (CL)
WI-67	6A	19.5-21	*	22	37	18	19	Sandy Clay (CL)
WI-67	14B	41-41.5	•	17	34	20	14	Clayey Sand with Gravel (SC)
WI-67	18A	50.5-51	•	21	32	16	16	Sandy Clay (CL)

	,		
Dynamic Stability of Chabot Dam Lake Chabot Dam, San Leandro, California			PLASTICITY CHART
26814536.C0000			Figure F-5

PJ; 8/2/2	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
DAM.G	WI-59	3B	6-6.5	•	71	28	Silty Sand with Gravel (SM)
ABOTC	WI-59	8B	17.5-18	X	37	17	Clayey Sand with Gravel (SC)
K CH	WI-59	10	22.5-25				Clayey Sand (SC)
ile: OA	WI-59	13	31.5-33	*	37	18	Clayey Sand (SC)
AK;	WI-59	15	43-44.5	٠			Silty Clayey Sand with Gravel (SC-SM)
5_CURVES_C							
port: SIEVE)ynamic Stal .ake Chabot	bility of Cha Dam, San Le	bot Dam eandro, C	alifornia	3		PARTICLE SIZE DISTRIBUTION CURVES
<u>a</u> 2	6814536.C000	0				_ T 1	Figure F-6

	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
	WI-59	16B	48-49.5	•	24	7	Silty Clayey Sand with Gravel (SC-SM)
	WI-59	18T	52.5-53.5		34	17	Sandy Clay (CL)
	WI-59	18B	53.5-54.5		34	16	Clayey Sand (SC)
0.0	WI-59	21	60-61.5	*			Clayey Sand (SC)
	WI-59	23B	67-68	٠			Clayey Sand with Gravel (SC)
)ynamic Stal ake Chabot	bility of Cha Dam, San Lo	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES
2	6814536.C000	0				_ 21	Figure F-7
						Ū	

PJ; 8/2/2(Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
DAM.G	WI-59	25	72.5-74	•	56	25	Silty Sand with Gravel (SM)
ABOTI	WI-59	26B	78-79		50	24	Sandy Clay (CL/CH)
K_CH	WI-59	29B	86-86.5		35	15	Sandy Clay (CL)
ile: OA	WI-60	3	7-8.5	*	25	6	Silty Clayey Sand (SC-SM)
AK; F	WI-60	5B	12.5-13	•			Silty Clayey Sand with Gravel (SC-SM)
5_CURVES_C							
port: SIEVE_	Dynamic Sta Lake Chabot	bility of Cha Dam, San Le	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES
Re	26814536.C000	00				_ 27	DC Figure F-8
						U	

;	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
	WI-60	7	17-18.5	•			Clayey Gravel with Sand (GC)
ABUIL	WI-60	9	22-23.5		33	13	Clayey Sand with Gravel (SC)
	WI-60	12	29.5-31				Clayey Sand with Gravel (SC)
IIe: OA	WI-60	16	39.5-41	*	34	13	Clayey Sand with Gravel (SC)
AK;	WI-60	18	44.5-46	•	28	8	Clayey Sand (SC)
KVES_O							
	Jynamic Sta .ake Chabot	Dam, San L	bot Dam eandro, C	alifornia	a		DISTRIBUTION CURVES
<u>a</u> 2	6814536.C000	0				-	Figure F-9

PJ; 8/2/2(Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification		
DAM.G	WI-60	20	49.5-501	•			Clayey Sand with Gravel (SC)		
ABOTI	WI-60	21	52-53.5				Clayey Sand with Gravel (SC)		
CH	WI-60	24	59.5-61				Clayey Sand with Gravel (SC)		
ile: OA	WI-60	27B	67.5-68.5	*			Clayey Sand with Gravel (SC)		
AK; F	WI-60	28	69.5-71	۲			Poorly Graded Gravel with Clay (GP-GC)		
port: SIEV	Dynamic Stal Lake Chabot	Dility of Cha Dam, San Le	bot Dam eandro, C	alifornia	a		DISTRIBUTION CURVES		
L Ref	26814536.C000	0				_ 2 2	Figure F-10		
						J			

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
WI-61	2	5-6.5	•			Clayey Sand (SC)
WI-61	3A	8-8.5				Clayey Sand (SC)
WI-61	8B	26-56.5		42	26	Sandy Clay (CL)
WI-61	11B	41-42.5	*	38	20	Sandy Clay (CL)
WI-61	15B	61-62.5	۲	35	18	Clayey Sand with Gravel (SC)
vnamic Stat	bility of Cha	bot Dam				PARTICLE SIZE
ynanne Star	Dom Son I	oondro C	alifornia	•		DISTRIBUTION CURVES

17B 20B 21	71-71.5 81-81.5 85-86.5	•	34		Clayey Sand with Gravel (SC)
20B 21	81-81.5 85-86.5		34		
21	85-86.5			19	Sandy Clay (CL)
	1				Clayey Sand (SC)
23	95-96.5	*			Clayey Sand with Gravel (SC)
26C	111-111.5	•			Clayey Sand with Gravel (SC)
ity of Chal am, San Le	bot Dam eandro, C	alifornia	<u> </u>		PARTICLE SIZE DISTRIBUTION CURVES
					Figure F-12
	26C y of Cha n, San Lo	26C 111-111.5 Sy of Chabot Dam m, San Leandro, C	26C 111-111.5 ⊙ Sy of Chabot Dam m, San Leandro, California	26C 111-111.5 ⊙ Cy of Chabot Dam m, San Leandro, California	26C 111-111.5 ⊙ ay of Chabot Dam m, San Leandro, California

	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification			
DAM.G	WI-61	27	115-116.5	•	41	20	Clayey Sand with Gravel (SC)			
ABUIL	WI-61	29	125-126.5	X	36	18	Clayey Sand with Gravel (SC)			
CH	WI-62	2	5-6.5				Clayey Sand with Gravel (SC)			
ile: OA	WI-62	3C	10-10.5	*	64	22	Silty Sand with Gravel (SM)			
AK;	WI-62	7	21.5-23	٠	35	15	Clayey Sand with Gravel (SC)			
5_CURVES_C										
port: SIEVE	Dynamic Stal .ake Chabot	bility of Cha Dam, San Lo	bot Dam eandro, C	alifornia	a	PARTICLE SIZE DISTRIBUTION CURVES				
Z Ret	6814536.C000	0				_ 2 1	Figure F-13			
						Ū				

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
WI-62	8	26-27.5	•			Clayey Sand with Gravel (SC)
WI-62	10B	33-33.5				Sandy Clay (CL)
WI-62	11B	37-37.5		29	12	Sandy Clay (CL)
WI-62	12A	37.5-38	*	39	22	Clay (CL)
WI-62	12C	38.5-39	•			Clayey Sand (SC)
)ynamic Stal .ake Chabot	bility of Chal Dam, San Le	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES
6814536.C000	0				_ 21	BC Figure F-14
	Boring Number WI-62 WI-62 WI-62 WI-62 WI-62 WI-62	Boring NumberSample NumberWI-628WI-6210BWI-6211BWI-6212AWI-6212C	Boring NumberSample NumberDepth (feet)WI-62826-27.5WI-6210B33-33.5WI-6211B37-37.5WI-6212A37.5-38WI-6212C38.5-39Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, C 6814536.C0000	Boring NumberSample NumberDepth (feet)SymbolWI-62826-27.5•WI-6210B33-33.5IWI-6211B37-37.5•WI-6212A37.5-38*WI-6212C38.5-39•Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000Sample Sample	Boring NumberSample NumberDepth (feet)SymbolLLWI-62826-27.5●WI-6210B33-33.5IWI-6211B37-37.5▲29WI-6212A37.5-38★39WI-6212C38.5-39⊙Oynamic Stability of Chabot Dam 	Boring Number Sample Number Depth (feet) Symbol LL PI WI-62 8 26-27.5 ● - - - WI-62 10B 33-33.5 Image: Comparison of the symbol of

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification		
WI-62	14	45-46.5	•	36	20	Sandy Clay (CL)		
WI-62	15	49-50.5	X			Clayey Sand (SC)		
WI-62	18B	61-61.5		33	13	Clayey Sand with Gravel (SC)		
WI-62	20T	65-66	*	44	22	Sandy Clay (CL)		
WI-62	20B	66.5-67.5	•			Clayey Sand with Gravel (SC)		
)ynamic Stal .ake Chabot	bility of Cha Dam, San Le	bot Dam eandro, C	alifornia	3	PARTICLE SIZE DISTRIBUTION CURVES			
6814536.C000	0				_ 21	DC Figure F-15		
	Boring Number WI-62 WI-62 <td< td=""><td>Boring NumberSample NumberWI-6214WI-6215WI-6218BWI-6220TWI-6220B</td><td>Boring NumberSample NumberDepth (feet)WI-621445-46.5WI-621549-50.5WI-6218B61-61.5WI-6220T65-66WI-6220B66.5-67.5Oynamic Stability of Chabot Dam .ake Chabot Dam, San Leandro, C 6814536.C0000</td><td>Boring NumberSample NumberDepth (feet)SymbolWI-621445-46.5•WI-621549-50.5IWI-6218B61-61.5•WI-6220T65-66*WI-6220B66.5-67.5•Oynamic Stability of Chabot Dam .ake Chabot Dam, San Leandro, California 6814536.C0000Sample Sample</br></td><td>Boring Number Sample Number Depth (feet) Symbol LL WI-62 14 45-46.5 • 36 WI-62 15 49-50.5 I - WI-62 18B 61-61.5 ▲ 33 WI-62 20T 65-66 ★ 44 WI-62 20B 66.5-67.5 • - Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000 -</td><td>Boring Number Sample Number Depth (feet) Symbol LL PI WI-62 14 45-46.5 ● 36 20 WI-62 15 49-50.5 I – – WI-62 18B 61-61.5 ▲ 33 13 WI-62 20T 65-66 ★ 44 22 WI-62 20B 66.5-67.5 ⊙ – – Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000 – – –</td></td<>	Boring NumberSample NumberWI-6214WI-6215WI-6218BWI-6220TWI-6220B	Boring NumberSample NumberDepth (feet)WI-621445-46.5WI-621549-50.5WI-6218B61-61.5WI-6220T65-66WI-6220B66.5-67.5Oynamic Stability of Chabot Dam .ake Chabot Dam, San Leandro, C 6814536.C0000	Boring NumberSample NumberDepth (feet)SymbolWI-621445-46.5•WI-621549-50.5IWI-6218B61-61.5•WI-6220T65-66*WI-6220B66.5-67.5•Oynamic Stability of Chabot Dam 	Boring Number Sample Number Depth (feet) Symbol LL WI-62 14 45-46.5 • 36 WI-62 15 49-50.5 I - WI-62 18B 61-61.5 ▲ 33 WI-62 20T 65-66 ★ 44 WI-62 20B 66.5-67.5 • - Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000 -	Boring Number Sample Number Depth (feet) Symbol LL PI WI-62 14 45-46.5 ● 36 20 WI-62 15 49-50.5 I – – WI-62 18B 61-61.5 ▲ 33 13 WI-62 20T 65-66 ★ 44 22 WI-62 20B 66.5-67.5 ⊙ – – Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000 – – –		

WI-62
8/2/2004
BOTDAM.GPJ;

Boring NumberSample NumberDepth (feet)SymbolLL					PI	Classification
WI-62	22B	73-73.5	•			Clayey Sand with Gravel (SC)
WI-62	25C	81.5-82	X	28	12	Clayey Sand (SC)
WI-62	26	83-84.5				Clayey Sand (SC)
WI-62 28 88.5-90 ★ 31 WI-62 30 93.5-95 ⊙ 40		16 Sandy Clay (CL)	Sandy Clay (CL)			
		20	Clayey Sand (SC)			
Dynamic Stal .ake Chabot	bility of Cha Dam, San L	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES
26814536.C000	0					

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification		
WI-62	31B	97.5-100	•			Silty Sand (SM)		
WI-62 32 100-101.5						Sandy Clay (CL)		
WI-62	34	105.5-107		27	11	Clayey Sand (SC)		
WI-63	4	10.5-12	*			Clayey Sand with Gravel (SC)		
WI-63 7 18-19.5 O						Clayey Sand with Gravel (SC)		
)ynamic Stal .ake Chabot	bility of Cha Dam, San Lo	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES		
6814536.C000	0				_ 21	DC Figure F-17		
	Boring Number WI-62 WI-62 WI-62 WI-63 WI-63 WI-63 WI-63 WI-63 WI-63 WI-63 WI-63	Boring NumberSample NumberWI-6231BWI-6232WI-6234WI-634WI-637Oynamic Stability of Cha ake Chabot Dam, San Lo 6814536.C0000	Boring Number Sample Number Depth (feet) WI-62 31B 97.5-100 WI-62 32 100-101.5 WI-62 34 105.5-107 WI-63 4 10.5-12 WI-63 7 18-19.5 Oynamic Stability of Chabot Dam .ake Chabot Dam, San Leandro, C 6814536.C0000 C	Boring NumberSample NumberDepth (feet)SymbolWI-6231B97.5-100•WI-6232100-101.5IWI-6234105.5-107•WI-63410.5-12*WI-63718-19.5•Oynamic Stability of Chabot Dam ake Chabot Dam, San Leandro, California 6814536.C0000Sample Sample	Boring Number Sample Number Depth (feet) Symbol LL WI-62 31B 97.5-100 • . WI-62 32 100-101.5 I	Boring Number Sample Number Depth (feet) Symbol LL PI WI-62 31B 97.5-100 • -		

PJ; 8/2/2	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
DAM.G	WI-63	9B	24-24.5	•	31	12	Clayey Sand with Gravel (SC)
ABOTI	WI-63	11	28-29.5				Clayey Sand with Gravel (SC)
K CH	WI-63	14	35.5-37				Clayey Sand with Gravel (SC)
ile: OA	WI-63	15	38-39.5	*	60	36	Clay with Sand (CH)
AK; F	WI-63	16	40-42.5	•	39	18	Clayey Sand (SC)
CURVES_0							
EVE_5_(Dynamic Stal	bility of Cha	bot Dam				PARTICLE SIZE
port: SI	Lake Chabot	Dam, San Le	eandro, C	alifornia	ł		DISTRIBUTION CURVES
Rei	26814536.C000	0				_ 77	DC Figure F-18
						U	

Boring Number Depth (feet) Sample Symbol Classification LL ΡΙ Number WI-63 45.5-47 Clayey Sand with Gravel (SC) 18 WI-64 20-22.5 5B Sandy Clay (CL) 40-42 5 Clavey Sand (SC) WI-64 9R

^æ 2	6814536.C000	0				_ T 1	Figure F-19			
	ake Chabot	Dam, San L	eandro, C	alifornia	a		DISTRIBUTION CURVES			
	ynamic Stal	bility of Cha	abot Dam			PARTICLE SIZE				
5_CURVES										
OAK	VVI-04	150	11-11.5		- 00					
ii T	WI-64	150	71-71 5	(\bullet)	33	16	Clavey Sand with Gravel (SC)			
le: O∕	WI-64	12	55-56.5	*	41	21	Clayey Sand with Gravel (SC)			
¥,	1 10-0-	00	40 42.0	—						

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI Classification			
WI-64	16	75-76.5	•			Clayey Sand with Gravel (SC)		
WI-64	19B	90.5-91		43	22	Clayey Sand with Gravel (SC)		
WI-64	20	95-96.5				Clayey Sand (SC)		
WI-64	23C	111-111.5	*	41	21	Clayey Sand with Gravel (SC)		
WI-64	24B	115.5-116.5	۲			Clayey Sand with Gravel (SC)		
namic Stat	nility of Ch	abot Dam				PARTICI E SIZE		
ynamic Star		abot Dam	- l :£	_	PARTICLE SIZE			

Boring Number Depth (feet) Sample Symbol Classification LL ΡΙ Number WI-64 27 125-126.5 Silty Clayey Sand (SC-SM) ۲ 5 WI-65 10-11.5 Clayey Sand (SC) WI-65 8 17 5-19 60 38 Clay (CH)

port: SIE	ake Chabot I	Dam, San L	_eandro, Ca	alifornia	a		DISTRIBUTION CURVES			
L: SIU	ake Chahot I	Dam San I	eandro Ca	alifornia	a					
шL	-	-				PARTICLE SIZE				
≝' r	Dynamic Stat	oility of Cha	abot Dam							
2_0										
IRVE										
20 S										
Х Г	WI-65	12B	28-29	\odot			Clayey Sand with Gravel (SC)			
ile:	WI-65	10	22.5-24.5	*			Clay (CL)			
ð										

WI-65 14 32.5-34 ● Clayey Sand with Gravel (SC) WI-65 19 45-46.5 Image: Clayey Sand with Gravel (SC) WI-65 22 52.5-54 ▲ Clayey Sand with Gravel (SC) WI-65 23 55-56.5 ★ Clayey Sand (SC) WI-65 25 57.5-59 • Clayey Sand with Gravel (SC)		Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification				
WI-65 19 45-46.5 Image: Clayey Sand with Gravel (SC) WI-65 22 52.5-54 ▲ Clayey Sand with Gravel (SC) WI-65 23 55-56.5 ★ Clayey Sand (SC) WI-65 25 57.5-59 • Clayey Sand with Gravel (SC)	D.WK	WI-65	14	32.5-34	•			Clayey Sand with Gravel (SC)				
WI-65 22 52.5-54 ▲ Clayey Sand with Gravel (SC) WI-65 23 55-56.5 ★ Clayey Sand (SC) WI-65 25 57.5-59 ⊙ Clayey Sand with Gravel (SC)		WI-65	19	45-46.5				Clayey Sand with Gravel (SC)				
O O Clayey Sand (SC) WI-65 25 57.5-59 ⊙ Clayey Sand with Gravel (SC)		WI-65	22	52.5-54				Clayey Sand with Gravel (SC)				
WI-65 25 57.5-59 Clayey Sand with Gravel (SC)	- - - - - 	WI-65 23 55-56.5 ★						Clayey Sand (SC)				
SES O	Ź	WI-65 25 57.5-59 •						Clayey Sand with Gravel (SC)				
Dynamic Stability of Chabot Dam PARTICLE SIZE Lake Chabot Dam, San Leandro, California DISTRIBUTION CURVES		Dynamic Sta Lake Chabot	bility of Cha Dam, San Lo	abot Dam Leandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES				
² 26814536.C0000 Figure F	<u>1</u> 2	26814536.C000	00				_ 2 2	DC Figure F-22				

0, 01212	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification		
D.WK	WI-66	2B	7-7.5	•	37	19	Clayey Sand (SC)		
	WI-66	5B	15.5-16.5				Clay with Sand (CL)		
	WI-66	8T	24-25				Sandy Clay (CL)		
lle. Of	WI-66	8B	25-26	*			Clayey Sand with Gravel (SC)		
AK; F	WI-66	13	33-34.5	۲			Clayey Sand with Gravel (SC)		
	Dynamic Stal .ake Chabot	bility of Cha Dam, San Lo	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES		
	6814536.C000	0				_ 27	Figure F-23		
						U			

PJ; 8/2/2	Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification						
DAM.G	WI-66	16B	39-40	•	28	10	Sandy Clay (CL)						
ABOTI	WI-66	18	46-47.5	X	36	19	Sandy Clay (CL)						
K_CH	WI-67	2	10-12.5		44	44 23 Clay with Sand (CL)							
ïle: O⊅	WI-67	6A	19.5-21	*			Sandy Clay (CL)						
AK; F	WI-67 7 21.5-23 · Clayey Sand with Gravel (SC)												
5_CURVES_0													
port: SIEVE)ynamic Stal .ake Chabot	bility of Cha Dam, San Le	bot Dam eandro, C	alifornia	a		PARTICLE SIZE DISTRIBUTION CURVES						
^a 2	6814536.C000	0				_ 21	Figure F-24						

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
WI-67	9A	26.5-27.5	•			Clayey Sand with Gravel (SC)
WI-67	14B	41-41.5		34	14	Clayey Sand with Gravel (SC)
\\/I_67	184	50 5-51		32	16	Sandy Clay (CL)

\mathbf{z}^{I}		VVI-07	IOA	30.3-31	-	JZ	10	Sandy Clay (CL)
ile: OA			1	11		1	1	
DAK; F								
VES_0								
5_CUR								
ΕΛΕ	D	ynamic Stal	bility of Cha	bot Dam				PARTICLE SIZE
port: S	La	ake Chabot	Dam, San Le	eandro, C	alifornia	а		DISTRIBUTION CURVES
Re	26	6814536.C000	0				_ T T	Figure F-25
							Ū	

∐ 34.36	PL 16.62	Pl 17.74	GS 2.71	TYPE OF SPECIMEN F	Pitcher	type of test	CU (R)	<u></u>				
REMARKS:				PROJECT Chabot D	am Seismic Study				······································			
1) TXCIU Tes	st with Effective	Pressure of 41	.67 psi	PROJECT NO.26814536	PROJECT NO.26814536							
				BORING NO. WI-59	SAMPLE NO.	18 Top		Τ				
				TECH. S. Capps	DEPTH/ELEV	52.5 feet						
				LABORATORY	DATE	06/14/04		1				
				TRIAXIAL COMPRESSION TEST REPORT								

Mon 06-28-:4, 13:05:34

LL 34.36	PL 16.62	PI 17.74	GS 2.71	TYPE OF SPECIMEN	Pitcher	TYPE OF TEST	CU (R)	<u></u>	<u> </u>		
REMARKS:				PROJECT Chabot Dam Seismic Study							
1) TXCIU Tes	t with Effective	Pressure of 41	1.67 psi	PROJECT NO.2681453	ô						
				BORING NO. WI-59	SAMPLE NO.	18 Top					
				TECH. S. Capps	DEPTH/ELEV	52.5 feet		-			
				LABORATORY	DATE	06/14/04					
TRIAXIAL COMPRESSION TEST REPORT											

Mon 06-28-:4, 13:04:52

Mon Jun 28 13:06:06 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Ch Project No. Boring No. : Sample No. : Sample Type Soil Descrip Remarks : TX	abot Dam Sei : 26814536 WI-59 18 Top : Pitcher otion : Browr CIU Test wit	ismic Study n sandy clay ch Effective	Location : San Test No. : WI-5 Test Date : O6/ Depth : 52.5 fe Elevation : NA with gravel (CL Pressure of 41.6	leandro 9-18 14/04 et) 67 psi	5, CA	Tested by Checked b	/:S.C by:R.	apps Taraya	
Height Area Volume	: 5.945 (ir : 6.881 (ir : 40.910 (i	1) P 1^2) P in^3) P	iston Diameter iston Friction iston Weight	: 0.000 : 0.00 : 0.00) (in) (lb) (gm)	Filter Cor Membrane C Area Corre	rection Correction	: 0.00 (l on : 0.00 (l : Uniform	b/in^2) b/in)
VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE PRESSURE PARAN (lb/in^2)	E Meter (FFECTIVE VERTICAL STRESS (b/in^2)	EFFECTIVE HORIZONTAL STRESS OB (lb/in^2)	LIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
1) 0.00 2) 0.20 3) 0.39 4) 0.59 5) 0.79 6) 1.01 8) 1.40 9) 1.21 9) 1.21 9) 1.21 9) 1.21 9) 1.21 1.20 1.21 2.2.33 2.22 3.63 3.6	$\begin{array}{c} 121.67\\ 125.49\\ 131.03\\ 135.41\\ 140.18\\ 145.86\\ 149.34\\ 151.78\\ 153.06\\ 154.33\\ 155.61\\ 156.77\\ 157.32\\ 158.16\\ 159.74\\ 160.81\\ 161.33\\ 161.85\\ 162.38\\ 162.69\\ 163.10\\ 163.52\\ 163.83\\ 164.04\\ 164.35\\ 164.65\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.36\\ 165.47\\ 166.46\\ 165.47\\ 166.36\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 165.47\\ 166.46\\ 166.46\\ 169.46\\ 169.46\\ 169.46\\ 169.52\\ 170.59\\ 171.22\\$	121.67 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004 0.88329877653109766543100.557765543332098876544332210.660 0.660887776533.559987765.4433221.440 0.660887776554333209.447654433221.440 0.43988 0.449988	41.67 41.15 43.97 46.83 46.83 47.70 48.70 52.96 51.75 52.96 51.75 52.96 51.75 55.55 55.55 55.55 56.188 57.88 59.98 60.30 61.81 62.65 66.65 67.77 68.88 69.79 70.91 72.06 61.31 65.65 66.02 70.39 70.91 72.06 70.39 70.91 72.06 72.55	$\begin{array}{c} 41.67\\ 37.32\\ 33.78\\ 30.23\\ 22.64\\ 20.09\\ 18.60\\ 17.32\\ 16.89\\ 16.61\\ 16.47\\ 16.54\\ 16.54\\ 16.54\\ 16.54\\ 16.54\\ 16.54\\ 16.54\\ 17.16\\ 17.82\\ 17.46\\ 17.82\\ 17.96\\ 18.31\\ 18.52\\ 19.52\\ 20.79\\ 21.08\\ 21.29\\ 21.58\\ 21.79\\ 22.20\\ 22.26\\ 22.78\\ 22.78\\ 22.99\\ \end{array}$	1.00 1.2450788259105227033567787878766543331986442221987777765	41.67 39.23 38.46 37.10 35.73 33.65 33.65 33.65 33.65 33.65 33.65 33.65 33.65 33.65 35.75 36.06 37.76 38.59 39.40 40.41 41.41 41.41 42.51 93.43 44.45 45.89 46.63 47.47	0.00 1.91 4.68 6.21 13.84 15.69 12.10 15.69 16.33 16.97 17.82 18.72 19.55 20.35 20.35 20.51 21.44 21.64 21.90 22.40 23.48 23.48 23.48 23.48 23.48 24.464 24.

|--|

Mon Jun 28 13:06:06 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San leandro, CA
Test No. : WI-59-18Boring No. : WI-59Test No. : WI-59-18Boring No. : WI-59Test Date : 06/14/04Sample No. : 18 TopDepth : 52.5 feetSample Type : PitcherElevation : NASoil Description : Brown sandy clay with gravel (CL)Remarks : TXCIU Test with Effective Pressure of 41.67 psi

Heigh Area Volum	it Ie	: 5.945 : 6.881 : 40.91	(in) (in^2) 0 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	er Correction Tane Correcti Correction	a : 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
I	CHANGE N LENGI (in)	VERTICAL STRAIN TH (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
1) 3) 5) 7) 9) 111111111111122223455 2001) 3333335 5)	0.000 0.012 0.023 0.035 0.047 0.059 0.071 0.082 0.094 0.106 0.130 0.130 0.142 0.154 0.166 0.178 0.201 0.213 0.225 0.237 0.249 0.201 0.225 0.237 0.249 0.261 0.2735 0.297 0.309 0.324 0.333 0.344 0.356 0.380 0.404 0.428 0.452	0.209999011.2113332222333.3.4.4.4.4.5.5.5.5.6.6.6.7.7.	6.778 6.881 6.881 6.885 6.885 6.991245 6.990134667900123568992592	80.00 84.35 87.89 91.44 95.13 99.03 101.58 103.07 103.71 104.35 104.78 104.99 105.20 105.20 105.20 105.20 105.20 105.20 105.20 105.20 105.21 104.99 104.49 104.49 104.49 104.42 104.42 104.42 104.21 103.57 103.36 103.57 103.36 103.57 103.20 102.86 102.44 102.15 101.80 101.51	0.00 26.62 65.36 96.05 129.67 169.86 194.71 212.25 231.25 240.75 249.52 253.91 260.49 267.80 272.91 267.80 272.91 267.80 272.91 267.80 276.57 281.68 286.07 290.45 294.84 297.76 301.41 305.07 307.99 310.18 313.11 316.03 321.15 324.07 330.65 334.30 339.42 342.34	$\begin{array}{c} 0.00\\ 26.62\\ 65.36\\ 96.05\\ 129.67\\ 169.86\\ 194.71\\ 212.25\\ 221.75\\ 231.25\\ 240.75\\ 249.52\\ 253.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 272.91\\ 267.80\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 301.41\\ 305.07\\ 307.99\\ 310.18\\ 313.11\\ 316.03\\ 318.95\\ 324.07\\ 330.65\\ 334.30\\ 339.42\\ 342.34\\ 342.$	0.00 3.93 9.63 14.13 19.04 24.89 28.47 30.97 32.29 33.60 34.91 36.11 36.67 37.54 38.51 39.61 40.26 40.80 41.34 41.88 42.20 42.63 43.06 43.38 43.59 43.91 44.22 44.54 45.67 45.06 45.77 46.08 46.58 46.78	121.67 125.49 131.03 135.41 140.18 145.86 149.34 151.78 153.06 154.33 155.61 156.77 157.32 158.16 159.10 159.74 160.17 160.81 161.33 161.85 162.38 162.69 163.10 163.52 163.83 164.04 164.55 164.96 165.16 165.16 165.47 166.16 166.46 166.95 167.14	$\begin{array}{c} 41.67\\ 41.15\\ 43.14\\ 43.97\\ 45.05\\ 46.83\\ 47.76\\ 48.70\\ 49.35\\ 49.98\\ 50.83\\ 51.78\\ 52.25\\ 52.96\\ 53.90\\ 54.61\\ 55.82\\ 56.48\\ 57.15\\ 57.88\\ 58.27\\ 58.89\\ 59.45\\ 59.98\\ 60.32\\ 60.78\\ 61.30\\ 61.81\\ 62.16\\ 62.61\\ 63.73\\ 64.31\\ 65.15\\ 65.62\\ \end{array}$
50) 37) 38) 40) 41) 42) 43) 44) 45)	0.475 0.499 0.522 0.547 0.570 0.594 0.624 0.653 0.683 0.713 0.743	8.08 8.48 9.29 9.69 10.09 10.60 11.10 11.61 12.11	7.35 7.42 7.45 7.48 7.52 7.56 7.60 7.64 7.69 7.73	101.16 100.88 100.59 100.38 100.09 99.88 99.67 99.46 99.31 99.10	348.19 351.11 356.23 359.88 363.53 367.19 371.57 376.69 381.80 386.92	348.19 351.11 356.23 359.88 363.53 367.19 371.57 376.69 381.80 386.92	47.37 47.56 48.04 48.31 48.59 48.86 49.16 49.56 49.95 50.33	167.71 167.90 168.37 168.63 168.90 169.16 169.46 169.84 170.22 170.59	66.55 67.02 67.77 68.25 68.80 69.28 69.79 70.39 70.91 71.49
47)	0.772	13.12	7.78	98-68	396.42	372.04 306 62	50.70 50.07	170.95	(2.06 72.54

445555555555555555555555555555555555555	8)))) 12))) 12)))) 12)))) 12))) 12))) 12))) 12))) 12))) 12))) 12))) 12))) 12))) 12))) 12))) 12)))) 12)))) 12)))) 12))))))))	0.803 0.832 0.862 0.951 0.980 1.010 1.040 1.070 1.099 1.159 1.188	13.64 14.13 14.65 15.14 16.15 16.66 17.16 17.66 18.18 18.68 19.69 20.19	7.82 7.87 7.92 7.96 8.06 8.11 8.16 8.21 8.21 8.26 8.31 8.41 8.41	98.61 98.32 98.11 97.82 97.47 97.33 97.04 96.76 96.48 96.19 95.63 95.41	400.81 405.19 411.04 416.88 427.12 433.69 438.81 443.19 449.04 454.89 462.93 465.12	400.81 405.19 411.04 416.88 427.12 433.69 438.81 443.19 449.04 454.89 462.93 465.12	51.23 51.49 51.92 52.35 53.00 53.49 53.80 54.00 54.38 54.75 55.02 54.94	171.46 171.72 172.14 172.56 173.19 173.67 173.96 174.16 174.53 174.88 175.15 175.07	72.86 73.40 74.03 74.73 75.72 76.34 76.92 77.40 78.05 78.69 79.53 79.66
---	---	---	--	--	--	--	--	--	--	--

Mon Jun 28 13:06:06 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San_leandro, CA Project No. : 26814536 Boring No. : WI-59 Test No. : WI-59-18 Test Date : 06/14/04 Depth : 52.5 feet Tested by : S. Capps Sample No. : 18 Top Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Brown sandy clay with gravel (CL) Remarks : TXCIU Test with Effective Pressure of 41.67 psi : 5.945 (in) : 6.881 (in²) : 40.910 (in³) Height Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Volume Piston Weight : 0.00 (gm) Area Correction : Uniform Liquid Limit : 34.36 Plastic Limit : 16.62 Specific Gravity : 2.708 INITIAL Height : 5.945 (in) Area : 6.881 (in²) Void Ratio: 0.58 Dry Density : 106.87 (lb/ft^3) Moisture : 18.95 % Moisture Saturation: 88.33 % Time : 0.00 (min) INITIALIZATION : 5.945 (in) : 6.881 (in^2) dH : 0.000 (in) Height Dry Density : 106.87 (lb/ft^3) Total Vert. Stress : 121.67 (lb/in^ : 0.000 (in³) Total Hori. Stress : 121.67 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 121.67 (lb/in^ Effect.Hori. Stress: 121.67 (lb/in^ d٧ Area Moisture : 18.95 % Void Ratio: 0.58 Saturation: 88.33 % Time : 0.00 (min) END OF CONSOLIDATION - A Height : 5.945 (in) Area : 6.881 (in²) Void Ratio: 0.58 Saturation: 0.58 : 0.000 (in) : 0.000 (in^3) dH Dry Density : 106.87 (lb/ft^3) Total Vert. Stress : 121.67 (lb/in^ Total Hori. Stress : 121.67 (lb/in^ d٧ Moisture : 18.95 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 121.67 (lb/in^ Effect.Hori. Stress: 121.67 (lb/in^ Saturation: 88.33 % Time : 0.00 (min) END OF SATURATION dH : 0.000 (in) dV : 0.000 (in³) dVCorr : 0.000 (in³) : 5.945 (in) Height Dry Density : 106.87 (lb/ft^3) Total Vert. Stress : 121.67 (lb/in^ Total Hori. Stress : 121.67 (lb/in^ : 6.881 (in²) Area Moisture : 19.82 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 121.67 (lb/in^ Effect.Hori. Stress: 121.67 (lb/in^ Void Ratio: 0.58 Saturation: 92.35 % Time : 0.00 (min) END OF CONSOLIDATION - B : 0.060 (in) : 1.145 (in³) dH : 5.885 (in) : 6.757 (in²) Dry Density : 109.95 (lb/ft^3) Moisture : 19.82 % Height Total Vert. Stress : 121.67 (lb/in^ Total Hori. Stress : 121.67 (lb/in^ d٧ Area Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 41.67 (lb/in^2 Effect.Hori. Stress: 41.67 (lb/in^2 Void Ratio: 0.54 Saturation: 99.96 % : 0.00 (min) Time FAILURE DURING SHEAR Height : 4.786 (in) Area : 8.414 (in^2) Void Ratio: 0.54 : 1.159 (in) : 1.145 (in³) dH Dry Density : 109.95 (lb/ft^3) Total Vert. Stress : 176.69 (lb/in^ d٧ Moisture : 19.82 % Total Hori. Stress : 121.67 (lb/in^ Strain : 19.69 % Void Ratio: 0.54 Strength: 27.51 (lb/in^2)Saturation: 99.96 % Time : 1326.97 (min) Pore Pressure : 95.63 (lb/in² Effect.Vert. Stress: 81.07 (lb/in² Effect.Hori. Stress: 26.04 (lb/in² END OF TEST dH : 1.188 (in) dV : 1.145 (in³) Strain : 20.19 % Height : 4.757 (in) Area : 8.467 (in^2) Void Ratio: 0.54 Total Vert. Stress : 176.61 (lb/in^ Total Hori. Stress : 121.67 (lb/in^ Pore Pressure : 95.41 (lb/in^2 Effect.Vert. Stress: 81.19 (lb/in^2 Dry Density : 109.95 (lb/ft^3) Moisture 🔅 : 19.82 % Saturation: 99.96 % : 1361.77 (min) Time Effect.Hori. Stress: 26.26 (lb/in^2

	1	<u> </u>	<u> </u>							
LL 33.65	PL 18.03	PI 15.62	GS 2.71	TYPE OF SPECIMEN	Pitcher	TYPE OF TEST	CU (R)			
REMARKS:				PROJECT Chabot Dam Seismic Study						
1) TXCIU Tes	t with Effective	Pressure of 83	3.33 psi	PROJECT NO.26814534	6					
				BORING NO. WI-59	SAMPLE NO.	18 Bottom		T		
				TECH. S. Capps	DEPTH/ELEV	52.5 feet		1		
				LABORATORY	DATE	06/17/04		-		
				TRIAXIAL COMPRESSION TEST REPORT						

Mon 06-28-:4, 13:09:42

LL 33.65	PL 18.03	PI 15.62	GS 2.71	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)				
REMARKS:	······································			PROJECT Chabot D	PROJECT Chabot Dam Seismic Study						
1) TXCIU Tes	t with Effective	Pressure of 83	5.33 psí	PROJECT NO.26814534	ŝ						
				BORING NO. WI-59	SAMPLE NO.	18 Bottom		[
				TECH. S. Capps	DEPTH/ELEV	52.5 feet			**************		
				LABORATORY	DATE	06/17/04					
					TRIAXI	AL COMPRESSIO	n test repo	RT			
Mon 06-28-	:4, 13:10:20				• • •				<u> </u>		

Mon Jun 28 13:10:49 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San Leandro, CA
Test No. : WI-59-18Boring No. : WI-59Test Date : 06/17/04Tested by : S. Capps
Checked by : R. TarayaSample No. : 18 BottomDepth : 52.5 feetChecked by : R. TarayaSample Type : PitcherElevation : NA
Soil Description : Grayish brown clayey sand (SC)
Remarks : TXCIU Test with Effective Pressure of 83.33 psiFilter Correction : 0.00 (lb/in^2)
Membrane Correction : 0.00 (lb/in)

Area Volume	: 6.881 (in^2) : 40.910 (in^3)	Piston Friction : 0.0 Piston Weight : 0.0	00 (lb) 00 (gm)	Membrane Correct Area Correction	tion : 0.00 (1 : Uniform	b/in)
VERTICAL STRAIN (%)	TOTAL TOTAL VERTICAL HORIZONT STRESS STRESS (lb/in^2) (lb/in^2	EXCESS PORE A PRESSURE PARAMETER (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OBLIQUIT (lb/in^2)	EFFECTIVE IY p (lb/in^2)	q (lb/in^2)
$\begin{array}{c} 19 & 0.00 \\ 21 & 0.25 \\ 33 & 0.45 \\ 41 & 0.645 \\ 51 & 0.85 \\ 61 & 1.05 \\ 71 & 1.24 \\ 81 & 1.46 \\ 91 & 1.66 \\ 101 & 1.87 \\ 111 & 2.06 \\ 121 & 2.27 \\ 133 & 2.47 \\ 141 & 2.68 \\ 151 & 2.88 \\ 161 & 3.08 \\ 171 & 3.28 \\ 181 & 3.48 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 191 & 3.69 \\ 201 & 3.88 \\ 191 & 3.69 \\ 191 & $	103.33 $103.$ 190.69 $163.$ 217.26 $163.$ 237.38 $163.$ 250.54 $163.$ 257.21 $163.$ 264.07 $163.$ 269.33 $163.$ 273.65 $163.$ 277.33 $163.$ 277.33 $163.$ 277.33 $163.$ 277.33 $163.$ 283.18 $163.$ 284.86 $163.$ 284.86 $163.$ 287.31 $163.$ 287.31 $163.$ 289.84 $163.$ 290.52 $163.$ 290.52 $163.$ 291.25 $163.$ 293.54 $163.$ 293.54 $163.$ 295.60 $163.$ 295.60 $163.$ 295.82 $163.$ 295.82 $163.$ 295.82 $163.$ 295.82 $163.$ 295.82 $163.$ 295.82 $163.$ 297.22 $163.$ 301.29 $163.$ 301.36 $163.$ 301.44 $163.$ 301.90 $163.$ 301.90 $163.$ 301.90 $163.$ 301.90 $163.$ 301.14 $163.$ 301.68 163.3 301.68 163.3 301.70 163.3 301.90 163.3 301.90 163.3 301.90 163.3 301.90 163.3 301.90 163.3 301.90 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>85.33 105.35 122.06 132.10 138.38 141.72 149.30 156.03 157.75 160.273 164.98 167.16 168.35 175.65 176.65 178.16 178.64 180.74 181.89 182.45 188.04 182.45 188.04 191.76 195.38 195.38 195.38 195.38 195.38 195.38 195.38 197.07 197.75 198.95 195.38 197.08 197.45 197.75 198.95 197.75 198.95 197.15 200.77 201.81</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>83.33 91.67 95.10 95.08 94.78 94.78 95.59 96.30 97.54 99.03 99.89 101.30 102.80 104.21 105.55 106.36 107.51 108.82 109.73 110.16 111.09 112.17 113.21 113.65 114.27 115.07 115.86 116.32 116.78 117.72 118.26 119.32 120.55 121.67 122.78 123.78 124.36 125.03 125.72 126.00 127.39 127.71 127.72 128.16 128.31 128.58 128.69 129.08 129.08 129.92 130.38 130.77 131.29 132.24</td> <td>0.00 13.68 26.97 37.02 43.60 46.94 50.37 53.00 57.86 57.88 59.93 61.61 61.99 62.57 63.60 63.40 65.37 65.67 65.67 65.67 66.03 66.04 66.95 67.44 68.92 69.25 63.52 63.60 65.67 65.67 65.67 66.03 66.95 66.95 67.44 68.90 69.25 69.25 68.88 68.88 68.68 68.57 69.57</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85.33 105.35 122.06 132.10 138.38 141.72 149.30 156.03 157.75 160.273 164.98 167.16 168.35 175.65 176.65 178.16 178.64 180.74 181.89 182.45 188.04 182.45 188.04 191.76 195.38 195.38 195.38 195.38 195.38 195.38 195.38 197.07 197.75 198.95 195.38 197.08 197.45 197.75 198.95 197.75 198.95 197.15 200.77 201.81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83.33 91.67 95.10 95.08 94.78 94.78 95.59 96.30 97.54 99.03 99.89 101.30 102.80 104.21 105.55 106.36 107.51 108.82 109.73 110.16 111.09 112.17 113.21 113.65 114.27 115.07 115.86 116.32 116.78 117.72 118.26 119.32 120.55 121.67 122.78 123.78 124.36 125.03 125.72 126.00 127.39 127.71 127.72 128.16 128.31 128.58 128.69 129.08 129.08 129.92 130.38 130.77 131.29 132.24	0.00 13.68 26.97 37.02 43.60 46.94 50.37 53.00 57.86 57.88 59.93 61.61 61.99 62.57 63.60 63.40 65.37 65.67 65.67 65.67 66.03 66.04 66.95 67.44 68.92 69.25 63.52 63.60 65.67 65.67 65.67 66.03 66.95 66.95 67.44 68.90 69.25 69.25 68.88 68.88 68.68 68.57 69.57

Mon Jun 28 13:10:49 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Project No. : 26 Boring No. : WI- Sample No. : 18 Sample Type : Pi Soil Description Remarks : TXCIU	Dam Seismic 814536 59 Bottom tcher : Grayish bu Test with Ef	Study Locati Test M Test D Depth Elevat rown clayey sa fective Pressu	ion : San L lo. : WI-59 Date : 06/1 : 52.5 fee tion : NA and (SC) ure of 83.3	eandro, CA -18 7/04 t 3 psi	Test Chec	ed by : S. C ked by : R.	apps Taraya
Height :5 Area :6 Volume :40	.945 (in) .881 (in^2) 0.910 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correction ane Correcti Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
VERT CHANGE STR/ IN LENGTH (in) (%)	ICAL AIN CORR. AREA) (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
1) 0.000 0.014 2) 0.014 0.014 3) 0.026 0.014 4) 0.038 0.0160 5) 0.050 0.062 1) 0.062 1.7 8) 0.086 1.9 9) 0.097 1.10 10) 0.110 1.11 11) 0.121 2.112 12) 0.133 2.112 13) 0.1457 2.112 14) 0.1577 2.112 15) 0.169 2.1163 16) 0.1811 3.177 0.192 3.183 0.204 3.199 0.2240 4.2210 0.2252 4.22210 0.2252 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.22310 0.2240 4.223100 0.2276 $4.223100000000000000000000000000000000000$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 80.00\\ 85.34\\ 95.20\\ 105.27\\ 112.15\\ 115.49\\ 118.11\\ 120.03\\ 120.95\\ 121.31\\ 120.95\\ 120.45\\ 119.89\\ 119.39\\ 118.40\\ 117.76\\ 117.12\\ 116.77\\ 116.20\\ 115.63\\ 106.55\\ 106.55\\ 106.55\\ 106.55\\ 106.55\\ 105.63\\ 105.60\\ 10$	0.00 191.06 377.42 519.20 612.75 660.98 749.41 781.57 809.34 823.23 840.03 856.11 870.00 883.88 891.19 901.42 913.12 918.96 921.89 929.20 938.70 947.47 951.85 957.70 964.28 975.24 975.24 975.20 1018.36 1027.86 1041.74 1067.32 1068.78 1070.9	0.00 191.06 377.42 519.20 612.75 660.98 749.41 781.57 809.34 823.23 840.03 856.11 870.00 883.88 891.19 901.42 913.12 913.42 913.42 913.42 913.42 929.20 938.70 947.47 951.85 957.70 964.28 975.24 975.20 1005.20 1018.36 1027.86 1041.74 1060.74 1067.32 1068.78 1070.98	$\begin{array}{c} 0.00\\ 28.32\\ 55.83\\ 76.65\\ 90.27\\ 97.18\\ 104.28\\ 109.73\\ 114.20\\ 118.01\\ 119.80\\ 121.98\\ 124.06\\ 125.81\\ 127.55\\ 128.34\\ 129.54\\ 130.95\\ 131.66\\ 132.42\\ 133.45\\ 134.45\\ 135.33\\ 135.96\\ 136.71\\ 136.92\\ 137.14\\ 138.06\\ 139.62\\ 140.84\\ 141.54\\ 142.88\\ 143.50\\ 142.83\\ 142.88\\ 143.50\\ 142.83\\ 142.59\\ 142.65\\ 142.65\end{array}$	163.33 190.69 217.26 237.38 250.54 257.21 264.07 269.33 273.65 277.33 279.06 281.17 283.18 284.86 286.55 287.31 288.48 289.84 290.37 290.52 291.25 292.28 293.22 293.54 294.06 295.60 295.60 295.82 296.71 297.22 298.21 297.22 298.21 297.22 298.39 301.36 301.90 301.96 301.44 301.08 301.13	83.33 105.35 122.06 132.10 138.38 141.72 145.96 149.30 152.70 156.03 157.75 160.22 162.73 164.98 167.16 168.35 170.08 172.08 173.25 173.75 175.05 176.65 178.16 179.64 180.74 181.89 182.45 183.02 184.41 185.21 186.76 188.58 190.04 191.76 192.40 193.65 194.35 195.15 195.22 195.38 195.69 195.88 196.59 196.38 197.07

Page: 2

47)	0.775	13.20	7.75	104.07	1106.06	1106.06	142.65	301.13	197 07
48)	0.805	13.71	7.80	103.78	1110.44	1110 44	142 37	300 86	107 08
495	0.834	14.21	7.85	103 57	1118 48	1118 /8	1/2 57	300.00	107 /0
505	0 865	14 72	7 80	103 /3	1122 17	1122 17	1/2 19	200 40	107 35
51	0.000	45 27	7.0/	107.7/	4420 //	1122.13	142.10	200.00	197.25
21	0.074	13.23	1.94	103.30	1129.44	1129.44	142.20	300.76	197.40
22)	0.934	10.24	8.04	102.93	1142.60	1142.60	142.20	300.70	197.77
23)	0.983	16.74	8.08	102.65	1153.56	1153.56	142.71	301.19	198.55
54)	1.013	17.25	8.13	102.44	1162.33	1162.33	142.91	301.39	198.95
55)	1.042	17.75	8.18	102.08	1171.10	1171.10	143.12	301.59	100 51
56)	1.073	18.27	8.23	101.94	1182.79	1182.79	143.63	302 00	200 15
57)	1.102	18.76	8.28	101.51	1101 56	1101 56	143 83	302.28	200.77
581	1 161	10 78	8 30	100 66	1208 37	1209 27	144.07	702.20	200.77
		17470	0.37	100.00	1200.07	1200.37	144.03	JU2.4/	201.01

. . .

こう

Mon Jun 28 13:10:49 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Test No. : WI-59-18 Project No. : 26814536 Boring No. : WI-59 Sample No. : 18 Bottom Test Date : 06/17/04 Tested by : S. Capps Depth : 52.5 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Grayish brown clayey sand (SC) Remarks : TXCIU Test with Effective Pressure of 83.33 psi : 5.945 (in) : 6.881 (in²) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Height Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Volume : 40.910 (in^3) Piston Weight : 0.00 (gm) Area Correction : Uniform Liquid Limit : 33.65 Plastic Limit : 18.03 Specific Gravity : 2.708 INITIAL : 5.945 (in) Height Dry Density : 114.93 (lb/ft^3) Area : 6.881 (in^2) Void Ratio: 0.47 Moisture : 15.67 % Saturation: 90.21 % Time : 0.00 (min) INITIALIZATION Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^ dH : 0.000 (in) : 5.945 (in) Height Dry Density : 114.93 (lb/ft^3) Area : 6.881 (in²) Void Ratio: 0.47 Saturation: 0.47 : 0.000 (in^3) đ٧ Moisture : 15.67 % Saturation: 90.21 % Time : 0.00 (min) END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in³) Height : 5.945 (in) Area : 6.881 (in^2) Void Ratio: 0.47 Saturation: 90.21 % dH Dry Density : 114.93 (lb/ft^3) Moisture : 15.67 % Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ dV Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 163.33 (lb/in⁶) Effect.Hori. Stress: 163.33 (lb/in⁶) Time : 0.00 (min) END OF SATURATION : 0.000 (in) : 0.000 (in³) : 0.000 (in³) : 5.945 (in) : 6.881 (in²) dH Height Dry Density : 114.93 (lb/ft^3) Total Vert. Stress : 163.33 (lb/in^ d٧ Area Moisture : 15.52 % Total Hori. Stress : 163.33 (lb/in^ dVCorr Void Ratio: 0.47 Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^ Saturation: 89.37 % Time : 0.00 (min) END OF CONSOLIDATION - B : 0.073 (in) : 1.389 (in³) : 5.872 (in) : 6.730 (in²) dH Height Dry Density : 118.97 (lb/ft^3) Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ d٧ Агеа Moisture : 15.52 % Void Ratio: 0.42 Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 83.33 (lb/in^2 Saturation: 99.98 % : 0.00 (min) Time Effect.Hori. Stress: 83.33 (lb/in^2 FAILURE DURING SHEAR dH : 1.161 (in) Height : 4.784 (i dV : 1.389 (in³) Area : 8.390 (i Strain : 19.78 % Void Ratio: 0.42 Strength: 72.02 (lb/in²)Saturation: 99.98 % Time : 1293.70 (min) Total Vert. Stress : 307.36 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 100.66 (lb/in^ : 4.784 (in) Dry Density : 118.97 (lb/ft^3) : 8.390 (in^2) Moisture : 15.52 % Effect.Vert. Stress: 206.70 (lb/in^ Effect.Hori. Stress: 62.67 (lb/in^2 END OF TEST dH : 1.161 (in) dV : 1.389 (in³) Strain : 19.78 % : 4.784 (in) : 8.390 (in²) Total Vert. Stress : 307.36 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 100.66 (lb/in^ Effect.Vert. Stress: 206.70 (lb/in^ Effect.Hori. Stress: 62.67 (lb/in^2 Height Dry Density : 118.97 (lb/ft^3) Moisture : 15.52 % Area Void Ratio: 0.42 Saturation: 99.98 % : 1293.70 (min) Time

LL 50.02	PL 25.88	PI 24.14	GS 2.66	TYPE OF SPECIMEN	Pitcher	TYPE OF TEST	CU (R)					
REMARKS:				PROJECT Chabot D	PROJECT Chabot Dam Seismic Study							
1) TXCIU Tes	st with Effective	Pressure of 11	1.11 psi	PROJECT NO.26814536	6							
			<u> </u>	BORING NO. WI-59	SAMPLE NO.	26 Bottom		T				
				TECH. S. Copps	DEPTH/ELEV	77.0 fest		-				
				LABORATORY	DATE	06/17/04						
					TRIAXI	AL COMPRESSION	N TEST REP(ORT				

Mon 06-28-:4, 11:39:38

LL 50.02 PL 25.88 PI 24.14 GS 2.66	TYPE OF SPECIMEN Pitc	her	TYPE OF TEST	CU (R)				
REMARKS:	PROJECT Chabot Dam Seismic Study							
1) TXCIU Test with Effective Pressure of 111.11 psi	PROJECT NO.26814536			·····	<u></u>			
	BORING NO. WI-59	SAMPLE NO.	26 Bottom					
	TECH. S. Capps	DEPTH/ELEV	77.0 feet					
	LABORATORY	DATE	06/17/04					
		TRIAXIA	L COMPRESSION	TEST REPO	JRT	<u></u>		

Mon 06-28-:4, TT:39:05

Mon Jun 28 11:40:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chab Project No. : W Boring No. : W Sample No. : 2 Sample Type : Soil Descripti Remarks : TXCI	ot Dam Sei 26814536 MI-59 26 Bottom Pitcher on : Mottl U Test wit	smic Study I ed bluish gra h Effective I	Location : San Test No. : WI-5 Test Date : 06/ Depth : 77.0 fe Elevation : NA ay brown clayey Pressure of 111	Leandi 9-26 17/04 eet / sand 1.11 ps	ro, CA (SC) si	Tested by Checked b	/:S.C by:R.	apps Taraya	
Height : Area : Volume :	5.945 (in 6.424 (in 38.192 (i) P ^2) P n^3) P	iston Diameter iston Friction iston Weight	: 0.00 : 0.00 : 0.00	00 (in)) (lb)) (gm)	Filter Cor Membrane (Area Corre	rrection Correcti ection	: 0.00 (l on : 0.00 (l : Uniform	b/in^2) b/in)
VERTICAL STRAIN (%) (TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE PRESSURE PARA (lb/in^2)	A METER	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OF (lb/in^2)	BLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
1) 0.00 2) 0.31 3) 0.49 4) 0.69 5) 0.89 6) 1.09 7) 1.29 8) 1.69 10) 1.90 11) 2.30 11) 2.30 13) 2.51 14) 2.30 13) 2.51 14) 2.30 13) 3.521 20) 4.323 21) 4.533 22) 4.533 22) 4.533 22) 4.533 22) 4.533 22) 4.533 22) 4.533 22) 5.533 24) 4.545 26) 5.533 29) 5.734 31) 6.544 33) 7.75 36) 8.955 37) 8.165 37) 8.96 37) 10.17 42) 10.68 39) 9.377 41) 10.17 43) 11.69 40) 9.377 41) 10.68 43) 11.18 44) 11.69 45) 12.70 46) 12.70 47) 13.20	$\begin{array}{c} 191.11\\ 228.58\\ 248.11\\ 268.02\\ 281.81\\ 292.76\\ 305.29\\ 310.59\\ 311.4\\ 48\\ 317.90\\ 322.40\\ 322.40\\ 322.40\\ 322.40\\ 322.59\\ 322.40\\ 322.40\\ 322.59\\ 322.40\\ 322.$	191.11 191.11	0.00 5.87 18.12 29.98 39.01 45.97 49.88 52.60 57.45 59.99 59.99 59.99 59.99 59.99 59.830 59.99 59.603 57.45 57.46 57.45 57.75 57.45 57.75 57.77 50.11 49.50 48.88 47.73 47.12	0.0000000000000000000000000000000000000	111.11 142.70 149.99 158.04 162.80 166.78 169.62 172.42 174.58 177.02 179.30 181.25 182.80 184.58 186.06 197.31 193.98 195.26 190.26 191.56 192.31 193.98 195.26 196.07 197.34 199.55 200.46 201.69 202.50 203.20 204.59 206.68 208.44 211.08 212.75 214.48 216.06 218.17 219.63 221.21 222.23 224.01 225.37 229.66 230.96	$\begin{array}{c} 111.11\\ 105.24\\ 92.99\\ 81.13\\ 72.10\\ 65.13\\ 58.24\\ 55.65\\ 51.23\\ 55.65\\ 51.20\\ 51.28\\ 51.20\\ 51.28\\ 51.20\\ 51.28\\ 51.20\\ 51.28\\ 51.20\\ 51.20\\ 51.28\\ 51.20\\ 51.20\\ 51.28\\ 51.20\\ 51.20\\ 51.28\\ 51.20\\ $	1.1.1.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	$\begin{array}{c} 111.11\\ 123.97\\ 121.49\\ 119.58\\ 117.45\\ 115.96\\ 115.42\\ 115.33\\ 114.84\\ 115.30\\ 116.61\\ 117.15\\ 117.93\\ 120.77\\ 121.53\\ 129.90\\ 122.90\\ 123.65\\ 124.92\\ 126.33\\ 126.94\\ 127.67\\ 128.61\\ 139.47\\ 148.50\\ 137.11\\ 138.51\\ 139.47\\ 141.31\\ 139.47\\ 145.57\\ 146.52\\ 147.47\\ \end{array}$	0.00 18.73 28.50 38.45 50.83 54.20 57.99 59.74 63.40 64.64 65.65 66.65 67.43 69.49 70.03 71.08 71.61 71.90 72.94 73.52 74.01 74.58 75.86 80.64 80.64 80.65 76.40 77.38 77.90 78.43 78.95 78.43 79.66 80.64 80.64 80.65 80.64 80.65 76.40 77.99 80.66 80.64 80.65 76.40 77.99 80.66 80.64 80.65 76.40 77.99 76.40 77.99 76.40 77.68 80.64 80.65 80.64 80.65 80.64 80.65 76.40 77.68 80.64 80.65 80.65 80.64 80.65 77.99 76.40 80.64 80.65 77.99 76.40 77.99 76.40 77.68 80.64 80.65 77.99 76.40 77.68 80.64 80.65 77.99 76.40 77.99 76.40 77.68 77.99 76.40 77.68 80.65 80.65 77.99 76.40 77.68 80.65 76.40 77.99 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 76.40 77.58 80.64 80.55 80.65 80.58 8

47)	13.20	358.08	191.11	47.12	0.28	230.96	63.98	3.61	147.47	83.49
48) (9)	13.71	358.72	191.11	46.59	0.28	232.13	64.52	3.60	148.32	83.80
50)	14.71	359.56	191.11	45.44	0.27	233.37	65.67	3.57	149.25	84-23
51)	15.22	359.76	191.11	44.83	0.27	234.93	66.28	3.54	150.61	84.33
52)	16.22	360.51	191.11	43.83	0.26	236.68	67.27	3.52	151.98	84.70
54)	17.24	360.79	191.11	42.76	0.25	238.03	68.35	3.48	153.19	84.84
55)	17.74	360.92	191.11	42.38	0.25	238.54	68.73	3.47	153.63	84.90
20) 57)	18.24	360.20 360.35	191.11 101 11	41.84 41.46	0.25	258.42	69.26 69.65	3.44	153.84	84.58
58)	19.75	360.53	191.11	40.46	0.24	240.06	70.64	3.40	155.35	84.71

Mon Jun 28 11:40:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San Leandro, CA
Test No. : WI-59-26Boring No. : WI-59Test No. : WI-59-26Boring No. : WI-59Test Date : 06/17/04Sample No. : 26 BottomDepth : 77.0 feetSample Type : PitcherElevation : NASoil Description : Mottled bluish gray brown clayey sand (SC)Checked by : R. TarayaRemarks : TXCIU Test with Effective Pressure of 111.11 psiFilter Correction : 0.000 (in)

VERTICAL IN LENGTH ORR. AREA PORE PRESSURE DEV. LOAD CORR. DEV. (LOAD DEV. STRESS DEV. VERTICAL (LOAD FFFETIVE VERTICAL STRESS 1) 0.000 6.331 80.00 0.00 0.00 921.11 111.11 1) 0.018 0.30 6.33 80.02 94.00 23.00 80.00 121.11 111.11 1) 0.029 0.49 6.33 98.12 371.29 58.55 244.11 140.07 0.027 0.496 6.33 119.018 593.222 593.222 771.79 281.91 166.67.8 0.052 0.896 6.437 112.98 64.017 <t< th=""><th>Height Area Volume</th><th>: 5.945 : 6.424 : 38.19</th><th>(in) (in^2) 2 (in^3)</th><th>Piston Piston Piston</th><th>Diameter : Friction : Weight :</th><th>0.000 (in) 0.00 (lb) 0.00 (gm)</th><th>Filte Membr Area</th><th>r Correctior ane Correcti Correction</th><th>n : 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform</th></t<>	Height Area Volume	: 5.945 : 6.424 : 38.19	(in) (in^2) 2 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correctior ane Correcti Correction	n : 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHANGE IN LENGT (in)	VERTICAL STRAIN H (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
	1) 0.000 2) 0.018 3) 0.029 4) 0.041 5) 0.052 6) 0.064 7) 0.076 8) 0.088 9) 0.100 10) 0.112 11) 0.124 12) 0.135 13) 0.148 14) 0.160 15) 0.171 16) 0.183 17) 0.207 20) 0.2219 20) 0.2243 22) 0.267 23) 0.267 24) 0.267 25) 0.279 26) 0.303 27) 0.314 28) 0.326 27) 0.314 29) 0.350 31) 0.362 33) 0.457 36) 0.481 37) 0.528 33) 0.457 36) 0.481 37) 0.528 33) 0.457 36) 0.528 33) 0.457 36) 0.528 37) 0.552 40) 0.576 41) 0.599 42) 0.669 41) 0.599 43) 0.887 50) 0.887 51) 0.897 52) 0.956 53) 1.045 56) 1.075 57) 1.105 58) 1.164	0.319999999999900112223333333444444555555666677888899001111223333333333444445555556666778888990011112233333333333444445555555666677888899001111223331441566677788889900011112233444555755555555555555555555555555555	6.334578912356666666666666666666666666666666666777777		0.00 243.60 371.29 502.02 593.22 666.19 711.79 815.16 839.48 857.72 888.12 900.28 912.44 921.56 933.72 942.84 948.93 961.09 970.21 976.29 985.41 900.61 1006.69 1015.81 1006.69 1052.29 1064.45 1082.69 107.09 1052.29 1064.45 1082.69 107.08 119.18 1246.86 1259.03 1271.19 1289.43 1328.95 1338.07 1341.11 1350.23 1368.47	0.00 243.60 371.29 502.02 593.22 666.19 711.79 751.31 787.79 815.16 839.48 857.72 888.12 900.28 912.44 921.56 933.72 942.84 948.93 961.09 970.21 976.29 985.41 1006.69 1015.81 1027.97 1037.09 1052.29 1064.45 107.02 119.18 1346.54 127.34 1222.54 1234.70 1246.86 1259.03 1271.19 1280.31 1328.95 1338.07 1341.11 1350.23 1368.47	$\begin{array}{c} 0.00\\ 38.48\\ 58.55\\ 79.00\\ 93.17\\ 104.42\\ 111.34\\ 126.73\\ 126.73\\ 130.280\\ 134.87\\ 136.93\\ 138.53\\ 140.10\\ 141.26\\ 143.88\\ 144.03\\ 147.71\\ 148.85\\ 151.04\\ 144.07\\ 152.67\\ 153.22\\ 155.89\\ 160.12\\ 163.68\\ 166.64\\ 167.45\\ 168.97\\ 170.81\\ 171.52\\ 172.82\\ 173.24\\ 174.17\\ 174.30\\ 174.$	$\begin{array}{c} 191.11\\ 228.58\\ 248.11\\ 268.02\\ 281.81\\ 292.76\\ 305.29\\ 310.59\\ 314.48\\ 317.90\\ 322.40\\ 322.40\\ 322.40\\ 322.40\\ 322.40\\ 322.59\\ 322.40\\ 323.22\\ 323.32\\ 323.32\\ 323.32\\ 323.32\\ 323.32\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.41\\ 325.97\\ 324.42\\ 325.97\\ 324.42\\ 325.95\\ 355.66\\ 356.72\\ 356.72\\ 356.53\\ 359.56\\ 360.51\\ 360.26\\ 360.26\\ 360.25\\ 360.53\\$	111.11 142.70 149.99 158.04 162.80 166.78 169.62 172.42 174.58 177.02 179.30 181.25 182.80 184.58 186.06 187.51 188.67 190.26 191.56 192.31 193.98 195.26 196.07 197.34 198.76 199.55 200.46 201.69 202.50 203.20 204.59 206.68 208.44 211.08 212.75 214.48 216.06 218.17 219.63 221.21 222.23 224.01 225.37 226.71 228.37 229.66 230.96 232.13 233.37 234.12 238.03 238.54 238.42 238.89 240.06

Mon Jun 28 11:40:48 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Test No. : WI-59-26 Test Date : 06/17/04 Project No. : 26814536 Boring No. : WI-59 Tested by : S. Capps Sample No. : 26 Bottom Depth : 77.0 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Mottled bluish gray brown clayey sand (SC) Remarks : TXCIU Test with Effective Pressure of 111.11 psi Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Height Filter Correction : 0.00 (lb/in^2) Area Membrane Correction : 0.00 (lb/in) Volume Area Correction : Uniform Liquid Limit : 50.02 Plastic Limit : 25.88 Specific Gravity : 2.659 INITIAL : 5.945 (in) Height Dry Density : 110.72 (lb/ft^3) Area : 6.424 (in^2) Void Ratio: 0.50 Moisture : 17.01 % Saturation: 90.73 % Time : 0.00 (min) INITIALIZATION Dry Density : 110.72 (lb/ft^3) Moisture : 17.01 % Total Hori. Stress : 191.11 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 191.11 (lb/in^ Effect.Hori. Stress: 191.11 (lb/in^ : 0.000 (in) dH Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.50 Saturation: 90.73 % d٧ : 0.000 (in^3) : 0.00 (min) Time END OF CONSOLIDATION - A Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.50 : 0.000 (in) : 0.000 (in³) dH Total Vert. Stress : 191.11 (lb/in^ Total Hori. Stress : 191.11 (lb/in^ Dry Density : 110.72 (lb/ft^3) d٧ Moisture : 17.01 % Pore Pressure Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 191.11 (lb/in[^] Effect.Hori. Stress: 191.11 (lb/in[^] Saturation: 90.73 % Time : 0.00 (min) END OF SATURATION : 0.000 (in) : 0.000 (in³) : 0.000 (in³) : 5.945 (in) dH Height Dry Density : 110.72 (lb/ft^3) Total Vert. Stress : 191.11 (lb/in^ d٧ Area : 6.424 (in^2) Void Ratio: 0.50 Moisture : 17.26 % Total Hori. Stress : 191.11 (lb/in^ dVCorr Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 191.11 (lb/in^ Effect.Hori. Stress: 191.11 (lb/in^ Saturation: 92.02 % Time : 0.00 (min) END OF CONSOLIDATION - B Total Vert. Stress : 191.11 (lb/in^ Total Hori. Stress : 191.11 (lb/in^ Pore Pressure : 80.00 (lb/in^2 : 0.053 (in) : 1.012 (in³) : 5.892 (in) : 6.310 (in²) dH Height Dry Density : 113.73 (lb/ft^3) d٧ Area Moisture : 17.26 % Void Ratio: 0.46 Saturation: 99.99 % Effect.Vert. Stress: 111.11 (lb/in^ Time : 0.00 (min) Effect.Hori. Stress: 111.11 (lb/in^ FAILURE DURING SHEAR dH : 1.045 (in) Height : 4.900 (i dV : 1.012 (in³) Area : 7.671 (i Strain : 17.74 % Void Ratio: 0.46 Strength: 87.21 (lb/in²)Saturation: 99.99 % Height : 4.900 (in) Area : 7.671 (in^2) Void Ratio: 0.46 Total Vert. Stress : 365.54 (lb/in^ Total Hori. Stress : 191.11 (lb/in^ Pore Pressure : 122.38 (lb/in^ Effect.Vert. Stress: 243.16 (lb/in^ Effect.Hori. Stress: 68.73 (lb/in^2 Dry Density : 113.73 (lb/ft^3) Moisture : 17.26 % : 1160.40 (min) Time END OF TEST Height : 4.781 (in) Area : 7.864 (in²) Void Ratio: 0.46 : 1.164 (in) : 1.012 (in^3) Total Vert. Stress : 365.14 (lb/in^ Total Hori. Stress : 191.11 (lb/in^ Pore Pressure : 120.47 (lb/in^ Effect.Vert. Stress: 244.67 (lb/in^ Effect.Hori. Stress: 70.64 (lb/in^2 dH Dry Density : 113.73 (lb/ft^3) d٧ Moisture : 17.26 % Strain : 19.75 % Saturation: 99.99 % Time : 1293.23 (min)

LL 37.83	PL 18.43	PI 19.40	GS 2.70	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		
REMARKS:				PROJECT Chabot D	am Seismic Study				
1) TXCIU Tes	t with Effective	Perssure at 27	7.78 psi	PROJECT NO.26814536	ì				
				BORING NO. WI-61	SAMPLE NO.	11 Bottom		1	
				TECH. S. Copps	DEPTH/ELEV	40.0 feet			
				LABORATORY	DATE	06/14/04			
					TRIAXIA	L COMPRESSIO	n test repo	JRT	

Mon 06-28-:4, 12:52:09

LL 37.83	PL 18.43	PI 19.40	GS 2.70	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		
REMARKS:				PROJECT Chabot D	am Seismic Study		*****		
1) TXCIU Tes	t with Effective	Perssure at 27	7.78 psí	PROJECT NO.2681453	6	-			
				BORING NO. WI-61	SAMPLE NO.	11 Bottom			
				TECH. S. Capps	DEPTH/ELEV	40.0 feet			
				LABORATORY	DATE	06/14/04			
· · · ·					TRIAXIA	L COMPRESSION	N TEST REPO)RT	

Mon 06-28-:4, 12:51:33

URS

•

Mon Jun 28 12:52:38 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic StudyLocation : San Leandro, CAProject No. : 26814536Test No. : WI-61-11Boring No. : WI-61Test Date : 06/14/04Sample No. : 11 BottomDepth : 40.0 feetSample Type : PitcherElevation : NASoil Description : Brown clayey sand with gravel (SC)Remarks : TXCIU Test with Effective Perssure at 27.78 psi Tested by : S. Capps Checked by : R. Taraya

Height Area Volume	: 5.945 (in : 6.424 (in : 38.192 (i) ^2) n^3)	Piston Diamete Piston Frictic Piston Weight	er:0.0 on:0.0 :0.0	00 (in) 0 (lb) 0 (gm)	Filter Con Membrane (Area Corre	rrection Correction ection	: 0.00 (l on : 0.00 (l : Uniform	b/in^2) b/in)
VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE PRESSURE PA (lb/in^2)	A ARAMETER	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OF (lb/in^2)	BLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
1) 0.00 2) 0.20 3) 0.39 4) 0.60 5) 0.79 6) 1.01 7) 1.21 8) 1.61 10) 1.81 11) 2.21 13) 2.41 14) 2.61 17) 3.22 16) 3.21 14) 2.61 17) 3.43 10) 2.21 13) 2.41 15) 2.241 15) 3.62 2.01 17) 3.43 20) 3.82 20) 3.82 22) 5.64 3.80 5.24 4.63 5.24 4.63 5.24 3.65 5.24 3.65 5.24 3.65 5.26 5.20	107.78 123.59 129.03 133.61 135.30 135.70 138.92 139.63 140.96 141.96 140.96 141.90 142.69 143.59 143.59 143.59 143.59 143.59 143.59 143.59 144.01 144.41 144.42 145.52 145.92 146.49 146.68 147.40 148.05 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.65 148.75 148.65 1	107.78 107.78	$0.00 \\ 6.96 \\ 10.48 \\ 11.72 \\ 13.16 \\ 13.92 \\ 14.33 \\ 14.61 \\ 14.61 \\ 14.61 \\ 14.54 \\ 14.54 \\ 14.54 \\ 14.61 \\ 14.27 \\ 14.60 \\ 13.78 \\ 13.58 \\ 13.58 \\ 13.58 \\ 13.58 \\ 13.61 \\ 12.27 \\ 11.227 \\ 11.99 \\ 11.72 \\ 11.51 \\ 10.06 \\ 9.93 \\ 9.72 \\ 9.58 \\ 8.62 \\ 8.62 \\ 8.62 \\ 8.62 \\ 8.62 \\ 7.51 \\ 10.06 \\ 10.20 \\ 10.06 \\ 9.93 \\ 9.72 \\ 9.17 \\ 7.51 \\ 10.06 \\ 8.62 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 8.62 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 8.62 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 8.62 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.20 \\ 10.06 \\ 10.55 \\ 10.34 \\ 10.20 \\ 10.06 \\ 10.55 \\ 10.34 \\ 10.68 \\ 10.55 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.55 \\ 10.58 \\ 10.58 \\ 10.55 \\ 10.58 $	$\begin{array}{c} 0.0449\\ 0.551\\ 0.49\\ 0.448\\ 0.44554\\ 0.4422\\ 0.443\\ 0.445\\ 0.445\\ 0.445\\ 0.4422\\ 0.00\\ 0.335\\ 0.325\\ 0.222\\$	27.78 36.63 38.55 39.24 41.38 40.44 42.09 44.48 45.97 51.72 44.44 45.97 51.72 51.52 51.52 51.55	27.78 20.82 17.30 16.62 13.45 13.07 13.037 13.037 13.037 13.037 13.037 13.12 15.51 15.51 15.21 15.21 15.21 15.22 16.22 8.602 18.21 18.20 19.344 19.55 19.78 19.20 20.27	11222233333333333333333333333333333333	27.78 27.93 27.64 27.53 27.65 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 28.25 29.57 30.67 31.25 31.31 32.31 32.31 32.31 32.31 32.31 32.31 32.31 32.31 32.31 32.35 33.40 33.35 35.34 35.34 35.34 35.34 35.35 36.34 37.75 37.79 38.38 38.90 39.52 39.55 38.35 35.35 36.34 35.35 35.35 36.34 37.75 37.79 38.38 38.95 39.15 39.55 39.15 31.55 31.55 35.35	0.00 7.91 10.62 11.57 12.91 13.76 14.96 15.57 15.92 16.27 16.43 16.93 17.09 17.15 17.40 17.46 17.61 17.76 17.96 18.11 18.37 18.53 18.67 19.07 19.17 19.35 19.45 19.54 19.54 19.54 19.54 19.54 19.54 19.54 19.54 20.38 20.42 20.34 20.38 20.42 20.70 20.70 20.78 20.97 21.00 21.11 21.16 21.27

Mon Jun 28 12:52:38 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San Leandro, CA
Test No. : WI-61-11Boring No. : WI-61Test No. : WI-61-11Boring No. : WI-61Test Date : 06/14/04Sample No. : 11 BottomDepth : 40.0 feetSample Type : PitcherElevation : NASoil Description : Brown clayey sand with gravel (SC)
Remarks : TXCIU Test with Effective Perssure at 27.78 psi

Height : Area : Volume :	5.945 (in) 6.424 (in^2) 38.192 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (ib) 0.00 (gm)	Filte Membr Area	r Correction ane Correcti Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
VER CHANGE STI IN LENGTH (in) (1	TICAL RAIN CORR. AREA %) (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
1) 0.000 2) 0.012 3) 0.023 4) 0.035 5) 0.047 6) 0.059 7) 0.071 8) 0.082 9) 0.095 10) 0.107 11) 0.118 12) 0.130 13) 0.142 14) 0.154 15) 0.166 16) 0.178 17) 0.189 18) 0.202 19) 0.213 20) 0.225 21) 0.237 22) 0.250 23) 0.261 24) 0.273 25) 0.285 26) 0.297 27) 0.309 28) 0.320 29) 0.333 30) 0.344 31) 0.357 32) 0.380 33) 0.404 34) 0.427 35) 0.451 36) 0.475 37) 0.499 38) 0.522 39) 0.546 40) 0.570 41) 0.594 10 42) 0.6633 11 44) 0.683 12 45) 0.713 13 46) 0.742 14 50) 0.862 17 48) 0.803 17 48) 0.803 17 48) 0.803 17 48) 0.803 17 49) 0.832 40) 0.570 41) 0.594 40) 0.772 48) 0.803 49) 0.832 40) 0.842 40) 0.570 41) 0.594 41) 0.594 41) 0.594 42) 0.624 43) 0.653 44) 0.683 45) 0.713 45) 0.991 46) 0.742 47) 0.772 48) 0.803 49) 0.832 40) 0.951 40) 0.951	$\begin{array}{c} 0.00 & 6.32 \\ 0.20 & 6.33 \\ 0.39 & 6.34 \\ 0.60 & 6.36 \\ 0.79 & 6.37 \\ 1.01 & 6.38 \\ 1.21 & 6.39 \\ 1.61 & 6.42 \\ 1.81 & 6.43 \\ 2.01 & 6.45 \\ 2.21 & 6.46 \\ 2.21 & 6.46 \\ 2.21 & 6.46 \\ 2.21 & 6.46 \\ 2.21 & 6.53 \\ 3.22 & 6.57 \\ 3.62 & 6.57 \\ 3.62 & 6.57 \\ 3.82 & 6.57 \\ 3.82 & 6.57 \\ 3.82 & 6.57 \\ 3.82 & 6.66 \\ 1.3 & 6.61 \\ 2.43 & 6.65 \\ 5.24 & 6.67 \\ 6.85 & 6.67 \\ 5.24 & 6.68 \\ 6.93 & 6.71 \\ 6.85 & 6.81 \\ 7.25 & 6.81 \\ 7.44 \\ 6.65 & 7.76 \\ 6.85 & 7.76 \\ 6.63 & 7.67 \\ 8.65 & 7.76 \\ 8.65 & 7.76 \\ 8.65 & 7.76 \\ 8.65 & 7.76 \\ 8.65 & 7.76 \\ 8.65 & 7.86 \\ 0.16 & 7.91 \\ \end{array}$	80.00 86.96 90.48 91.72 93.16 93.92 94.33 94.61 94.75 94.61 94.75 94.61 94.75 94.61 94.75 94.61 94.75 94.61	$\begin{array}{c} 0.00\\ 102.65\\ 138.19\\ 150.89\\ 168.66\\ 180.02\\ 199.205.47\\ 210.55\\ 205.47\\ 220.77\\ 210.55\\ 218.17\\ 220.33.67\\ 237.21\\ 239.22\\ 233.67\\ 239.22\\ 233.67\\ 239.22\\ 243.69\\ 247.59\\ 257.52\\ 261.33\\ 266.41\\ 268.94\\ 277.79\\ 279.33\\ 285.45\\ 299.43\\ 305.76\\ 308.31\\ 315.99\\ 299.33\\ 305.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 299.33\\ 327.34\\ 335.76\\ 308.31\\ 315.99\\ 323.32\\ 335.33\\ 35$	$\begin{array}{c} 0.00\\ 102.65\\ 138.19\\ 150.89\\ 168.66\\ 180.08\\ 190.24\\ 196.59\\ 200.39\\ 205.47\\ 210.55\\ 218.17\\ 220.71\\ 225.78\\ 228.32\\ 229.59\\ 233.467\\ 237.21\\ 239.29\\ 243.569\\ 247.36\\ 249.97\\ 252.44\\ 254.98\\ 257.52\\ 261.33\\ 266.41\\ 268.94\\ 272.79\\ 277.83\\ 279.53\\ 279.53\\ 279.53\\ 299.41\\ 303.22\\ 299.53\\ 308.30\\ 312.11\\ 315.91\\ 320.93\\ 327.34\\ 335.76\\ 308.30\\ 312.11\\ 315.91\\ 320.93\\ 327.34\\ 335.11\\ 320.93\\ 327.34\\ 335.11\\ 320.93\\ 327.34\\ 335.11\\ 320.93\\ 327.34\\ 335.11\\ 320.93\\ 327.34\\ 335.11\\ 315.91\\ 320.93\\ 327.34\\ 335.11\\ 320.93\\ 327.34\\ 335.11\\ 315.91\\ 325.33\\ 335.11\\ 315.91\\ 325.33\\ 335.11\\ 315.91\\ 325.33\\ 335.33\\ 335.31\\$	$\begin{array}{c} 0.00\\ 16.22\\ 23.74\\ 26.422\\ 29.30\\ 311.32\\ 333.33\\ 34.73\\ 35.83\\ 35.83\\ 35.85\\ $	$\begin{array}{c} 107.78\\ 123.59\\ 129.03\\ 133.61\\ 135.30\\ 137.70\\ 138.92\\ 139.63\\ 140.96\\ 141.96\\ 142.57\\ 142.99\\ 143.59\\ 144.41\\ 144.42\\ 144.42\\ 144.42\\ 144.42\\ 144.42\\ 144.42\\ 144.42\\ 144.42\\ 145.57\\ 146.48\\ 146.48\\ 146.48\\ 147.45\\ 148.45\\ 148.45\\ 148.45\\ 148.45\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.41\\ 149.62\\ 149.78\\$	27.78 36.63 38.55 39.21 40.44 41.38 42.46 43.09 43.47 44.10 44.88 45.58 45.97 46.35 47.11 47.76 47.82 48.51 49.21 49.72 50.02 50.27 50.85 51.52 52.02 52.44 52.57 52.685 53.53 54.00 54.41 54.81 55.39 57.46 57.73 58.23 58.48 59.29 59.38 59.52 57.46 57.73 58.23 58.48 59.29 59.38 59.62 60.09 60.55 60.93 61.07 61.448 61.58 62.14 62.52 62.80

Mon Jun 28 12:52:38 2004 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-61 Sample No. : 11 Bottom Sample Type : Pitcher Test No. : WI-61-11 Tested by : S. Capps Checked by : R. Taraya Test Date : 06/14/04 Depth : 40.0 feet Elevation : NA Soil Description : Brown clayey sand with gravel (SC) Remarks : TXCIU Test with Effective Perssure at 27.78 psi : 5.945 (in) : 6.424 (in^2) : 38.192 (in^3) Height Piston Diameter : 0.000 (in) Filter Correction : 0.00 (lb/in^2) Piston Friction : 0.00 (lb) Area Membrane Correction : 0.00 (lb/in) Volume Piston Weight : 0.00 (gm) Area Correction : Uniform Plastic Limit : 18.43 Liquid Limit : 37.83 Specific Gravity : 2.704 INITIAL Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.41 Dry Density : 119.76 (lb/ft^3) Moisture : 14.52 % Saturation: 96.00 % Time : 0.00 (min) INITIALIZATION : 0.000 (in) : 5.945 (in) dH Height Dry Density : 119.76 (lb/ft^3) Total Vert. Stress : 107.78 (lb/in^ Area : 6.424 (in²) Void Ratio: 0.41 Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 0.00 (lb/in^2) d٧ : 0.000 (in^3) Moisture : 14.52 % Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ Saturation: 96.00 % : 0.00 (min) Time END OF CONSOLIDATION - A Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.41 : 0.000 (in) : 0.000 (in³) Dry Density : 119.76 (lb/ft^3) Total Vert. Stress : 107.78 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ dH d٧ Moisture : 14.52 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ Saturation: 96.00 % : 0.00 (min) Time END OF SATURATION : 0.000 (in) : 0.000 (in³) : 0.000 (in³) : 5.945 (in) dH Height Dry Density : 116.89 (lb/ft^3) Total Vert. Stress : 107.78 (lb/in[^] : 6.424 (in^2) dV Area Moisture : 15.06 % Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ dVCorr Void Ratio: 0.44 Saturation: 91.85 % : 0.00 (min) Time END OF CONSOLIDATION - B : 0.050 (in) : 0.954 (in³) : 5.895 (in) : 6.317 (in²) Dry Density : 119.89 (lb/ft^3) Moisture : 15.06 % Total Vert. Stress : 107.78 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 27.78 (lb/in^2 Effect.Hori. Stress: 27.78 (lb/in^2 dH Height d٧ Area Void Ratio: 0.41 Saturation: 99.98 % : 0.00 (min) Time FAILURE DURING SHEAR : 1.188 (in) : 4.757 (in) : 7.912 (in²) dH Height Dry Density : 119.89 (lb/ft^3) Total Vert. Stress : 151.40 (lb/in^ dV : 0.954 (in^3) Area : 7.912 (i Strain : 20.16 % Void Ratio: 0.41 Strength: 21.81 (lb/in^2)Saturation: 99.98 % Time : 1362.35 (min) Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 87.51 (lb/in^2 Effect.Vert. Stress: 63.89 (lb/in^2 Effect.Hori. Stress: 20.27 (lb/in^2 Moisture : 15.06 % END OF TEST : 1.188 (in) : 0.954 (in³) : 4.757 (in) : 7.912 (in^2) dH Dry Density : 119.89 (lb/ft^3) Height Total Vert. Stress : 151.40 (lb/in^ d٧ : 15.06 % Total Hori. Stress : 107.78 (lb/in^ Area Moisture Pore Pressure : 87.51 (lb/in^2 Effect.Vert. Stress: 63.89 (lb/in^2 Strain : 20.16 % Void Ratio: 0.41 Saturation: 99.98 % : 1362.35 (min) Time Effect.Hori. Stress: 20.27 (lb/in^2

LL 34.54	PL 16.73	PI 17.81	GS 2.78	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		<u></u>
REMARKS:				PROJECT Chabot D	am Seismic Study	······			
1) TXCIU Tes	t with Effective	Pressure of 55	5.56 psi	PROJECT NO.26814536	ô				
				BORING NO. WI-61	SAMPLE NO.	15 Bottom			
				TECH. S. Copps	DEPTH/ELEV	60.0			
				LABORATORY	DATE	06/14/04			
					TRIAXIA	L COMPRESSIO	N TEST REPOR	T	
Mon 06-28-:	4, 12:47:17								

LL 34.54	PL 16.73	PI 17.81	GS 2.78	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)			
REMARKS:				PROJECT Chabot Dam Seismic Study						
1) TXCIU Test with Effective Pressure of 55.56 psi				PROJECT NO.26814536						
				BORING NO. WI-61	SAMPLE NO.	15 Bottom				
				TECH. S. Capps	DEPTH/ELEV	60.0				
				LABORATORY	DATE	06/14/04				
				TRIAXIAL COMPRESSION TEST REPORT						

-

Mon 06-28-:4, 12:46:42

Mon Jun 28 12:47:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Test No. : WI-61-15 Project No. : 26814536 Boring No. : WI-61 Tested by : S. Capps Checked by : R. Taraya Test Date : 06/14/04 Sample No. : 15 Bottom Depth : 60.0 Sample Type : Pitcher Elevation : NA Soil Description : Reddish brown clayey sand with gravel (SC) Remarks : TXCIU Test with Effective Pressure of 55.56 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform **EXCESS** TOTAL TOTAL EFFECTIVE EFFECTIVE VERTICAL HORIZONTAL VERTICAL PORE VERTICAL A HORIZONTAL EFFECTIVE STRAIN STRESS PRESSURE PARAMETER STRESS STRESS OBLIQUITY STRESS p (lb/in^2) q (lb/in^2) (%) (lb/in^2) (lb/in^2) (lb/in^2) (lb/in^2) (lb/in^2) 0.00 135.56 135.56 135.56 0.00 1) 0.00 55.56 55.56 55.56 1.00 0.00 2) 0.29 164.07 0.61 14.25 66.56 38.05 1.75 52.31 -3) 4) 5) 170.06 0.49 135.56 23.47 27.07 2.08 0.68 66.59 32.08 49.33 0.71 173.71 135.56 66.63 67.26 28.49 27.34 47.56 19.07 175.48 177.71 179.01 28.22 0.90 135.56 2.46 47.30 47.27 19.96 135.56 135.56 6) 1.10 26.19 25.35 24.05 0.70 21.08 68.34 7) 1.30 30.21 0.70 68.80 2.71 47.07 21.73 8) 9) 1.50 180.31 0.70 135.56 31.51 68.80 46.42 22.38 68.94 69.53 70.27 1.70 181.14 0.71 135.56 32.20 23.36 2.95 46.15 22.79 10) 1.90 181.96 135.56 32.43 23.20 23.13 3.01 46.33 2.10 2.30 182.78 183.60 32.50 32.58 11) 135.56 23.61 0.69 23.05 3.05 46.66 12) 3.09 46.99 0.68 71.01 22.97 24.02 2.51 2.71 2.91 3.12 13) 14) 22.90 22.74 22.82 32.66 32.81 135.56 71.75 184.41 0.67 24.42 71.95 135.56 184.77 0.67 47.35 24.60 3.16 32.73 32.35 32.58 185.12 15) 135.56 0.66 3.17 47.60 24.78 16) 17) 185.92 135.56 135.56 0.64 73.56 23.20 3.17 48.38 25.18 186.26 3.21 3.21 3.23 3.21 3.23 3.21 3.32 48.33 48.58 73.68 22.97 0.64 25.35 18) 19) 3.52 186.61 32.50 32.50 135.56 0.64 25.53 3.72 3.93 74.44 186.95 135.56 0.63 23.05 25.70 25.87 48.75 20) 21) 22) 187.29 135.56 32.12 0.62 23.43 49.30 4.13 187.64 187.97 135.56 135.56 32.20 32.12 0.62 75.43 23.36 49.39 26.04 4.33 23.43 23.51 3.24 49.64 0.61 75.85 26.21 23) 24) 25) 26) 4.54 135.56 135.56 135.56 76.26 188.30 32.05 0.61 49.88 26.37 31.66 31.74 31.74 76.98 77.23 77.56 4.73 188.64 0.60 23.89 3.22 50.43 26.54 4.94 188.97 23.82 23.82 50.52 26.71 135.56 189.31 0.59 3.26 50.69 26.87 27) 189.19 5.34 23.89 3.24 3.20 135.56 31.66 0.59 77.52 50.71 26.82 28) 29) 30) 5.54 24.58 189.52 135.56 30.97 0.57 78.54 51.56 26.98 135.56 135.56 5.75 189.84 31.13 24.43 24.35 0.57 78.71 3.22 51.57 27.14 5.96 190.16 31.20 0.57 3.24 78.95 51.65 27.30 31) 32) 6.15 190.49 31.20 24.35 135.56 0.57 79.28 51.81 27.46 0.56 6.56 191.12 135.56 30.90 80.22 24.66 3.25 3.24 52.44 27.78 135.56 135.56 135.56 6.97 7.37 33) 191.31 30.67 27.88 80.64 24.89 191.94 34) 30.44 25.12 0.54 81.50 3.24 53.31 28.19 35) 36) 7.77 3.23 3.23 3.21 3.23 192.56 29.98 0.53 82.58 25.58 28.50 28.59 54.08 8.18 192.74 135.56 0.52 82.83 54.24 29.44 29.52 0.51 37) 8.58 193.34 135.56 83.90 26.11 55.00 28.89 8.99 38) 193.51 135.56 83.99 26.04 55.01 28.98 29.27 194.10 194.26 29.21 29.21 29.06 9.39 39) 3.22 3.23 3.22 3.22 3.22 135.56 55.61 0.50 84.88 26.34 **40**5 135.56 85.04 0.50 26.34 55.69 29.35 10.20 41) 194.41 135.56 0.49 26.50 29.43 42) 28.83 135.56 194.92 86.09 29.68 0.49 56.41 26.72 43) 44) 11.21 195.00 28.68 28.45 135.56 3.21 3.21 26.88 27.11 0.48 86.32 56.60 29.72 11.72 12.23 12.73 87.03 195.49 135.56 0.47 57.07 29.96 45) 46) 135.56 135.56 28.29 28.14 0.47 195.55 87.25 3.20 3.21 3.21 30.00 27.26 57.26 196.03

Page: 1

46)	12.73	196.03	135.56	28.14	0.47	87.88	27.41	3 21	57 65	30 23
47)	13.24	196.48	135 56	27 00	ñ 46	88 /0	27 57	7 24	50 07	70.74
485	13 74	106 5%	135 54	27 9/	0.46	00.47	27.77	3.21	20.03	20.40
707	16 26	104 50	175 54	27.04	0.40	00.70	21.12	5.20	58.21	30.49
27/	14.24	190.00	122.20	27.08	0.42	88.90	27.87	3.19	58.38	30.51
20)	14.75	197.02	135.56	27.45	0.45	89.56	28.10	3.19	58.83	30.73
51)	15.26	197.44	135.56	27.38	0.44	90.06	28.18	3.20	50 12	30 04
52)	16.27	197.88	135.56	26.99	0.43	90.88	28 56	3 18	50 72	31 14
53)	16.78	198.28	135.56	26 84	0 43	01 / 3	29 71	2 10	40.07	71 76
545	17.28	108 20	135 54	26.16	0.43	01 02	20.71	7 1/	00.07	21.30
55	17 70	109 47	175 54	20.40	0.42	91.02	29.10	2.10	00.40	51.50
	10 20	170.07	132.20	20.30	0.42	92.29	29.17	3.16	60.73	31.56
201	10.29	198.07	155.56	26.15	0.41	92.51	29.40	3.15	60.96	31.55
50	18.80	199.04	135.56	26.00	0.41	93.03	29.56	3.15	61.30	31.74
58)	19.81	199.37	135.56	25.69	0.40	93.68	29.86	3 14	61 77	X1 01
					~	/				
Mon Jun 28 12:47:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Cha Project No. : Boring No. : Sample No. : Sample Type : Soil Descript Remarks : TXC	abot Dam Seismic Study 26814536 WI-61 15 Bottom Pitcher tion : Reddish brown c 210 Test with Effective	Location : San Leandro, CA Test No. : WI-61-15 Test Date : 06/14/04 Depth : 60.0 Elevation : NA layey sand with gravel (SC) Pressure of 55.56 psi	Tested by : S. Capps Checked by : R. Taraya
Height	: 5.945 (in)	Piston Diameter : 0.000 (in)	Filter Correction : 0.00 (lb/in^2)
Area	: 6.424 (in^2)	Piston Friction : 0.00 (lb)	Membrane Correction : 0.00 (lb/in)
Volume	: 38.192 (in^3)	Piston Weight : 0.00 (gm)	Area Correction : Uniform

Area Volume		: 6.424 : 38.19	(in^2) 2 (in^3)	Piston Piston	Friction : Weight :	0.00 (lb) 0.00 (gm)	Membr Area	ane Correction	on : 0.00 (lb/ : Uniform
C In	VI HANGE LENGTH (in)	ERTICAL STRAIN (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
123456789111231456789011231111112222222222222223333333333333	0.000 0.017 0.0291 0.0453 0.0655 0.0778 0.1124 0.1245 0.1124 0.1245 0.1245 0.1245 0.1245 0.1245 0.1245 0.1245 0.1245 0.1245 0.2278 0.2285 0.2575 0.6299 0.6899 0.6899 0.748	$\begin{array}{c} 0.09\\ 0.29\\ 0.69\\ 0.11\\ 1.57\\ 0.91\\ 0.35\\ 1.12\\ 2.22\\ 2.33\\ 3.33\\ 3.33\\ 4.4\\ 4.4\\ 4.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5$	6.231233567801224568891235567902346679258046003693071159	$\begin{array}{c} 80.00\\ 97.51\\ 103.48\\ 107.07\\ 108.22\\ 109.37\\ 110.21\\ 111.51\\ 112.20\\ 112.43\\ 112.51\\ 112.59\\ 112.66\\ 112.82\\ 112.74\\ 112.59\\ 112.51\\ 112.51\\ 112.51\\ 112.51\\ 112.51\\ 112.51\\ 112.66\\ 112.82\\ 112.51\\ 112.66\\ 112.82\\ 112.51\\ 112.66\\ 112.82\\ 112.51\\ 112.66\\ 112.82\\ 112.51\\ 112.67\\ 112.67\\ 111.67\\ 111.67\\ 111.67\\ 111.67\\ 111.67\\ 110.98\\ 111.21\\ 111.21\\ 111.21\\ 110.90\\ 110.67\\ 110.44\\ 109.98\\ 109.91\\ 109.45\\ 109.52\\ 109.22\\ 109.06\\ 108.84\\ 108.68\\ 108.30\\ 108.15\\ \end{array}$	$\begin{array}{c} 0.00\\ 185.83\\ 225.36\\ 249.84\\ 277.04\\ 286.16\\ 295.28\\ 301.36\\ 307.44\\ 313.52\\ 319.60\\ 325.68\\ 328.72\\ 3311.60\\ 325.68\\ 328.72\\ 337.84\\ 343.93\\ 346.97\\ 355.09\\ 355.09\\ 356.09\\ 355.01\\ 355.05\\ 356.21\\ 368.25\\ 368.25\\ 371.33\\ 386.49\\ 377.31\\ 386.49\\ 377.37\\ 380.41\\ 413.85\\ 395.61\\ 404.73\\ 410.81\\ 419.93\\ 395.61\\ 404.73\\ 410.81\\ 419.93\\ 395.61\\ 404.73\\ 422.97\\ 426.01\\ 432.09\\ 435.121\\ 426.01\\ 432.09\\ 435.121\\ 444.25\\ 450.33\\ \end{array}$	$\begin{array}{c} 0.00\\ 185.83\\ 225.36\\ 249.68\\ 261.84\\ 277.04\\ 286.16\\ 295.28\\ 301.36\\ 307.44\\ 313.52\\ 319.60\\ 325.68\\ 328.72\\ 3317.64\\ 340.89\\ 343.93\\ 346.97\\ 355.01\\ 355.05\\ 356.09\\ 359.13\\ 362.17\\ 365.21\\ 368.25\\ 371.37\\ 380.41\\ 386.49\\ 374.33\\ 377.37\\ 380.41\\ 386.49\\ 389.53\\ 377.37\\ 380.41\\ 386.49\\ 389.53\\ 395.61\\ 401.69\\ 404.73\\ 410.81\\ 413.85\\ 419.93\\ 422.97\\ 426.01\\ 432.09\\ 435.13\\ 441.21\\ 432.09\\ 435.13\\ 441.21\\ 432.09\\ 435.13\\ 441.21\\ 452.33\\ 375.37\\ 380.41\\ 386.49\\ 389.53\\ 395.61\\ 401.69\\ 404.73\\ 410.81\\ 413.85\\ 419.93\\ 422.97\\ 426.01\\ 432.09\\ 435.13\\ 441.21\\ 432.09\\ 435.13\\ 441.21\\ 452.33\\ 380.41\\ 386.49\\ 389.53\\ 395.61\\ 401.69\\ 404.73\\ 410.81\\ 413.85\\ 419.93\\ 422.97\\ 426.01\\ 432.09\\ 435.13\\ 441.21\\ 454.25\\ 337\\ 441.21\\ 454.25\\ 337\\ 451.22\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 454.25\\ 450.33\\ 441.21\\ 455.25\\ 450.33\\ 456.49\\ 455.35\\ 450.25$	0.00 29.53 35.73 41.36 45.00 46.34 45.00 46.34 47.20 48.90 50.96 51.15 52.55 55.55.	135.56 164.07 170.06 173.71 175.48 177.71 180.31 181.14 181.96 182.78 183.60 184.41 184.77 185.12 185.92 186.26 186.61 186.95 187.29 187.64 188.30 188.64 188.97 189.31 189.19 189.52 189.84 190.16 190.49 191.31 191.94 192.56 192.74 193.34 193.51 194.20 195.00 195.03	55.56 66.59 66.63 67.26 68.34 68.80 68.94 69.53 70.27 71.01 71.75 72.38 73.56 73.68 74.10 75.43 75.43 76.26 98 22 80.64 81.50 82.58 83.90 84.88 85.04 85.35 86.09 86.32 87.03 87.88
47)	0.778	13.24	7.23	107.99	456.41	456.41	63.09	196.48	88.49

|--|

Mon Jun 28 12:47:48 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-61 Test No. : WI-61-15 Test Date : 06/14/04 Tested by : S. Capps Sample No. : 15 Bottom Sample Type : Pitcher Depth : 60.0 Checked by : R. Taraya Elevation : NA Soil Description : Reddish brown clayey sand with gravel (SC) Remarks : TXCIU Test with Effective Pressure of 55.56 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Filter Correction : 0.00 (lb/in²) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform Liquid Limit : 34.54 Specific Gravity : 2.784 Plastic Limit : 16.73 INITIAL : 5.945 (in) Height Dry Density : 129.61 (lb/ft^3) Area : 6.424 (in²) Void Ratio: 0.34 Saturation: 0.44 Moisture : 11.75 % Saturation: 96.11 % Time : 0.00 (min) INITIALIZATION : 0.000 (in) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Dry Density : 129.61 (lb/ft^3) Moisture : 11.75 % : 5.945 (in) dH Height Area : 6.424 (in²) Void Ratio: 0.34 Saturation: 96.11 % d٧ : 0.000 (in^3) Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 135.56 (lb/in²) Effect.Hori. Stress: 135.56 (lb/in²) : 0.00 (min) Time END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in^3) Height : 5.945 (in) Area : 6.424 (in^2) Void Ratio: 0.34 Dry Density : 129.61 (lb/ft^3) Moisture : 11.75 % dH Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ đ٧ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ Saturation: 96.11 % Time : 0.00 (min) END OF SATURATION Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ : 0.000 (in) : 0.000 (in³) : 0.000 (in³) dH Height : 5.945 (in) Dry Density : 125.32 (lb/ft^3) Area : 6.424 (in²) Void Ratio: 0.39 d٧ Moisture : 12.16 % dVCorr Saturation: 87.63 % Time : 0.00 (min) END OF CONSOLIDATION - B : 0.069 (in) : 1.314 (in³) : 5.876 (in) : 6.276 (in²) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 55.56 (lb/in^2 Height Dry Density : 129.79 (lb/ft^3) dH d٧ Area Moisture : 12.16 % Void Ratio: 0.34 Saturation: 99.97 % Time : 0.00 (min) Effect.Hori. Stress: 55.56 (lb/in^2 FAILURE DURING SHEAR dH : 1.164 (in) Height : 4.781 (i dV : 1.314 (in³) Area : 7.826 (i Strain : 19.81 % Void Ratio: 0.34 Strength: 33.04 (lb/in²)Saturation: 99.97 % Height : 4.781 (in) Area : 7.826 (in²) Void Ratio: 0.34 Dry Density : 129.79 (lb/ft^3) Moisture : 12.16 % Total Vert. Stress : 201.65 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 105.70 (lb/in^ Effect.Vert. Stress: 95.95 (lb/in^2 Effect.Hori. Stress: 29.86 (lb/in^2 : 1336.88 (min) Time END OF TEST Height : 4.781 (in) Area : 7.826 (in²) Void Ratio: 0.34 dH : 1.164 (in) dV : 1.314 (in³) Strain : 19.81 % Dry Density : 129.79 (lb/ft^3) Total Vert. Stress : 201.65 (lb/in' Total Hori. Stress : 201.05 (lb/in^ Pore Pressure : 105.70 (lb/in^ Effect.Vert. Stress: 95.95 (lb/in^2 Effect.Hori. Stress: 29.86 (lb/in^2 : 12.16 % Moisture Saturation: 99.97 % Time : 1336.88 (min)

1										
LL 44.46	PL 22.10	PI 22.36	GS 2.71	TYPE OF SPECIMEN F	^p itcher	TYPE OF TEST	CU (R)			
REMARKS:	····			PROJECT Chabot D	am Seismic Study					
1) TXCIU Tes	t with Effective	Pressure of 55	5.56 psi	PROJECT NO.26814534	6					
2) TXCIU Tes	t with Effective	Pressure of 13	38.89 psi	BORING NO. WI-62	SAMPLE NO.	20 Top	20 Bottom			
				TECH. S. Copps	DEPTH/ELEV	65.0 feet	65.0 feet			
				LABORATORY	DATE	06/17/04	06/22/04			
				TRIAXIAL COMPRESSION TEST REPORT						

Wed U/-0/-:4, U/:0/:19

LL 44.46	PL 22.10	PI 22.36	GS 2.71	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	TYPE OF TEST CU (R)				
REMARKS:				PROJECT Chabot Dam Seismic Study							
1) TXCIU Test	t with Effective	Pressure of 55	.56 psi	PROJECT NO.26814536	ô	***************************************					
2) TXCIU Test	t with Effective	Pressure of 13	8.89 psi	BORING NO. WI-62	SAMPLE NO.	20 Top	20 Bottom				
			******	TECH. S. Capps	DEPTH/ELEV	65.0 feet	65.0 feet				
	· · · · · · · · · · · · · · · · · · ·			LABORATORY DATE 06/17/04 06/22/04							
				TRIAXIAL COMPRESSION TEST REPORT							

Wed U/-0/-:4, U/:0/:53

LL 44.46	PL 22.10	PI 22.36	GS 2.71	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		
REMARKS:				PROJECT Chabot D	am Seismic Study				
1) TXCIU Tes	st with Effective	Pressure of 55	5.56 psi	PROJECT NO.2681453	ô				
				BORING NO. WI-62	SAMPLE NO.	20 Top		T	
				TECH. S. Capps	DEPTH/ELEV	65.0 feet			
				LABORATORY	DATE	06/17/04			
	TRIAXIAL COMPRESSION TEST REPORT								

Mon 06-28-:4, 11:50:25

LL 44.46	PL 22.10	PI 22.36	GS 2.71	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)				
REMARKS:				PROJECT Chabot De	am Seismic Study			***********	<u></u>		
1) TXCIU Test	with Effective	Pressure of 55	i.56 psi	PROJECT NO.26814536	}						
				BORING NO. WI-62	SAMPLE NO.	20 Top					
				TECH. S. Capps	DEPTH/ELEV	65.0 feet		Jan			
				LABORATORY	DATE	06/17/04		1			
				TRIAXIAL COMPRESSION TEST REPORT							

•

Mon U6-28-:4, 11:51:15

Mon Jun 28 11:51:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

1

Project : Ch Project No. Boring No. : Sample No. : Sample Type Soil Descrip Remarks : TX	abot Dam Sei : 26814536 WI-62 20 Top : Pitcher otion : Brown CIU Test wit	smic Study sandy clay h Effective	Location : San Lo Test No. : WI-62 Test Date : 06/17 Depth : 65.0 fee Elevation : NA (CL) Pressure of 55.56	eandro, CA -20 7/04 t 6 psi	Tested by Checked b	/:S.C by:R.	apps Faraya	
Height Area Volume	: 5.945 (in : 6.424 (in : 38.192 (i	n) P n^2) P n^3) P	iston Diameter : iston Friction : iston Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filter Cor Membrane C Area Corre	rection correction	: 0.00 (l on : 0.00 (l : Uniform	b/in^2) b/in)
VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE A PRESSURE PARAME (lb/in^2)	EFFECTIVE VERTICAL ETER STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OB (lb/in^2)		EFFECTIVE p (lb/in^2)	q (lb/in^2)
1) 0.00 2) 0.24 3) 0.44 4) 0.645 5) 1.26 8) 1.26 9) 1.27 9) 3.51 12) 2.289 10) 3.51 12) 2.289 10) 3.51 12) 2.29 23) 4.122 24) 4.53 26) 5.556 9,738 9,023 36) 8.612 37) 3.50 8.612 37) 3.50 8.612 38) 9.434 41) 10.26 43) 11.278 44) 12.280 44) 12.280	135.56 160.81 177.50 181.70 183.85 186.39 188.32 191.12 191.62 192.51 193.20 193.87 194.35 194.63 194.35 194.63 195.37 195.37 195.37 195.37 195.37 195.91 196.71 196.71 196.71 196.71 197.04 197.29 197.55 197.67 197.67 197.92 198.17 198.58 198.58 199.36 199.84 200.12 200.66 200.73 201.00 201.67 201.86 202.19	$\begin{array}{c} 135.56\\ 135.56\\ 135.566\\ 135.566\\ 135.566\\ 135.566\\ 135.566\\ 135.566\\ 135.566\\ 135.556$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 55.56 .19 76.12 .26 81.58 .33 83.51 .39 83.72 .42 83.52 .46 83.24 .48 83.03 .50 82.82 .51 82.74 .52 82.74 .53 83.08 .53 83.28 .53 83.28 .53 83.28 .53 83.28 .53 83.28 .53 83.75 .53 84.15 .53 84.27 .53 84.27 .53 84.27 .53 84.27 .53 84.27 .53 84.27 .53 84.27 .54 85.35 .55 87.17 .50 86.46 .50 87.17 .49 87.49 .47 89.60 .45 91.25 .45 91.80 .44 92.20 .43 92.65 .44 91.80 .45 93.07 .42 93.45	55.56 50.87 46.32 41.57 37.58 35.23 28.55 26.49 25.11 24.28 23.80 23.80 23.80 23.80 23.80 23.80 23.80 23.80 23.80 23.80 24.08 24.21 24.28 24.29 24.24 24.55 24.25 25.80 26.26 26.26 26.26 26.25 26.56 26.25 26.25 26.25 26.56 26.25 26.56 26.25 26.56 26.25 26.56 26.25 26.56	11122222223333333333333333333333333333	55.56 63.50 62.54 60.55 57.85 55.69 54.51 55.55 55.69 54.51 55.55 55.55 55.69 54.51 55.55 55.55 55.55 55.55 55.55 55.55 55.69 54.51 55.555 55.55	$\begin{array}{c} 0.00\\ 12.63\\ 17.63\\ 20.97\\ 23.07\\ 24.14\\ 25.42\\ 26.38\\ 27.13\\ 28.82\\ 29.53\\ 29.9.91\\ 30.04\\ 30.31\\ 30.57\\ 30.99\\ 31.05\\ 31.31\\ 31.31\\ 31.31\\ 31.31\\ 31.31\\ 31.51\\ 31.32\\ 32.42\\ 32.55\\ 32.59\\ 32.72\\ 32.81\\ 32.32\\ 33.075\\ 33.37\\ $

Page: 1

471	13 31	202 52	135 56	27 63	0 41	0/ 80	27 03	3.41	61 /1	33.62
	13 82	202 83	135 56	27 /0	0 / 1	05 3/	28 07	3.40	61 70	33.40
	14 34	202 05	135 56	27 28	0.41	95.67	28 28	7 70	61 07	33.00
505	14 84	203 00	135 56	27 08	0.40	06 01	28 /8	3.30	62 25	33.76
51)	15 25	203.39	175 56	26 0/	0.40	04 //	20.40	7 77	42 57	33.70
521	16 38	203.30	135.56	20.74	0.40	70.44	28.02	J.J/ Z Z5	62.JJ 42.01	33.71
551	16.30	203.37	175 56	20.00	0.37	70.7J 07 17	20.90	J.JJ 7 75	62.91	34.01
5/1	17 30	203.07	175 54	20.33	0.37	71.11	29.04	3.33	67.10	34.07
	17.00	203.17	133.30	20.39	0.39	97.40	29.17	3.34	03.29	34.11
	10 / 2	203.07	133.30	20.10	0.30	91.09	29.30	2.22	03.74	34.10
20)	10.42	203.93	132.20	20.11	0.38	97.84	29.45	3.32	03.04	34.19
27)	10.95	204.02	132.20	22.91	0.30	98.12	29.00	5.51	65.89	34.23
58)	19.92	204.32	152.50	25.03	0.37	98.69	29.93	5.50	64.51	54.58

Mon Jun 28 11:51:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San Leandro, CA
Test No. : WI-62-20Boring No. : WI-62Test No. : WI-62-20Sample No. : 20 TopDepth : 65.0 feetSample Type : PitcherElevation : NASoil Description : Brown sandy clay (CL)
Remarks : TXCIU Test with Effective Pressure of 55.56 psiHeight: 5.945 (in)Area: 6.424 (in^2)VertICALPiston Diameter : 0.000 (gm)VERTICALTOTALVERTICALTOTAL

	CHANGE IN LENGT	STRAIN H (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	VERTICAL STRESS (lb/in^2)	VERTICAL STRESS (lb/in^2)
1) 2)	0.000	0.00	6.16	80.00 84.69	0.00	0.00	0.00	135.56	55.56
35	0.026	0.44	6.19	89.24	218.17	218.17	35.25	170.81	81.58
5)	0.049	0.85	6.21	97.98	286.72	286.72	41.94	181.70	83.51 83.72
6) 7)	0.062	1.06	6.23	100.33	300.68	300.68	48.29	183.85	83.52
8)	0.085	1.46	6.25	105.28	329.88	329.88	52.76	188.32	83.03
9) 10)	0.097	1.67	6.27 6.28	107.01 108.38	340.03	340.03 348.92	54.27	189.83 101 12	82.82 82 74
11)	0.121	2.08	6.29	109.07	352.73	352.73	56.06	191.62	82.54
12)	0.133	2.29	6.31	109.76	359.08	359.08 364 15	56.95	192.51 193.20	82.74 82.75
145	0.157	2.70	6.33	110.93	369.23	369.23	58.31	193.87	82.94
15) 16)	0.168	2.89	6.34 6.36	111.28 111.35	373.04 375.58	373.04 375.58	58.79	194.35 194.63	83.08 83.28
17)	0.192	3.30	6.37	111.48	378.12	378.12	59.34	194.90	83.42
19)	0.204	3.72	6.40	111.62	381.95	381.93 384.46	59.81 60.08	195.37	83.75 83.95
20)	0.228	3.91	6.41	111.76	387.00	387.00	60.35	195.91	84.15
22)	0.251	4.12	6.44	111.76	392.08	392.08	60.82	196.18	84.35 84.69
23)	0.264	4.53	6.45	111.69	394.62	394.62	61.15	196.71	85.02
25)	0.287	4.93	6.48	111.55	398.43	398.43	61.48	190.97	85.48
26) 27)	0.299	5.14	6.50	111.48	400.97	400.97	61.73	197.29	85.81
28)	0.323	5.55	6.52	111.35	404.78	403.51	62.05	197.61	86.27
29) 30)	0.335	5.76	6.54	111.21	406.05	406.05	62.11	197.67	86.46
31)	0.359	6.16	6.57	111.00	411.12	411.12	62.61	198.17	87.17
32)	0.382	6.57	6.59	110.86	413.66	413.66	62.73	198.29	87.43
34)	0.430	7.38	6.65	110.11	418.74	418.74	62.94	198.50	88.40
35) 36)	0.454	7.80	6.68 6.71	109.76	426.36	426.36	63.80	199.36	89.60
37)	0.501	8.61	6.74	109.28	435.24	435.24	64.56	200.12	90.84
- <u>58</u>) - 39)	0.525	9.02	6.77 6.80	109.14 109.00	439.05	439.05	64.83 65 10	200.39	91.25
40)	0.573	9.84	6.83	108.94	445.40	445.40	65.17	200.73	91.80
41) 42)	0.597	10.25	6.86 6.90	108.80 108.52	449.21 453 02	449.21 453 02	65.44 65.61	201.00	92.20
43)	0.656	11.27	6.94	108.45	458.09	458.09	65.97	201.53	93.07
44) 45)	0.686	11.78 12.20	6.98 7.02	108.25 108.04	461.90 465 71	461.90 445 71	66.14	201.70	93.45
46)	0.745	12.80	7.07	107.90	470.79	470.79	66.63	202.19	94.29
471	0 775	13 31	7 11	107 63	475 87	<u> </u>	46 06	202 52	0/ 80

Page : 2

48)	0.805	13.82	7.15	107.49	480.94	480.94	67.27	202-83	95.34
49)	0.835	14.34	7.19	107.28	484.75	484.75	67.39	202.95	95.67
50)	0.864	14.84	7.24	107.08	488.56	488.56	67.53	203.09	96.01
51)	0.894	15.35	7.28	106.94	493.64	493.64	67.82	203.38	96.44
52)	0.954	16.38	7.37	106.66	501.25	501.25	68.03	203.59	96.93
535	0.983	16.88	7.41	106.52	505.06	505.06	68.13	203.69	97.17
54)	1.012	17.39	7.46	106.39	508.87	508.87	68.23	203.79	97.40
55)	1.042	17.90	7.50	106.18	512.68	512.68	68.31	203.87	97.69
56)	1.072	18.42	7.55	106.11	516.49	516.49	68.39	203.95	97.84
57)	1.102	18.93	7.60	105.90	520.30	520.30	68.46	204.02	98.12
58)	1.161	19.95	7.70	105.63	529.18	529.18	68.76	204.32	98.69
- •									

Mon Jun 28 11:51:48 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Page: 4

Project : Chabot Dam Seismic Study Location : San Leandro, CA Test No. : WI-62-20 Test Date : 06/17/04 Project No. : 26814536 Boring No. : WI-62 Tested by : S. Capps Sample No. : 20 Top Depth : 65.0 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Brown sandy clay (CL) Remarks : TXCIU Test with Effective Pressure of 55.56 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Area Volume Area Correction : Uniform Liquid Limit : 44.46 Plastic Limit : 22.1 Specific Gravity : 2.706 INITIAL : 5.945 (in) Dry Density : 101.52 (lb/ft^3) Height Area : 6.424 (in^2) Void Ratio: 0.66 : 23.83 % Moisture Saturation: 97.23 % : 0.00 (min) Time INITIALIZATION Dry Density : 101.52 (lb/ft^3) Moisture : 23.83 % Total Vert. Stress : 135.56 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ : 5.945 (in) : 6.424 (in²) dH : 0.000 (in) Height : 0.000 (in^3) d٧ Агеа Void Ratio: 0.66 Saturation: 97.23 % Time : 0.00 (min) END OF CONSOLIDATION - A dH : 0.000 (in) dV : 0.000 (in³) Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.66 Dry Density : 101.52 (lb/ft^3) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Moisture : 23.83 % Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 135.56 (lb/in²) Effect.Hori. Stress: 135.56 (lb/in²) Saturation: 97.23 % Time : 0.00 (min) END OF SATURATION Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ dH : 0.000 (in) dV : 0.000 (in³) dVCorr : 0.000 (in³) Dry Density : 106.76 (lb/ft^3) Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.58 Moisture : 17.93 % Saturation: 83.42 % Time : 0.00 (min) END OF CONSOLIDATION - B : 0.123 (in) : 2.322 (in³) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 55.56 (lb/in^2 Effect.Hori. Stress: 55.56 (lb/in^2 dH : 5.822 (in) Dry Density : 113.67 (lb/ft^3) Height Area : 6.161 (in²) Void Ratio: 0.49 Saturation: 99.94 % d٧ Moisture : 17.93 % : 0.00 (min) Time FAILURE DURING SHEAR Height : 4.784 (in) Area : 7.697 (in^2) Void Ratio: 0.49 Saturation: 02.44 dH : 1.161 (in) Height : 4.784 (i dV : 2.322 (in³) Area : 7.697 (i Strain : 19.95 % Void Ratio: 0.49 Strength: 34.38 (lb/in²)Saturation: 99.94 % Time : 1293.88 (min) Total Vert. Stress : 204.32 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 105.63 (lb/in^ Effect.Vert. Stress: 98.69 (lb/in^2 Effect.Hori. Stress: 29.93 (lb/in^2 Dry Density : 113.67 (lb/ft^3) Moisture : 17.93 % END OF TEST Height : 4.784 (in) Area : 7.697 (in²) Void Ratio: 0.49 dH : 1.161 (in) dV : 2.322 (in³) Strain : 19.95 % Total Vert. Stress : 204.32 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 105.63 (lb/in^ Effect.Vert. Stress: 98.69 (lb/in^2 Effect.Hori. Stress: 29.93 (lb/in^2 Dry Density : 113.67 (lb/ft^3) : 17.93 % Moisture Saturation: 99.94 % : 1293.88 (min) Time

LL 42.44	PL 16.17	PI 26.27	GS 2.71	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)				
REMARKS:				PROJECT Chabot Dam Seismic Study							
1) TXCIU Tes	t with Effective	Pressure of 13	8.89 psi	PROJECT NO.26814536	ô						
				BORING NO. WI-62	SAMPLE NO.	20 Bottom					
				TECH. S. Capps	DEPTH/ELEV	65.0 feet					
				LABORATORY	DATE	06/22/04			1		
				TRIAXIAL COMPRESSION TEST REPORT							

Wed 05-30-:4, 16:41:39

LL 42.44 PL 16.17 PI 26.27 GS 2.71	TYPE OF SPECIMEN Pitcher	TYPE OF TEST CU (R)
REMARKS:	PROJECT Chabot Dam Seismic Study	
1) TXCIU Test with Effective Pressure of 138.89 psi	PROJECT NO.26814536	· · · · · · · · · · · · · · · · · · ·
	BORING NO. WI-62 SAMPLE NO.	20 Bottom
	TECH. S. Copps DEPTH/ELEV	65.0 feet
	LABORATORY DATE	06/22/04
	TRIAXIA	L COMPRESSION TEST REPORT

Wed U6-30-:4, 16:42:48

Wed Jun 30 16:38:22 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Project No. : 268 Boring No. : WI-6 Sample No. : 20 B Sample Type : Pit Soil Description Remarks : TXCIU T	Dam Seismic Study 14536 2 ottom cher : Brown clayey san est with Effective	Location : San Leand Test No. : WI-62-20 Test Date : 06/22/04 Depth : 65.0 feet Elevation : NA d with gravel (SC) Pressure of 138.89 ps	ro, CA si	Tested by : Checked by	: S. Cap : R. Ta	pps Iraya	
Height : 5. Area : 6. Volume : 38	945 (in) 424 (in^2) 192 (in^3)	Piston Diameter : 0.00 Piston Friction : 0.00 Piston Weight : 0.00)0 (in)) (lb)) (gm)	Filter Corre Membrane Co Area Correct	ection rrection tion :	: 0.00 (: 0.00 (Uniform	b/in^2) b/in)
TO VERTICAL VER STRAIN ST (%) (lb/	TAL TOTAL TICAL HORIZONTAL RESS STRESS 'in^2) (lb/in^2)	EXCESS PORE A PRESSURE PARAMETER (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OBLI (lb/in^2)	IQUITY E	FFECTIVE p lb/in^2)	q (lb/in^2)
1) 0.00 2) 0.29 3) 0.50 4) 0.74 5) 0.88 6) 1.09 7) 1.29 9) 1.70 10) 1.90 11) 2.11 12) 2.31 13) 2.51 14) 2.72 15) 3.73 16) 3.73 17) 3.543 19) 3.73 20) 4.14 22) 4.54 23) 4.54 24) 4.54 23) 5.56 27) 5.36 27) 5.36 27) 5.98 31) 6.18 32) 6.40 35) 6.80 36) 7.00 37) 7.21 38) 7.62 40) 7.62	218.89218.89275.14218.89280.39218.89285.59218.89296.99218.89301.67218.89304.87218.89307.11218.89307.11218.89308.85218.89310.58218.89313.07218.89313.07218.89315.06218.89315.80218.89317.28218.89317.55218.89317.55218.89317.64218.89317.55218.89319.56218.89319.32218.89319.32218.89319.32218.89319.32218.89320.06218.89322.16218.89322.16218.89323.77218.89324.45218.89325.14218.89326.50218.89327.75218.89324.45218.89327.79218.89327.79218.89327.79218.89327.79218.89327.79218.89327.79218.89328.00218.89328.00218.89328.41218.89328.41218.89328.80218.89328.80218.89328.80218.89328.80218.89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 138.88\\ 158.88\\ 158.55\\ 157.32\\ 157.46\\ 157.55\\ 157.52\\ 157.92\\ 158.24\\ 159.11\\ 159.59\\ 160.23\\ 161.68\\ 162.35\\ 163.98\\ 164.25\\ 164.73\\ 165.70\\ 166.19\\ 166.75\\ 167.16\\ 167.71\\ 168.59\\ 170.61\\ 171.69\\ 176.98\\ 173.37\\ 175.36\\ 177.20\\ 178.57\\ 180.16\\ 181.04\\ 181.34\\ 181.86\\ 182.07\\ 182.51\\ 182.86\\ 183.92\\ 183.95\\ 183.92\\ \end{array}$	138.88 102.63 97.04 90.61 85.03 79.44 74.77 70.03 66.65 65.82 65.65 65.71 67.42 67.42 67.42 67.42 71.94 71.94 72.55 72.76 73.77 73.75 73.77 73.77 73.77 73.77 73.77 73.77	1.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	138.88130.76127.79123.97121.25118.49116.13113.63113.13113.13113.13113.27113.13113.27113.13113.27113.63114.28115.27115.89114.26114.78115.27115.87116.23116.25125.00120.93125.00125.75126.24127.51127.51127.62128.26128.46128.96	0.00 28.75 33.225 39.399 42.18 444.98 444.99 444.99 444.99 444.99 444.99 444.99 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51

Page : 1

47)	9.24	328.80	218.89	64.88	0.59	183.92	74.01	2.49	128.96	54.96
40) 49)	9.66	329.19	218.89	64.57	0.59	184.61	74.10	2.48	129.46	55.15
50) 51)	9.85 10.05	329.39 329.58	218.89 218.89	64.34 64.19	0.58 0.58	185.04 185.39	74.54 74.69	2.48 2.48	129.79 130.04	55.25 55.35
52) 53)	10.26 10.46	329.76 329.96	218.89 218.89	63.96 63.88	0.58 0.58	185.80 186.07	74.92 75.00	2.48 2.48	130.36 130.54	55.44 55.54
54) 55)	10.67	330.14	218.89	63.65 63.58	0.57	186.48	75.23 75.31	2.48	130.86	55.62
56)	11.07	330.51	218.89	63.27	0.57	187.24	75.61	2.48	131.43	55.81
58)	11.48	330.87	218.89	63.04	0.56	187.83	75.84	2.48	131.83	55.99
60)	11.88	330.79	218.89	62.58	0.56	188.20	76.30	2.47	132.25	55.95
61) 62)	12.09 12.30	331.38 331.12	218.89 218.89	62.43 62.28	0.55 0.55	188.95 188.83	76.45 76.61	2.47 2.46	132.70 132.72	56.25 56.11
63)	12.70	331.03	218.89	61.89	0.55	189.13	76.99	2.46	133.06	56.07

Wed Jun 30 16:38:22 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic StudyLocation : San Leandro, CAProject No. : 26814536Test No. : WI-62-20Boring No. : WI-62Test Date : 06/22/04Sample No. : 20 BottomDepth : 65.0 feetSample Type : PitcherElevation : NASoil Description : Brown clayey sand with gravel (SC)Remarks : TXCIU Test with Effective Pressure of 138.89 psi

	VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE PRESSURE (lb/in^2)	A PARAMETER	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS (lb/in^2)	OBLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
64)	13.11	331.35	218.89	61.51	0.55	189.84	77.37	2.45	133.61	56.23
65)	13.52	331.25	218.89	61.20	0.54	190.04	77.68	2.45	133.86	56.18
66)	13.93	331.99	218.89	60.82	0.54	191.16	78.06	2.45	134.61	56.55
67)	14.32	331.89	218.89	60.36	0.53	191.52	78.52	2.44	135.02	56.50
68)	14.73	332.19	218.89	59.98	0.53	192.20	78.90	2.44	135.55	56.65
69	15.14	332.47	218.89	59.98	0.53	192.48	78.90	2.44	135.69	56.79
70	15.55	332.75	218.89	59 52	0.52	103 23	70 36	2 43	136 30	56 03
715	15.96	333.44	218 89	58 01	0 51	104 53	70 08	2.43	137 25	57 28
725	16.37	333 70	218 80	58 14	0.51	105 55	80 76	2.42	178 15	57 40
73	16 87	334 23	218 80	57 61	0.50	106 62	Q1 22	2.42	170.15	57 40
77.	17 35	77/ 79	219 90	57 57	0.50	170.02	01.20	2.42	130.73	57.01
14)	111.32	334.10	210.07	21.23	0.30	197.23	01.33	2.42	137.30	27.92

Page: 2

÷

Wed Jun 30 16:38:22 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Project No. : 268145 Boring No. : WI-62 Sample No. : 20 Bott Sample Type : Pitche Soil Description : B Remarks : TXCIU Test	Seismic St 36 om r rown clayey with Effec	udy Locati Test N Test D Depth Elevat sand with tive Pressu	eandro, CA 20 2/04 : 39 psi	Tested by : S. Capps Checked by : R. Taraya			
Height : 5.945 Area : 6.424 Volume : 38.19	(in) (in^2) 2 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correction ane Correcti Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
VERTICAL CHANGE STRAIN IN LENGTH (in) (%)	CORR. AREA PI (in^2) (l	PORE RESSURE b/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
1) 0.000 0.00 2) 0.017 0.29 3) 0.029 0.50 4) 0.043 0.74 5) 0.052 0.88 6) 0.064 1.09 7) 0.075 1.29 8) 0.088 1.50 9) 0.099 1.70 10) 0.111 1.90 11) 0.123 2.11 12) 0.135 2.31 13) 0.146 2.51 14) 0.159 2.72 15) 0.170 2.91 16) 0.182 3.12 17) 0.195 3.33 18) 0.207 3.54 19) 0.218 3.73 20) 0.230 3.94 21) 0.242 4.14 22) 0.254 4.34 23) 0.265 4.54 24) 0.277 4.74 25) 0.289 4.95 26) 0.301 5.16 27) 0.313 5.36 28) 0.325 5.56 29) 0.337 5.77 30) 0.349 5.98 31) 0.361 6.18 32) 0.362 6.19 33) 0.374 6.40 34) 0.385 6.60 35) 0.397 6.80 36) 0.409 7.00 37) 0.421 7.20 38) 0.433 7.41 39) 0.445 7.62 40) <t< td=""><td>6.223 6.223 6.223 6.227 801 72 80 80 80 80 80 80 80 80 80 80 80 80 80</td><td>$\begin{array}{c} 80.00\\ 116.26\\ 121.85\\ 128.28\\ 133.86\\ 139.45\\ 144.95\\ 144.95\\ 146.86\\ 150.24\\ 151.23.46\\ 1552.84\\ 1553.30\\ 153.30\\ 153.30\\ 1552.61\\ 145.60\\ 145.73\\ 145.73\\ 145.50\\ 145.73\\ 145.50\\ 145.61\\ 145.60\\ 145.6$</td><td>0.00 350.01 383.45 416.89 453.37 489.85 520.26 556.74 568.90 581.06 599.30 605.38 614.50 620.58 632.78 633.82 644.91 657.07 663.15 669.23 669.23 675.31 687.47 693.55 675.71 723.95 726.99 730.03 733.07 735.131</td><td>$\begin{array}{c} 0.00\\ 350.01\\ 383.45\\ 416.89\\ 453.37\\ 489.85\\ 520.54\\ 556.74\\ 599.30\\ 614.59\\ 620.58\\ 632.78\\ 632.78\\ 638.82\\ 635.70\\ 657.07\\ 669.31\\ 669.65\\ 675.31\\ 669.65\\ 675.31\\ 693.65\\ 7711.79\\ 723.99\\ 733.07\\ 735.11\\ 739.15\\ 745.23\\ 751.31\\ \end{array}$</td><td>$\begin{array}{c} 0.00\\ 56.25\\ 61.50\\ 66.71\\ 72.44\\ 78.10\\ 82.78\\ 85.99\\ 88.22\\ 89.96\\ 91.69\\ 92.94\\ 94.18\\ 94.93\\ 96.17\\ 96.91\\ 97.65\\ 98.39\\ 98.92\\ 99.96\\ 99.91\\ 100.43\\ 100.67\\ 100.43\\ 100.67\\ 100.92\\ 101.17\\ 101.88\\ 102.58\\ 103.27\\ 103.97\\ 104.88\\ 105.56\\ 106.24\\ 107.62\\ 107.84\\ 108.05\\ 108.26\\ 108.48\\ 108.69\\ 109.11\\ 109.32\\ 109.52\\ 110.17\\ 109.92\end{array}$</td><td>218.89 275.14 280.39 295.59 291.33 296.99 301.67 304.87 307.11 308.85 310.58 311.83 313.07 313.82 315.06 315.80 316.54 317.55 317.81 318.80 319.32 319.56 319.32 319.56 320.77 321.47 322.16 323.77 324.45 325.14 325.83 326.50 326.72 326.94 327.15 327.37 328.00 328.21 328.41 329.06</td><td>138.88 158.55 157.32 157.54 157.55 157.52 157.54 157.55 157.592 158.24 158.61 159.11 159.59 160.23 160.75 161.68 162.35 163.08 163.70 164.75 164.75 164.75 164.75 164.75 164.75 165.70 166.75 167.16 167.71 168.59 169.69 170.61 177.37 175.36 177.20 178.57 180.16 180.60 181.04 181.34 182.86 183.92</td></t<>	6.223 6.223 6.223 6.227 801 72 80 80 80 80 80 80 80 80 80 80 80 80 80	$\begin{array}{c} 80.00\\ 116.26\\ 121.85\\ 128.28\\ 133.86\\ 139.45\\ 144.95\\ 144.95\\ 146.86\\ 150.24\\ 151.23.46\\ 1552.84\\ 1553.30\\ 153.30\\ 153.30\\ 1552.61\\ 145.60\\ 145.73\\ 145.73\\ 145.50\\ 145.73\\ 145.50\\ 145.61\\ 145.60\\ 145.6$	0.00 350.01 383.45 416.89 453.37 489.85 520.26 556.74 568.90 581.06 599.30 605.38 614.50 620.58 632.78 633.82 644.91 657.07 663.15 669.23 669.23 675.31 687.47 693.55 675.71 723.95 726.99 730.03 733.07 735.131	$\begin{array}{c} 0.00\\ 350.01\\ 383.45\\ 416.89\\ 453.37\\ 489.85\\ 520.54\\ 556.74\\ 599.30\\ 614.59\\ 620.58\\ 632.78\\ 632.78\\ 638.82\\ 635.70\\ 657.07\\ 669.31\\ 669.65\\ 675.31\\ 669.65\\ 675.31\\ 693.65\\ 7711.79\\ 723.99\\ 733.07\\ 735.11\\ 739.15\\ 745.23\\ 751.31\\ \end{array}$	$\begin{array}{c} 0.00\\ 56.25\\ 61.50\\ 66.71\\ 72.44\\ 78.10\\ 82.78\\ 85.99\\ 88.22\\ 89.96\\ 91.69\\ 92.94\\ 94.18\\ 94.93\\ 96.17\\ 96.91\\ 97.65\\ 98.39\\ 98.92\\ 99.96\\ 99.91\\ 100.43\\ 100.67\\ 100.43\\ 100.67\\ 100.92\\ 101.17\\ 101.88\\ 102.58\\ 103.27\\ 103.97\\ 104.88\\ 105.56\\ 106.24\\ 107.62\\ 107.84\\ 108.05\\ 108.26\\ 108.48\\ 108.69\\ 109.11\\ 109.32\\ 109.52\\ 110.17\\ 109.92\end{array}$	218.89 275.14 280.39 295.59 291.33 296.99 301.67 304.87 307.11 308.85 310.58 311.83 313.07 313.82 315.06 315.80 316.54 317.55 317.81 318.80 319.32 319.56 319.32 319.56 320.77 321.47 322.16 323.77 324.45 325.14 325.83 326.50 326.72 326.94 327.15 327.37 328.00 328.21 328.41 329.06	138.88 158.55 157.32 157.54 157.55 157.52 157.54 157.55 157.592 158.24 158.61 159.11 159.59 160.23 160.75 161.68 162.35 163.08 163.70 164.75 164.75 164.75 164.75 164.75 164.75 165.70 166.75 167.16 167.71 168.59 169.69 170.61 177.37 175.36 177.20 178.57 180.16 180.60 181.04 181.34 182.86 183.92

Page: 3

47)	0.210	0.00	0.00	142.19	(42.23	742.23	109.52	528.41	185.22
46)	0.528	9.03	6.82	145.11	751.31	751.31	110.17	329.06	183.95
47)	0.540	9.24	6.84	144.88	751.31	751.31	109.92	328.80	183.92
48)	0.552	9.45	6.85	144.73	754.35	754.35	110.10	328.99	184.26
49)	0.564	9.66	6.87	144.58	757.39	757.39	110.30	329.19	184.61
50)	0.575	9.85	6.88	144.35	760.43	760.43	110.50	329.39	185.04
51)	0.587	10.05	6.90	144.19	763.47	763.47	110.69	329.58	185.39
52)	0.600	10.26	6.91	143.96	766.51	766.51	110.88	329.76	185.80
53)	0.611	10.46	6.93	143.89	769.55	769.55	111.07	329.96	186.07
54)	0.623	10.67	6.94	143.66	772.59	772.59	111.25	330.14	186.48
55)	0.635	10.87	6.96	143.58	775.63	775.63	111.44	330.33	186.75
56)	0.647	11.07	6.98	143.28	778.67	778.67	111.62	330.51	187.24
57)	0.659	11.27	6.99	143.12	781.71	781.71	111.80	330.69	187.57
58)	0.670	11.48	7.01	143.05	784.75	784.75	111.98	330.87	187.83
59)	0.683	11.69	7.02	142.82	784.75	784.75	111.72	330.61	187.79
60)	0.694	11.88	7.04	142.59	787.79	787.79	111.90	330.79	188.20
61)	0.706	12.09	7.06	142.43	793.87	793.87	112.50	331.38	188.95
62)	0.719	12.30	7.07	142.28	793.87	793.87	112.23	331.12	188.83
63)	0.742	12.70	7.11	141.90	796.92	796.92	112.14	331.03	189.13

Wed Jun 30 16:38:22 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic StudyLocation : San Leandro, CAProject No. : 26814536Test No. : WI-62-20Boring No. : WI-62Test Date : 06/22/04Sample No. : 20 BottomDepth : 65.0 feetSample Type : PitcherElevation : NASoil Description : Brown clayey sand with gravel (SC)Remarks : TXCIU Test with Effective Pressure of 138.89 psi

Tested by : S. Capps Checked by : R. Taraya

	CHANGE IN LENGTI (in)	/ERTICAL STRAIN ¦ (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
64) 65) 66) 67) 68) 69) 70) 71) 72) 73) 74)	0.766 0.790 0.814 0.837 0.861 0.885 0.908 0.932 0.956 0.986 1.013	13.11 13.52 13.93 14.32 14.73 15.14 15.55 15.96 16.37 16.87 17.35	7.14 7.21 7.24 7.28 7.31 7.35 7.38 7.42 7.46 7.51	141.52 141.21 140.83 140.37 139.98 139.98 139.53 138.91 138.15 137.61 137.54	803.00 806.04 815.16 818.20 824.28 830.36 836.44 845.56 851.64 860.76 869.88	803.00 806.04 815.16 818.20 824.28 830.36 836.44 845.56 851.64 860.76 869.88	112.46 112.36 113.00 113.30 113.58 113.86 114.55 114.81 115.34 115.89	331.35 331.25 331.99 331.89 332.19 332.47 332.75 333.44 333.70 334.23 334.78	189.84 190.04 191.16 191.52 192.20 192.48 193.23 194.53 195.55 195.62 197.25

Wed Jun 30 16:38:22 2004 Page : 6 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-62 Sample No. : 20 Bottom Test No. : WI-62-20 Tested by : S. Capps Test Date : 06/22/04 Depth : 65.0 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Brown clayey sand with gravel (SC) Remarks : TXCIU Test with Effective Pressure of 138.89 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Height Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Volume Piston Weight : 0.00 (gm) Area Correction : Uniform Liquid Limit : 42.44 Plastic Limit : 16.17 Specific Gravity : 2.706 INITIAL Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.40 Saturation: 05 47 Dry Density : 120.19 (lb/ft^3) Moisture : 14.24 % Saturation: 95.17 % Time : 0.00 (min) INITIALIZATION Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.40 : 0.000 (in) : 0.000 (in^3) Dry Density : 120.19 (lb/ft^3) Total Vert. Stress : 218.89 (lb/in^ Moisture : 14.24 % Total Hori. Stress : 218.89 (lb/in^ dH d٧ Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 218.89 (lb/in[^] Effect.Hori. Stress: 218.89 (lb/in[^] Saturation: 95.17 % : 0.00 (min) Time END OF CONSOLIDATION - A Height : 5.945 (in) Area : 6.424 (in^2) Void Ratio: 0.40 Saturation: 0.50 : 0.000 (in) : 0.000 (in³) Total Vert. Stress : 218.89 (lb/in^ Total Hori. Stress : 218.89 (lb/in^ dH Dry Density : 120.19 (lb/ft^3) d٧ Moisture : 14.24 % Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 218.89 (lb/in[^] Effect.Hori. Stress: 218.89 (lb/in[^] Saturation: 95.17 % Time : 0.00 (min) END OF SATURATION : 0.000 (in) : 0.000 (in³) Total Vert. Stress : 218.89 (lb/in^ Total Hori. Stress : 218.89 (lb/in^ : 5.945 (in) dH Dry Density : 120.19 (lb/ft^3) Height Area : 6.424 (in^2) Void Ratio: 0.40 đ٧ Moisture : 12.31 % Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 218.89 (lb/in[^] Effect.Hori. Stress: 218.89 (lb/in[^] dVCorr : 0.000 (in^3) Saturation: 82.25 % : 0.00 (min) Time END OF CONSOLIDATION - B Height : 5.842 (in) Area : 6.204 (in²) Void Ratio: 0.33 Total Vert. Stress : 218.89 (lb/in^ Total Hori. Stress : 218.89 (lb/in^ Pore Pressure : 80.00 (lb/in^2 : 0.103 (in) : 1.951 (in³) dH Dry Density : 126.66 (lb/ft^3) d٧ Moisture : 12.31 % Saturation: 99.97 % Effect.Vert. Stress: 138.88 (lb/in^ Effect.Hori. Stress: 138.88 (lb/in^ : 0.00 (min) Time FAILURE DURING SHEAR dH : 1.013 (in) Height : 4.932 (i dV : 1.951 (in^3) Area : 7.506 (i Strain : 17.35 % Void Ratio: 0.33 Strength: 57.95 (lb/in^2)Saturation: 99.97 % Time : 1967.48 (min) Total Vert. Stress : 334.78 (lb/in^ Total Hori. Stress : 218.89 (lb/in^ Pore Pressure : 137.54 (lb/in^ Effect.Vert. Stress: 197.25 (lb/in^ Effect.Hori. Stress: 81.35 (lb/in^2 : 4.932 (in) : 7.506 (in²) Dry Density : 126.66 (lb/ft^3) : 12.31 % Moisture END OF TEST : 1.013 (in) : 1.951 (in³) : 4.932 (in) : 7.506 (in²) dH Total Vert. Stress : 334.78 (lb/in' Dry Density : 126.66 (lb/ft^3) Height Total Hori. Stress : 218.89 (lb/in^ Pore Pressure : 137.54 (lb/in^ Effect.Vert. Stress: 197.25 (lb/in^ Effect.Hori. Stress: 81.35 (lb/in^2 dV Area Moisture : 12.31 % Strain : 17.35 % Void Ratio: 0.33 Saturation: 99.97 %

: 1967.48 (min)

Time

LL 46.10	PL 33.30	PI 12.80	GS 2.58	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)			
REMARKS:				PROJECT Chabot D	om Seismic Study					
1) TXCIU Test	t with Effective	Pressure of 83	5.33 psi	PROJECT NO.26814536	3					
				BORING NO. WI-62	SAMPLE NO.	31 Bottom				
				TECH. S. Capps	DEPTH/ELEV	97.5 feet				
				LABORATORY	DATE	07/07/04			······································	
		TRIAXIAL COMPRESSION TEST REPORT								

lue 07-13-:4, 14:37:05

• •

1) Mottled gray brown silty sand (SM)

LL 46.10 P	L 33.30	PI 12.80	GS 2.58	TYPE OF SPECIMEN P	Pitcher	TYPE OF TEST	CU (R)		
REMARKS:									
1) TXCIU Test wi	th Effective	Pressure of 83	3.33 psi	PROJECT NO.26814536	ò		<u></u>		
				BORING NO. WI-62	SAMPLE NO.	31 Bottom			
				TECH. S. Copps	DEPTH/ELEV	97.5 feet			
				LABORATORY	DATE	07/07/04			
					TRIAXIA	L COMPRESSIO	N TEST REP(JRT	

lue 0/-13-:4, 14:36:32

46)

Tue Jul 13 14:37:54 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study Project No. : 26814536 Boring No. : WI-62 Sample No. : 31 Bottom Project No. : WI-62 Depth : 97.5 feet Tested by : S. Capps Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Mottled gray brown silty sand (SM) Remarks : TXCIU Test with Effective Pressure of 83.33 psi : 5.945 (in) : 6.424 (in^2) : 38.192 (in^3) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform **EXCESS** TOTAL TOTAL EFFECTIVE EFFECTIVE VERTICAL HORIZONTAL VERTICAL VERTICAL HORIZONTAL PORE A EFFECTIVE PRESSURE PARAMETER STRESS OBLIQUITY STRAIN STRESS STRESS STRESS p (lb/in^2) q (lb/in^2) (lb/in^2) (lb/in^2) (%) (lb/in^2) (lb/in^2) (lb/in^2) 0.00 163.33 163.33 0.00 83.33 100.50 83.33 67.05 1.00 1) 0.00 83.33 0.00 2) 0.26 196.78 163.33 16.29 0.49 83.77 16.72 3) 4) 215.02 25.24 29.22 32.05 0.46 163.33 109.78 0.49 58.09 1.89 83.94 25.84 54.11 51.28 50.51 2.13 2.41 2.57 224.74 235.84 30.71 0.66 163.33 0.48 115.53 84.82 87.54 5) 0.86 163.33 0.44 123.79 1.06 163.33 0.41 0.38 129.88 6) 242.70 32.82 90.20 39.68 7) 8) 249.52 254.92 1.26 32.74 50.59 51.13 136.78 2.70 93.69 43.09 32.21 31.36 142.72 147.07 151.58 1.46 163.33 0.35 2.79 96.92 45.79 51.97 52.96 9) 0.33 0.31 2.83 99.52 102.27 47.55 1.66 258.44 163.33 10) 1.86 261.95 163.33 30.37 265.44 268.00 271.00 163.33 163.33 29.14 27.92 26.77 54.19 55.41 56.56 57.56 2.06 11) 12) 0.29 156.30 2.88 105.25 51.06 2.89 2.90 2.90 160.08 107.75 52.33 13) 2.46 163.33 0.25 164.24 110.40 53.84 14) 2.67 272.61 163.33 25.78 0.24 166.84 112.20 54.64 58.32 59.47 60.39 2.90 15) 2.86 274.23 163.33 25.01 0.23 169.22 55.45 113.77 163.33 163.33 23.86 22.95 22.18 16) 17) 276.27 278.31 0.21 172.41 175.37 3.07 115.94 117.88 56.47 3.27 2.90 57.49 3.47 279.45 18) 163.33 0.19 177.27 61.15 2.90 119.21 58.06 2.90 2.90 2.90 163.33 163.33 21.26 20.50 62.07 62.84 19) 121.14 3.67 281.47 0.18 180.21 59.07 0.17 182.10 59.63 20) 3.87 282.59 122.47 163.33 163.33 4.07 284.15 285.26 19.65 18.97 21) 0.16 63.68 64.37 184.49 124.09 60.41 22) 0.16 186.29 2.89 125.33 60.96 285.90 287.43 288.53 23) 163.33 163.33 163.33 4.47 18.43 0.15 187.48 64.90 2.89 126.19 61.29 24) 17.89 0.14 189.54 191.33 65.44 66.13 2.90 62.05 4.67 127.49 25) 4.87 128.73 62.60 26) 5.08 289.60 163.33 0.13 193.01 16.59 66.74 2.89 129.87 63.13 27) 163.33 163.33 16.13 15.60 0.13 194.10 67.20 67.74 2.89 5.27 290.23 130.65 63.45 63.76 290.86 195.26 28) 5.47 131.50 14.91 29) 5.67 291.92 163.33 0.12 2.88 68.42 132.72 64.30 292.97 305 163.33 2.88 14.37 0.11 198.60 68.96 133.78 64.82 293.58 295.66 297.30 163.33 163.33 163.33 65.13 66.17 31) 6.08 13.99 0.11 199.59 69.34 2.88 134.47 0.10 0.09 32) 6.48 12.84 202.82 70.49 2.88 136.66 33 j 6.88 11.92 2.88 138.39 66.98 7.28 34) 35) 298.90 163.33 10.93 207.97 0.08 72.40 2.87 140.19 67.78 163.33 73.25 2.87 7.69 300.05 10.09 0.07 209.97 141.61 68.36 36) 8.09 301.63 9.09 0.07 212.54 143.39 163.33 163.33 215.01 216.88 75.16 303.18 8.17 69.93 37) 8.49 0.06 2.86 145.09 38) 8.89 304.29 0.05 2.86 146.40 70.48 305.81 39) 9.29 163.33 219.17 6.64 0.05 76.69 2.86 147.93 71.24 220.08 222.25 224.32 9.69 163.33 163.33 77.38 40) 306.03 5.95 0.04 2.84 148.73 71.35 307.52 41) 10.09 5.27 2.85 72.09 0.04 78.07 150.16 0.03 42) 10.59 308.82 163.33 4.50 78.83 2.85 151.58 72.75 11.09 310.10 226.30 43) 0.03 163.33 2.85 3.81 79.52 152.91 73.39 153.93 44) 11.60 310.92 163.33 3.20 80.13 2.84 73.80 312.16 312.55 0.02 229.65 2.84 45) 12.10 163.33 2.51 155.24 80.82 74.41 12.61 163.33

Page: 1

47) 48) 50) 51) 52) 53) 55) 56) 57) 58) 59)	13.10 13.60 14.10 14.61 15.11 16.62 17.12 17.61 18.12 18.62 19.63 20.13	313.75 314.11 314.85 315.57 316.28 317.24 317.49 318.13 318.76 318.57 319.16 319.50 320.04	163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33 163.33	1.36 0.75 0.29 -0.32 -0.78 -1.55 -2.01 -2.39 -2.62 -3.00 -3.31 -4.07 -4.45	0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03	232.39 233.36 234.57 235.89 237.06 238.79 239.50 240.52 241.38 241.58 241.58 242.47 243.58 244.49	81.97 82.58 83.04 83.65 84.11 84.88 85.34 85.72 85.95 86.33 86.64 87.40 87.79	2.84 2.83 2.82 2.82 2.82 2.81 2.81 2.81 2.81 2.81	157.18 157.97 158.80 159.77 160.59 161.84 162.42 163.12 163.67 163.96 164.55 165.49 166.14	75.21 75.39 75.76 76.12 76.47 76.96 77.08 77.08 77.08 77.71 77.62 77.91 78.09 78.35
---	--	--	--	--	--	--	---	--	--	--

81.44

156.04

74.61

0.01

1.90

Tue Jul 13 14:37:54 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Test No. : WI-62-31B Boring No. : WI-62 Test Date : 07/07/04 Tested by : S. Capps Sample No. : 31 Bottom Depth : 97.5 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Mottled gray brown silty sand (SM) Remarks : TXCIU Test with Effective Pressure of 83.33 psi

Height Area Volume	: 5.945 : 6.424 : 38.192	(in) (in^2) 2 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correction ane Correctio Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
CHANGE IN LENGT (in)	VERTICAL STRAIN H (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
$\begin{array}{c} 1, 0.005\\ 2, 0.015\\ 3, 0.027\\ 4, 0.039\\ 5, 0.051\\ 6, 0.063\\ 7, 0.074\\ 8, 0.086\\ 9, 0.099\\ 10, 0.110\\ 11, 0.122\\ 12, 0.134\\ 13, 0.146\\ 14, 0.158\\ 15, 0.169\\ 16, 0.182\\ 17, 0.194\\ 18, 0.205\\ 19, 0.218\\ 20, 0.229\\ 21, 0.241\\ 22, 0.253\\ 23, 0.265\\ 24, 0.277\\ 25, 0.288\\ 26, 0.301\\ 27, 0.312\\ 22, 0.253\\ 24, 0.277\\ 25, 0.288\\ 26, 0.301\\ 27, 0.312\\ 28, 0.324\\ 29, 0.336\\ 30, 0.348\\ 31, 0.360\\ 32, 0.348\\ 31, 0.360\\ 32, 0.348\\ 33, 0.407\\ 34, 0.431\\ 35, 0.455\\ 36, 0.479\\ 37, 0.503\\ 38, 0.526\\ 39, 0.550\\ 40, 0.574\\ 41, 0.598\\ 42, 0.627\\ 43, 0.657\\ 44, 0.687\\ 45, 0.717\\ 46, 0.805\\ 52, 0.954\\ 55, 0.984\\ 55$	0.26666666666666667778888888999999999990000111111111111111	06666666666666666666666666666666666666	96.28 105.24 109.22 112.82 112.82 112.72 111.36 110.37 105.01 102.98 107.92 110.37 105.01 102.98 100.14 100.77 105.01 102.98 99.99 99.99 99.99 99.99 99.00 90.000 90.000 90.000 90.000 90.000 90.000 9	$\begin{array}{c} 0.00\\ 216.24\\ 334.80\\ 398.65\\ 471.62\\ 562.82\\ 599.30\\ 623.62\\ 647.95\\ 672.27\\ 690.51\\ 7751.31\\ 756.51\\ 7750.83\\ 799.96\\ 821.24\\ 827.32\\ 839.48\\ 857.72\\ 863.80\\ 889.42\\ 894.20\\ 912.44\\ 899.00\\ 888.12\\ 927.64\\ 1012.77\\ 1018.85\\ 1034.05\\ 1064.45\\ 1076.61\\ 1001.81\\ 1034.05\\ 1064.45\\ 1076.61\\ 1091.81\\ 1034.05\\ 1064.45\\ 1076.61\\ 1091.81\\ 1034.05\\ 1064.45\\ 1076.61\\ 1091.81\\ 1125.26\\ 1137.42\\ 1149.58\\ 1161.74\\ 1125.26\\ 1137.42\\ 1161.64\\ 1125.26\\ 1127.75\\ 1128.85\\ 1064.45\\ 1076.61\\ 1091.81\\ 1100.91\\ 1161.84\\ 1125.26\\ 1127.42\\ 1127$	0.00 216.24 334.80 398.65 471.61 517.22 562.82 599.30 623.62 647.95 672.27 690.51 711.79 723.95 736.11 766.51 7790.83 799.96 821.24 827.32 839.48 848.60 869.88 879.00 888.12 894.20 912.44 927.64 1034.05 1034.05 1049.25 1064.45 1076.61 1091.81 11091.81 11091.81 11091.81 11091.81 11091.81 1034.05 1064.45 1076.61 1091.81 11092.14 1252.95 1265.11	$\begin{array}{c} 0.00\\ 33.82\\ 52.26\\ 62.10\\ 73.32\\ 802.25\\ 802.2$	163.33 196.78 215.02 224.74 235.84 242.70 249.52 258.44 265.44 277.61 27	83.33 100.50 109.78 115.53 123.79 129.88 136.78 142.72 147.07 151.58 156.30 160.08 164.24 166.84 169.22 172.41 175.37 177.27 180.21 182.10 184.49 186.29 187.48 189.54 191.33 193.01 194.10 195.26 197.02 198.60 199.59 202.82 205.38 207.97 209.97 212.54 215.01 216.88 219.17 220.08 222.25 224.32 226.30 237.72 229.65 230.65 232.39 233.36 234.57 235.65 232.39 233.36 234.57 235.65 232.39 237.06 238.79 239.50 240.52 241.38 241.58 242.47 243.58 244.49

Page: 2

Tue Jul 13 14:37:54 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-62 Test No. : WI-62-31B Test Date : 07/07/04 Tested by : S. Capps Sample No. : 31 Bottom Depth : 97.5 feet Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Mottled gray brown silty sand (SM) Remarks : TXCIU Test with Effective Pressure of 83.33 psi Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform Liquid Limit : 46.1 Plastic Limit : 33.3 Specific Gravity : 2.584 INITIAL : 5.945 (in) Height Dry Density : 112.84 (lb/ft^3) Area : 6.424 (in^2) Void Ratio: 0.43 Moisture : 15.80 % Saturation: 95.19 % : 0.00 (min) Time INITIALIZATION : 0.000 (in) Dry Density : 112.84 (lb/ft^3) Total Vert. Stress : 163.33 (lb/in^ Moisture : 15.80 % Total Hori. Stress : 163.33 (lb/in^ : 5.945 (in) dH Height : 6.424 (in^2) d٧ : 0.000 (in^3) Area Void Ratio: 0.43 Saturation: 95.19 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^ : 0.00 (min) Time END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in³) Height : 5.945 (in) Area : 6.424 (in^2) Void Ratio: 0.43 Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^ dH Dry Density : 112.84 (lb/ft^3) d٧ Moisture : 15.80 % Saturation: 95.19 % Time : 0.00 (min) END OF SATURATION : 0.000 (in) : 0.000 (in³) : 0.000 (in³) dH Height : 5.945 (in) Dry Density : 112.84 (lb/ft^3) Total Vert. Stress : 163.33 (lb/in^ Area : 6.424 (in^2) Void Ratio: 0.43 d۷ Moisture ່ : 15**.**99 %່ Total Hori. Stress : 163.33 (lb/in^ dVCorr Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^ Saturation: 96.30 % Time : 0.00 (min) END OF CONSOLIDATION - B : 0.022 (in) : 0.422 (in³) : 5.923 (in) : 6.377 (in²) dH Height Dry Density : 114.10 (lb/ft^3) Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ ď۷ Area Moisture : 15.99 % Void Ratio: 0.41 Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 83.33 (lb/in^2 Saturation: 99.98 % Time : 0.00 (min) Effect.Hori. Stress: 83.33 (lb/in^2 FAILURE DURING SHEAR dH : 1.192 (in) Height : 4.753 (i dV : 0.422 (in³) Area : 7.984 (i Strain : 20.13 % Void Ratio: 0.41 Strength: 79.23 (lb/in²)Saturation: 99.98 % Time : 1384.70 (min) Height : 4.753 (in) Area : 7.984 (in²) Void Ratio: 0.41 Total Vert. Stress : 321.79 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 75.54 (lb/in^2 Effect.Vert. Stress: 246.24 (lb/in^2 Effect.Hori. Stress: 87.79 (lb/in^2 Dry Density : 114.10 (lb/ft^3) Moisture : 15.99 % END OF TEST dH : 1.192 (in) dV : 0.422 (in³) Strain : 20.13 % Height : 4.753 (in) Area : 7.984 (in²) Void Ratio: 0.41 Dry Density : 114.10 (lb/ft^3) Total Vert. Stress : 321.79 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 75.54 (lb/in^2 Effect.Vert. Stress: 246.24 (lb/in^2 Effect.Hori. Stress: 87.79 (lb/in^2 Moisture : 15.99 % Saturation: 99.98 % Time : 1384.70 (min)

LL 44.43	PL 20.91	PI 23.52	GS 2.69	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)	•••••				
REMARKS:				PROJECT Chabot D	om Seismic Study	• • • • • • • • • • • • • • • • • • •						
1) TXCIU Tes	at with Effective	Pressure of 13	5.89 psi	PROJECT NO.26814536	PROJECT NO.26814536							
				BORING NO. WI-64	SAMPLE NO.	5 Bottom		T				
		*******		TECH. S. Capps	DEPTH/ELEV	20.2		1				
				LABORATORY	DATE	06/22/04		1				
					TRIAXI	L COMPRESSIO	N TEST REPO	JRT				

Thu 07-01-:4, 08:25:12

∐ 44.43	PL 20.91	PI 23.52	GS 2.69	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)	and the second	
REMARKS:				PROJECT Chabot D	am Seismic Study		· · · · · · · · · · · · · · · · · · ·		
1) TXCIU Tes	t with Effective	Pressure of 13	5.89 psi	PROJECT NO.26814534	ŝ	Www.stone	**************************************		
				BORING NO. WI-64	SAMPLE NO.	5 Bottom			
			****	TECH. S. Capps	DEPTH/ELEV	20.2			
			· · · · · · · · · · · · · · · · · · ·	LABORATORY	DATE	06/22/04			
					TRIAXIA	L COMPRESSIO	n test repo	วี่สา	••••••••••••••••••••••••••••••••••••••

.

Thu 07-01-:4, 08:25:58

47)

13.12

114.82

93.89

5.79

Thu Jul 01 08:24:52 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study Project No. : 26814536 Boring No. : WI-64 Test Date : 06/22/04 Tested by : S. Capps Sample No. : 5 Bottom Depth : 20.2 Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Grayish brown sandy clay with gravel (CL) Remarks : TXCIU Test with Effective Pressure of 13.89 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Height Filter Correction : 0.00 (lb/in²) Membrane Correction : 0.00 (lb/in) Area Volume Area Correction : Uniform Piston Weight : 0.00 (gm) TOTAL TOTAL **EXCESS** EFFECTIVE EFFECTIVE VERTICAL VERTICAL HORIZONTAL PORE HORIZONTAL A VERTICAL EFFECTIVE PRESSURE PARAMETER STRAIN STRESS STRESS STRESS STRESS OBLIQUITY p (lb/in^2) q (lb/in^2) (lb/in^2) (lb/in^2) (%) (lb/in^2) (lb/in^2) (lb/in^2) 0.00 0.21 0.41 93.89 104.29 13.89 9.34 7.75 7.00 1) 2) 3) 4) 93.89 0.00 13.89 0.00 1.00 13.89 0.00 93.89 2.11 2.67 3.02 14.54 14.25 14.07 0.44 4.55 19.74 5.20 106.87 6.14 6.90 7.38 7.58 20.74 6.49 93.89 0.62 108.05 93.89 0.49 21.64 22.00 22.43 93.89 93.89 0.49 0.48 5) 109.01 6.51 3.32 14.08 7.56 109.58 6) 1.01 6.31 3.49 14.15 7.85 7) 8) 1.22 93.89 110.15 8.13 7.72 0.48 6.17 3.63 14.30 7.86 22.65 23.01 6.03 3.76 14.34 14.52 1.41 110.51 93.89 0.47 8.31 9) 1.62 110.87 93.89 0.46 3.82 8.49 7.86 23.17 10) 1.83 111.03 93.89 0.46 6.03 3.84 14.60 8.57 2.03 2.23 2.43 111.19 11) 93.89 23.34 0.45 6.03 3.87 14.68 8.65 12) 13) 6.10 6.10 6.10 111.36 93.89 7.79 7.79 7.79 23.57 0.45 3.86 14.83 8.73 23.73 24.08 0.44 3.89 3.95 14.91 15.09 8.81 111.52 93.89 2.64 111.87 93.89 14) 0.43 8.99 2.84 15) 24.11 24.34 15.14 15.29 15.37 111.83 93.89 0.43 7.72 6.17 3.91 8.97 16) 3.04 111.99 93.89 7.65 6.24 6.24 6.31 0.42 3.90 9.05 112.15 112.30 24.50 24.72 17) 3.24 93.89 0.42 3.93 9.13 93.89 7.58 18) 3.45 0.41 3.92 15.51 9.21 3.65 112.26 19) 93.89 24.75 15.56 0.41 6.38 3.88 9.19 20) 21) 6.45 6.51 6.58 93.89 7.45 7.38 7.31 0.40 9.26 3.87 4.04 112.57 93.89 25.20 25.23 15.86 15.91 9.34 9.32 3.87 22) 4.25 112.53 93.89 0.39 3.83 112.69 112.84 112.80 25.52 25.74 25.63 4.46 23) 93.89 93.89 7.17 0.38 6.72 3.80 16.12 9.40 24) 0.37 6.79 3.79 16.26 9.47 25) 26) 4.85 93.89 7.17 16.18 9.46 0.38 6.72 3.81 25.85 25.88 25.91 6.79 5.06 112.95 93.89 7.10 0.37 3.81 3.77 9.53 16.32 27) 28) 29) 112.91 112.87 113.02 5.26 93.89 7.03 0.37 6.86 9.51 16.37 6.96 6.93 6.93 7.00 5.46 93.89 93.89 0.37 9.49 3.74 16.42 3.76 26.06 16.49 9.56 30) 5.86 112.98 93.89 6.90 26.08 0.36 16.54 9.54 31) 26.09 6.86 3.80 3.76 6.06 113.13 93.89 7.03 0.37 16.48 9.62 6.46 6.87 7.27 6.83 32) 113.42 93.89 0.35 16.83 9.76 93.89 93.89 33) 113.52 6.76 0.34 7.13 7.20 7.34 3.75 3.74 9.82 9.87 26.77 16.95 34) 35) 113.62 26.94 6.69 0.34 17.07 7.68 8.09 113.72 93.89 6.55 0.33 27.17 3.70 17.26 9.92 0.33 0.32 93.89 93.89 7.34 27.27 27.51 36) 113.82 6.55 17.31 17.49 9.97 3.71 37) 8.49 113.92 6.41 3.68 10.01 8.89 9.29 93.89 38) 114.01 0.32 7.55 6.34 27.67 3.67 17.61 10.06 39) 93.89 93.89 6.28 0.31 27.83 27.99 7.62 17.72 114.11 3.65 10.11 9.69 40) 114.20 10.15 114.29 93.89 93.89 41) 42) 6.14 0.30 28.15 17.95 7.75 3.63 10.20 10.60 6.07 28.29 0.30 7.82 3.62 18.05 10.23 43) 93.89 93.89 93.89 93.89 11.11 114.41 6.00 0.29 28.42 7.89 3.60 10.26 18.15 44) 45) 0.29 0.28 7.89 7.96 7.96 6.00 5.93 28.66 28.78 11.61 114.66 18.27 3.63 10.38 12.11 114.71 3.62 18.37 10.41 93.89 28.84 29.03 46) 114.77 5.93 12.62 0.28 18.40 10.44

Page: 1

4Ö)	15.64	114.87	93.89	5.79	0.28	29.08	8.10	3.59	18.59	10.49
49)	14.14	114.92	93.89	5.79	0.28	29.13	8.10	3.60	18.62	10.52
50)	14.64	115.14	93.89	5.72	0.27	29.42	8.17	3.60	18,79	10.63
51)	15.15	115.19	93.89	5.72	0.27	29.47	8.17	3.61	18.82	10.65
52)	16.15	115.27	93.89	5.66	0.26	29.62	8.24	3.60	18.93	10.69
53)	16.66	115.48	93.89	5.72	0.27	29.76	8.17	3.64	18.96	10.79
54)	17.16	115.52	93.89	5.72	0.26	29.79	8.17	3.65	18,98	10.81
55)	17.66	115.55	93.89	5.45	0.25	30.10	8.44	3.57	19.27	10.83
56)	18.17	115.75	93.89	5.45	0.25	30.30	8.44	3.59	19.37	10.93
57)	18.67	115.78	93.89	5.59	0.26	30.19	8.31	3.64	19.25	10.94
58)	19.69	115.82	93.89	5.59	0.25	30.24	8.31	3.64	19.27	10.97

8.10

3.58

18.57

10.47

0.28

Thu Jul 01 08:24:52 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Da Project No. : 26814 Boring No. : WI-64 Sample No. : 5 Both Sample Type : Pitch Soil Description : Remarks : TXCIU Tes	am Seismic 536 com Grayish bro t with Eff	Study Locati Test N Test D Depth Elevat own sandy cla ective Pressu	on : San Lo o. : WI-64 ate : 06/23 : 20.2 ion : NA y with gray with gray	eandro, CA -5 2/04 vel (CL) 9 psi	Tested by : S. Capps Checked by : R. Taraya			
Height : 5.94 Area : 6.42 Volume : 38.1	5 (in) 24 (in^2) 192 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correction ane Correctio Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform	
VERTICA CHANGE STRAIN IN LENGTH (in) (%)	L I CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)	
1) 0.000 0.00 2) 0.013 0.21 3) 0.024 0.41 4) 0.037 0.62 5) 0.048 0.82 6) 0.060 1.07 7) 0.072 1.22 8) 0.083 1.47 9) 0.096 1.62 10) 0.108 1.83 11) 0.120 2.03 12) 0.131 2.23 13) 0.143 2.43 14) 0.155 2.64 15) 0.167 2.84 16) 0.179 3.04 17) 0.191 3.24 18) 0.203 3.45 20) 0.227 3.85 21) 0.238 4.04 22) 0.251 4.25 23) 0.263 4.46 24) 0.275 4.66 25) 0.286 4.85 26) 0.298 5.06 27) 0.310 5.26 28) 0.322 5.46 30) 0.346 5.86 31) 0.357 6.06 32) 0.381 6.46 33) 0.405 6.87 34) 0.429 7.27 35) 0.453 7.68 39) 0.524 8.89 39) 0.548 9.25 41) 0.595 10.106 42) 0.625 10.606 43) 0.655 11.1166 45) 0.773 13.1266	6.31 6.33 6.33 6.33 6.33 6.33 6.33 6.33	80.00 84.55 86.14 86.89 87.38 87.58 87.58 87.72 87.86 87.86 87.86 87.86 87.79 87.79 87.79 87.79 87.79 87.79 87.55 87.65 87.55 87.55 87.55 87.51 87.10 87.10 87.10 87.10 87.10 87.10 87.03 86.96 86.96 86.96 86.55 86.55 86.55 86.55 86.41 86.20 86.14 86.00 86.00 85.93 85.93 85.79	$\begin{array}{c} 0.00\\ 65.83\\ 89.95\\ 90.11\\ 103.92\\ 106.46\\ 99.11\\ 103.92\\ 111.53\\ 112.67\\ 111.53\\ 112.42\\ 121.22.96\\ 122.96\\ 122.96\\ 122.96\\ 122.96\\ 122.96\\ 123.55\\ 126.77\\ 126.04\\ 123.88\\ 133.38\\ 135.69\\ 133.13\\ 135.69\\ 142.07\\ 143.54\\ 145.85\\ 138.16\\ 142.69\\ 152.16\\ 15$	$\begin{array}{c} 0.00\\ 65.83\\ 82.34\\ 89.95\\ 96.30\\ 100.11\\ 103.92\\ 106.46\\ 108.99\\ 110.26\\ 111.53\\ 112.80\\ 114.07\\ 116.61\\ 117.88\\ 119.15\\ 120.42\\ 121.69\\ 122.96\\ 122.9$	0.00 10.40 12.98 14.16 15.12 15.69 16.26 16.62 17.14 17.30 17.47 17.63 17.98 17.94 18.26 18.21 18.26 18.41 18.53 18.64 18.95 18.91 19.02 19.02 19.03 20.12 20.22 20.31 20.46 20.52 20.82 20.82 20.82 20.93	93.89 104.29 106.87 108.05 109.01 109.58 110.151 111.36 111.37 111.36 111.37 111.39 112.30 112.42 112.57 112.53 112.64 112.57 112.69 112.87 112.53 112.64 112.95 112.87 112.53 112.64 112.95 112.87 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 113.62 114.66 114.77 114.82	$\begin{array}{c} 13.89\\ 19.74\\ 20.74\\ 21.15\\ 21.64\\ 22.00\\ 22.43\\ 22.65\\ 23.01\\ 23.34\\ 23.57\\ 23.34\\ 23.57\\ 23.73\\ 24.08\\ 24.11\\ 24.34\\ 24.50\\ 24.72\\ 25.20\\ 25.23\\ 25.25\\ 25.74\\ 25.63\\ 25.88\\ 25.91\\ 26.06\\ 26.09\\ 26.59\\ 26.77\\ 27.83\\ 27.99\\ 28.15\\ 28.29\\ 28.42\\ 28.66\\ 28.78\\ 28.84\\ 29.03\\ \end{array}$	

46) 0.74 47) 0.77 48) 0.80 49) 0.83 50) 0.86 51) 0.89 52) 0.95 53) 0.95 53) 0.95 53) 0.95 53) 1.04 56) 1.07 57) 1.10 58) 1.16	12.62 7.2 73 13.12 7.2 74 13.64 7.3 75 14.14 7.3 76 14.64 7.4 76 15.15 7.4 76 16.66 7.5 76 16.66 7.5 76 16.66 7.5 77 16.66 7.6 78 16.66 7.5 79 16.66 7.5 70 18.17 7.7 70 18.67 7.7 70 19.69 7.8	3 85.93 7 85.79 1 85.79 5 85.79 5 85.79 6 85.72 7 85.72 85.72 85.72 85.72 85.45 85.45 85.45 85.58 85.58	150.89 152.16 153.42 154.69 157.23 158.50 161.04 163.58 164.85 166.12 168.66 169.93 172.47	150.89 152.16 153.42 154.69 157.23 158.50 161.04 163.58 164.85 166.12 168.66 169.93 172.47	20.88 20.93 20.98 21.03 21.25 21.30 21.59 21.63 21.66 21.86 21.89 21.93	114.77 114.82 114.87 115.14 115.19 115.27 115.48 115.55 115.75 115.78 115.82	28.84 29.03 29.08 29.42 29.42 29.47 29.62 29.76 29.79 30.10 30.30 30.19 30.24	

ニシ

Thu Jul 01 08:24:52 2004 Page: 4 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST Project : Chabot Dam Seismic Study Location : San Leandro, CA Project No. : 26814536 Test No. : WI-64-5 Test No. : WI-64-5 Test Date : 06/22/04 Boring No. : WI-64 Sample No. : 5 Bottom Sample Type : Pitcher Tested by : S. Capps Checked by : R. Taraya Depth : 20.2 **Elevation : NA** Soil Description : Gravish brown sandy clay with gravel (CL) Remarks : TXCIU Test with Effective Pressure of 13.89 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform Liquid Limit : 44.43 Plastic Limit : 20.91 Specific Gravity : 2.691 INITIAL : 5.945 (in) : 6.424 (in²) Dry Density : 107.31 (lb/ft^3) Moisture : 19.91 % Height Area Void Ratio: 0.56 Saturation: 94.87 % Time : 0.00 (min) INITIALIZATION Dry Density : 107.31 (lb/ft^3) Moisture : 19.91 % Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 93.89 (lb/in^2 Effect.Hori. Stress: 93.89 (lb/in^2 : 0.000 (in) : 0.000 (in^3) dH Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.56 d٧ Saturation: 94.87 % Time : 0.00 (min) END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in³) dH : 5.945 (in) Height Total Vert. Stress : 93.89 (lb/in^2 Total Hori. Stress : 93.89 (lb/in^2 Dry Density : 107.31 (lb/ft^3) Area : 6.424 (in^2) Void Ratio: 0.56 d٧ Moisture : 19.91 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 93.89 (lb/in^2 Effect.Hori. Stress: 93.89 (lb/in^2 Saturation: 94.87 % : 0.00 (min) Time END OF SATURATION Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.56 : 0.000 (in) : 0.000 (in³) : 0.000 (in³) Total Vert. Stress : 93.89 (lb/in^2 Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 0.00 (lb/in^2) Dry Density : 107.31 (lb/ft^3) Moisture : 19.50 % dH d٧ . dVCorr Effect.Vert. Stress: 93.89 (lb/in^2 Effect.Hori. Stress: 93.89 (lb/in^2 Saturation: 92.92 % : 0.00 (min) Time END OF CONSOLIDATION - B Height : 5.894 (in) Area : 6.315 (in²) Void Ratio: 0.52 Saturation: 99.99 % : 0.051 (in) : 0.974 (in³) Total Vert. Stress : 93.89 (lb/in² Total Hori. Stress : 93.89 (lb/in² Pore Pressure : 80.00 (lb/in² Effect.Vert. Stress: 13.89 (lb/in² Effect.Vert. Stress: 17.89 (lb/in²) dH Dry Density : 110.12 (lb/ft^3) d٧ Moisture : 19.50 % : 0.00 (min) Time Effect.Hori. Stress: 13.89 (lb/in^2 FAILURE DURING SHEAR dH : 1.160 (in) Height : 4.785 (dV : 0.974 (in³) Area : 7.863 (Strain : 19.69 % Void Ratio: 0.52 Strength: 10.97 (lb/in²)Saturation: 99.99 % Time : 1311.77 (min) : 4.785 (in) Dry Density : 110.12 (lb/ft^3) Total Vert. Stress : 115.82 (lb/in^ Area : 7.863 (in²) Void Ratio: 0.52 Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 85.58 (lb/in^2 Effect.Vert. Stress: 30.24 (lb/in^2 Moisture : 19.50 % Effect.Hori. Stress: 8.31 (lb/in^2) END OF TEST dH : 1.160 (in) dV : 0.974 (in³) Strain : 19.69 % Height : 4.785 (in) Area : 7.863 (in²) Void Ratio: 0.52 Saturation: 99.99 % Total Vert. Stress : 115.82 (lb/in^ Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 85.58 (lb/in^2 Effect.Vert. Stress: 30.24 (lb/in^2 Effect.Hori. Stress: 8.31 (lb/in^2) Dry Density : 110.12 (lb/ft^3) Moisture : 19.50 %

: 1311.77 (min)

Time

LL 41.87	PL 20.04	PI 21.83	GS 2.66	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		# ********
REMARKS:				PROJECT Chabot D	am Seismic Study				
1) TXCIU Tes	t with Effective	Pressure of 83	3.33 psi	PROJECT NO.2681453	ŝ			<u></u>	<u></u>
				BORING NO. WI-64	SAMPLE NO.	9 Bottom			
				TECH. S. Capps	DEPTH/ELEV	40.0 feet			
				LABORATORY	DATE	06/22/04		· ·	
·					TRIAXIA	L COMPRESSIO	N TEST REP	ORT	

Thu 07-01-:4, 08:29:09

LL 41.87	PL 20.04	PI 21.83	GS 2.66	TYPE OF SPECIMEN F	Pitcher	type of test	CU (R)		
REMARKS:				PROJECT Chabot D	om Seismic Study				
1) TXCIU Tes	t with Effective	Pressure of 83	5.33 psi	PROJECT NO.26814536	6				
				BORING NO. WI-64	SAMPLE NO.	9 Bottom			
			·····	TECH. S. Copps	DEPTH/ELEV	40.0 feet			
				LABORATORY	DATE	06/22/04			
				TRIAXIAL COMPRESSION TEST REPORT					

Thu U/-U1-:4, 08:27:56

Thu Jul 01 08:27:09 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study Location : San leandro, CA Project No. : 26814536 Boring No. : WI-64 Test No. : WI-64-9 Test Date : 06/22/04 Tested by : S. Capps Depth : 40.0 feet Elevation : NA Sample No. : 9 Bottom Checked by : R. Taraya Sample Type : Pitcher Elevan Soil Description : Brown clayey sand (SC) Remarks : TXCIU Test with Effective Pressure of 83.33 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Piston Weight : 0.00 (gm) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Height Area Volume Area Correction : Uniform EXCESS EFFECTIVE TOTAL TOTAL EFFECTIVE VERTICAL VERTICAL HORIZONTAL PORE VERTICAL HORIZONTAL A EFFECTIVE PRESSURE PARAMETER STRESS OBLIQUITY STRAIN STRESS STRESS STRESS p (lb/in^2) q (lb/in^2) (lb/in^2) (lb/in^2) (%) (lb/in^2) (lb/in^2) (lb/in^2) 163.33 163.33 163.33 163.33 0.00 14.42 21.72 0.13 163.33 83.33 68.91 0.00 0.00 83.33 1.00 83.33 1) 2) 3) 0.57 94.07 81.49 100.42 102.78 103.14 202.15 0.41 81.01 79.71 77.65 19.41 0.56 61.60 1.63 26.69 4) 0.61 0.58 56.64 1.81 23.07 214.30 217.66 52.17 48.98 25.48 27.17 5) 31.16 0.82 163.33 0.61 1.98 2.11 2.21 2.29 2.36 76.14 6) 1.01 163.33 34.35 0.63 103.31 36.48 38.25 39.53 1.22 103.41 103.30 46.85 7) 219.89 163.33 75.13 0.64 28.28 221.56 222.88 163.33 163.33 8) 0.66 74.19 29.11 29.78 9) 103.35 43.80 1.62 0.66 73.57 163.33 163.33 163.33 10) 1.83 223.97 40.66 0.67 103.31 42.66 2.42 72.98 30.32 2.03 2.23 2.43 103.29 103.41 103.33 224.73 11) 12) 13) 2.47 72.58 0.67 41.44 41.88 30.70 42.08 31.08 41.24 0.68 225.92 163.33 163.33 2.54 2.56 2.59 72.04 71.95 31.29 0.68 40.75 2.64 2.83 103.50 40.39 14) 226.44 42.93 0.68 31.55 15) 226.75 163.33 43.36 103.39 39.97 71.68 31.71 0.68 16) 17) 3.04 3.23 226.94 43.50 43.71 2.60 31.81 31.91 163.33 163.33 103.44 103.43 71.63 39.82 0.68 39.61 0.68 18) 3.44 227.44 163.33 43.86 0.68 103.58 39.47 2.62 71.53 32.06 39.33 39.26 39.12 44.00 103.96 19) 3.64 227.96 163.33 0.68 2.64 71.65 32.32 2.65 71.72 20) 3.84 228.26 163.33 0.68 32.47 21) 22) 228.45 104.24 103.99 4.04 71.68 32.56 163.33 44.21 0.68 39.12 228.21 44.21 32.44 4.25 163.33 0.68 4.45 4.65 4.85 5.05 44.21 44.21 44.28 44.21 39.12 39.12 39.04 163.33 163.33 163.33 23) 228.72 0.68 104.50 2.67 71.81 32.69 24) 25) 26) 104.58 228.80 32.73 0.68 2.67 71.85 104.69 2.68 228.98 0.67 71.87 32.82 104.73 228.94 2.68 0.67 39.12 32.81 163.33 71.92 27) 5.25 229.23 38.97 71.93 32.95 163.33 44.35 0.67 104.88 163.33 163.33 163.33 5.45 5.65 5.86 2.69 28) 229.42 44.28 0.67 105.13 39.04 72.09 33.04 104.99 29) 229.28 44.28 39.04 39.26 72.02 32.97 0.67 2.69 2.69 33.11 30) 229.56 44.07 0.67 229.73 229.98 44.07 43.93 6.06 105.66 72.46 31) 2.69 163.33 0.66 39.26 33.20 6.46 6.88 7.27 32) 33) 163.33 0.66 106.05 39.40 2.69 33.32 230.21 163.33 43.86 106.35 39.47 2.69 72.91 33.44 0.66 34) 35) 36) 163.33 230.55 106.91 0.65 43.64 39.68 2.69 33.61 73.30 73.52 39.90 2.69 7.67 230.57 43.43 0.65 33.62 107.75 8.07 230.90 163.33 43.15 0.64 40.18 33.79 8.48 8.88 231.43 231.85 163.33 43.00 42.86 108.42 108.99 74.37 74.72 34.05 37) 0.63 40.32 2.69 ŏ.63 163.33 2.69 38) 40.46 34.26 232.05 34.36 39) 9.30 163.33 42.72 0.62 109.33 40.61 2.69 74.97 42.51 42.29 75.34 75.60 40) 2.69 9.69 232.37 163.33 0.62 109.86 40.82 34.52 163.33 41) 10.09 232.46 110.16 41.03 2.68 34.57 0.61 232.68 42) 163.33 75.99 10.60 42.01 0.61 110.67 2.68 34.68 41.31 43) 44) 45) 2.67 2.67 2.66 232.99 41.73 76.43 11.10 163.33 0.60 111.26 41.60 34.83 76.74 77.13 77.51 233.20 233.39 11.60 163.33 41.51 0.59 111.68 41.81 34.93 12.11 12.61 42.10 0.59 112.16 112.63 163.33 41.23 35.03 46) 233.58 163.33 40.95 0.58 2.66 35.13

Page: 1

13.11	233.67	163.33	40.59	0.58	113.07	42.73	2.65	77.90	35.17
13.62	233.55	163.33	40.24	0.57	113.31	43.09	2.63	78.20	35.11
14.14	233.62	163.33	39.95	0.57	113.66	43.37	2.62	78-52	35.14
14 63	233 60	163 33	30 60	0.56	113 00	43 73	2 61	78 86	25 13
14.05			37.00	0.50	113.77	73.13	5.01	10.00	22.12
15.15	233.57	165.55	39.32	0.56	114.25	44.01	2.60	79.13	55.12
16.14	233.49	163.33	38.89	0.55	114.60	44.44	2.58	79.52	35.08
16.64	233.16	163.33	38.53	0.55	114.62	44.79	2.56	79.71	34.92
17.15	233.21	163.33	38.32	0.55	114.88	45.00	2.55	79.94	34.94
17.66	233.06	163.33	38.39	0.55	114.66	44.93	2.55	79.80	34.86
18 17	232 81	163.33	38.18	0 55	114 63	45 15	2 54	70 80	34.74
			39.19	V.22	117.05	72.17	5.27	17.07	47.14
10.6/	252.20	105.55	51.91	U.55	114.25	45.56	2.52	(9.79	54.45
10 67	231 08	163 33	37 75	0 56	113 32	45 57	2 40	79 45	33.88
	13.11 13.62 14.14 14.63 15.13 16.14 16.64 17.15 17.66 18.17 18.67 19.67	13.11 233.67 13.62 233.55 14.14 233.62 14.63 233.60 15.13 233.57 16.14 233.49 16.64 233.16 17.15 233.21 17.66 233.06 18.17 232.81 18.67 232.20 19.67 231.08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.11233.67163.3340.590.58113.0713.62233.55163.3340.240.57113.3114.14233.62163.3339.950.57113.6614.63233.60163.3339.600.56113.9915.13233.57163.3339.320.56114.2516.14233.49163.3338.890.55114.6016.64233.16163.3338.320.55114.6217.15233.21163.3338.390.55114.6217.66233.06163.3338.390.55114.6618.17232.81163.3338.180.55114.6318.67232.20163.3337.970.55114.2319.67231.08163.3337.750.56113.32	13.11233.67163.3340.590.58113.0742.7313.62233.55163.3340.240.57113.3143.0914.14233.62163.3339.950.57113.6643.3714.63233.60163.3339.600.56113.9943.7315.13233.57163.3339.320.56114.2544.0116.14233.49163.3338.890.55114.6044.4416.64233.16163.3338.530.55114.6244.7917.15233.21163.3338.320.55114.6644.9317.66233.06163.3338.390.55114.6644.9318.17232.81163.3338.180.55114.6345.1518.67232.20163.3337.750.56113.3245.3619.67231.08163.3337.750.56113.3245.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.11233.67163.3340.590.58113.0742.732.6577.9013.62233.55163.3340.240.57113.3143.092.6378.2014.14233.62163.3339.950.57113.6643.372.6278.5214.63233.60163.3339.600.56113.9943.732.6178.8615.13233.57163.3339.320.56114.2544.012.6079.1316.14233.49163.3338.890.55114.6044.442.5879.5216.64233.16163.3338.530.55114.6244.792.5679.7117.15233.21163.3338.320.55114.6244.932.5579.8018.17232.81163.3338.180.55114.6345.152.5479.8918.67232.20163.3337.970.55114.2345.572.4979.45

Thu Jul 01 08:27:09 2004

,

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Study
Project No. : 26814536Location : San leandro, CA
Test No. : WI-64-9Test No. : WI-64-9Boring No. : WI-64Test Date : 06/22/04Tested by : S. Capps
Checked by : R. TarayaSample No. : 9 BottomDepth : 40.0 feetChecked by : R. TarayaSample Type : PitcherElevation : NA
Soil Description : Brown clayey sand (SC)
Remarks : TXCIU Test with Effective Pressure of 83.33 psiFilter Correction : 0.00 (lb/in^2)
Membrane Correction : 0.00 (lb/in^2)
Membrane Correction : 0.00 (lb/in)
AreaHeight: 5.945 (in)Piston Diameter : 0.000 (in)
Piston Friction : 0.00 (lb)Filter Correction : 0.00 (lb/in)
Area Correction : 0.00 (lb/in)

		ERTICAL	CORR	PORF	DEV	COPP DEV	DEV	TOTAL	EFFECTIVE
	IN LENGTH	1	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(1n)	(%)	(1n^2)	(10/10^2)	(16)	(15)	(lb/1n^2)	(lb/1n^2)	(lb/1n^2)
1)	0.008	0.13	6.33	80.00	0.00	0.00	0.00	163.33	83.33
2)	0.015	0.21	6.33 6 35	94.42	163.29	163.29	25.78	188.49	94.07 100.62
- 4 5	0.036	0.61	6.36	106.69	300.68	300.68	47.28	209.47	102.78
- 5)	0.048	0.82	6.37	111.16	332.84	332.84	52.22	214.30	103.14
6) 7)	0.060	1.01	6.39	114.55	355.49	355.49	55.67	217.66	103.31
- 8)	0.084	1.42	6.41	118.26	382.54	382.54	59.66	221.56	103.30
- 95	0.096	1.62	6.43	119.53	392.04	392.04	61.02	222.88	103.35
10)	0.108	1.83	6.44	120.67	400.08	400.08	62.14	223.97	103.31
12)	0.120	2.03	6.45	121.45	405.92	405.92	63.69	225.49	103.29
13)	0.143	2.43	6.48	122.58	415.42	415.42	64.13	225.92	103.33
14)	0.156	2.64	6.49	122.94	419.81	419.81	64.66	226.44	103.50
15)	0.16/	2.85	6.51 6.52	123.36	422.73	422.73	64.98 65.18	226.75	103.59
175	0.191	3.23	6.53	123.72	427.12	427.12	65.39	227.15	103.43
18)	0.203	3.44	6.55	123.86	430.04	430.04	65.69	227.44	103.58
19)	0.215	3.64	6.56	124.00	434.42	434.42	66.22	227.96	103.96
207	0.238	5.04 4.04	6.59	124.07	437.33	437.33	66.73	220.20	104.19
22)	0.251	4.25	6.60	124.21	438.81	438.81	66.47	228.21	103.99
23)	0.262	4.45	6.62	124.21	443.19	443.19	67.00	228.72	104.50
24)	0.274	4.65	6.65	124.21	444.66	444.66	67.08	228.80	104.58
26)	0.298	5.05	6.66	124.21	447.58	447.58	67.23	228.94	104.73
27)	0.310	5.25	6.67	124.36	450.50	450.50	67.53	229.23	104.88
28)	0.322	5.45	6.69	124.29	452.70	452.70	67.71	229.42	105.13
30)	0.346	5.86	6.71	124.29	452.70	452.70	67.85	229.56	104.99
31)	0.357	6.06	6.73	124.07	457.81	457.81	68.04	229.73	105.66
<u>32)</u>	0.381	6.46	6.76	123.93	461.47	461.47	68.29	229.98	106.05
55)	0.405	6.88	6.79	123.86	465.12	465.12	68.52	230.21	106.35
35)	0.453	7.67	6.85	123.43	471.70	409.30	68,90	230.55	107.14
36)	0.476	8.07	6.88	123.15	476.08	476.08	69.24	230.90	107.75
37)	0.500	8.48	6.91	123.01	481.93	481.93	69.78	231.43	108.42
30) 30)	0.5/8	0.00	0.94 6 07	122.8/	487.04	487.04	70.21	231.85	108.99
40)	0.571	9.69	7.00	122.51	495.08	495.08	70.74	232.37	109.86
41)	0.595	10.09	7.03	122.30	498.01	498.01	70.83	232.46	110.16
42)	0.625	10.60	7.07	122.02	502.39	502.39	71.06	232.68	110.67
43)	0.622	11 60	7.11	121./3	511 80	507.51 511 80	/1.58 71 58	252.99	111.20
45	0.714	12.11	7.19	121.23	516.28	516.28	71.79	233.39	112.16
46)	0.744	12.61	7.23	120.95	520.66	520.66	71.98	233.58	112.63
-47)	0.773	13.11	7.28	120.60	524.32	524.32	72.07	233.67	113.07

Page: 2

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.99 114.25 114.60 114.62 114.88 114.66 114.63 114.23 113.32
--	--

Thu Jul 01 08:27:09 2004

Project : Chabot Dam Sei Project No. : 26814536 Boring No. : WI-64 Sample No. : 9 Bottom Sample Type : Pitcher Soil Description : Brown Remarks : TXCIU Test wit	smic Study clayey sar h Effective	Location : San Test No. : WI-6 Test Date : 06/ Depth : 40.0 fe Elevation : NA d (SC) Pressure of 83.	leandro, CA 54-9 22/04 eet .33 psi	Tested by : S. Capps Checked by : R. Taraya				
Height : 5.945 (in Area : 6.424 (in Volume : 38.192 (i) ^2) n^3)	Piston Diameter Piston Friction Piston Weight	: 0.000 (in) : 0.00 (lb) : 0.00 (gm)	Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Correction : Uniform				
Liquid Limit : 41.87		Plastic Limit :	20.04	Specific Gra	ovity : 2.664			
INITIAL Time : 0.00 (min)	Height Area Void Ratic Saturatior	: 5.945 (in) : 6.424 (in^2) : 0.51 : 96.75 %	Dry Density Moisture	: 109.86 (lb/ft^3) : 18.64 %				
INITIALIZATION dH : 0.000 (in) dV : 0.000 (in ³)	Height Area Void Ratic Saturatior	: 5.945 (in) : 6.424 (in^2) : 0.51 : 96.75 %	Dry Density Moisture	: 109.86 (lb/ft^3) : 18.64 %	Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^			
				· · · · · · · · · · · · · · · · · · ·	Effect.Hori. Stress: 163.33 (lb/in^			
END OF CONSOLIDATION - A dH : 0.000 (in) dV : 0.000 (in^3) Time : 0.00 (min)	Height Area Void Ratic Saturation	: 5.945 (in) : 6.424 (in^2) : 0.51 : 96.75 %	Dry Density : Moisture :	: 109.86 (lb/ft^3) : 18.64 %	Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect Hori Stress: 163.33 (lb/in^			
END OF SATURATION dH : 0.000 (in) dV : 0.000 (in^3) dVCorr : 0.000 (in^3) Time : 0.00 (min)	Height Area Void Ratio Saturation	: 5.945 (in) : 6.424 (in^2) : 0.51 : 92.91 %	Dry Density : Moisture :	: 109.86 (lb/ft^3) : 17.90 %	Total Vert. Stress: 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 163.33 (lb/in^ Effect.Hori. Stress: 163.33 (lb/in^			
END OF CONSOLIDATION - B								
dH : 0.048 (in) dV : 0.917 (in ³) Time : 0.00 (min)	Height Area Void Ratio Saturation	: 5.897 (in) : 6.321 (in^2) : 0.48 : 99.99 %	Dry Density : Moisture :	: 112.56 (lb/ft^3) : 17.90 %	Total Vert. Stress : 163.33 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 83.33 (lb/in^2 Effect.Hori. Stress: 83.33 (lb/in^2			
FAILURE DURING SHEAR								
dH : 0.773 (in) dV : 0.917 (in^3) Strain : 13.11 % Strength: 36.03 (lb/in^2) Time : 880.27 (min)	Height Area Void Ratio)Saturation	: 5.172 (in) : 7.275 (in^2) : 0.48 : 99.99 %	Dry Density : Moisture :	: 112.56 (lb/ft^3) : 17.90 %	Total Vert. Stress : 235.40 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 120.60 (lb/in^ Effect.Vert. Stress: 114.80 (lb/in^ Effect.Hori. Stress: 42.73 (lb/in^2			
END OF TEST dH : 1.160 (in) dV : 0.917 (in ³) Strain : 19.67 % Time : 1311.40 (min)	Height Area Void Ratio Saturation	: 4.785 (in) : 7.869 (in^2) : 0.48 : 99.99 %	Dry Density : Moisture :	112.56 (lb/ft^3) 17.90 %	Total Vert. Stress : 232.75 (lb/in^ Total Hori. Stress : 163.33 (lb/in^ Pore Pressure : 117.76 (lb/in^ Effect.Vert. Stress: 114.99 (lb/in^ Effect.Hori. Stress: 45.57 (lb/in^2			

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Page: 4

LL 26.78	PL 16.67	PI 10.11	GS 2.65	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)	
REMARKS:				PROJECT Chabot D	am Siesmic	······································		
1) TXCIU Tes	it with Effective	Pressure of 13	5.89 psi	PROJECT NO.26814536	ŝ		44444444777777777777777777777777777777	
2) TXCIU Tes	t with Effective	Pressure of 27	7.78 psi	BORING NO. WI-66	SAMPLE NO.	8 Top	8 Bottom	
				TECH. S. Capps	DEPTH/ELEV	24.0 feet	24.0 feet	
				LABORATORY	DATE	06/24/04	06/24/04	
					TRIAXIA	L COMPRESSIO	N TEST REPORT	

Tue 07-05-:4, 10:01:38

LL 26.78	PL 16.67	PI 10.11	GS 2.65	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)	
REMARKS:				PROJECT Chabot D	am Siesmic	•		
1) TXCIU Tes	t with Effective	Pressure of 13	5.89 psi	PROJECT NO.26814534	ŝ	· ·		
2) TXCIU Tes	t with Effective	Pressure of 27	7.78 psi	BORING NO. WI-66	SAMPLE NO.	8 Top	8 Bottom	
				TECH. S. Capps	DEPTH/ELEV	24.0 feet	24.0 feet	
				LABORATORY	DATE	06/24/04	06/24/04	
					TRIAXIA	L COMPRESSIO	N TEST REPORT	

Tue 07-06-:4, 10:02:11

LL 26.78	PL 16.67	PI 10.11	GS 2.65	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)		,		
REMARKS:				PROJECT Chabot Dam Siesmic							
1) TXCIU Tes	t with Effective	Pressure of 13	5.89 psi	PROJECT NO.26814536							
				BORING NO. WI-66	SAMPLE NO.	8 Top					
				TECH. S. Capps	DEPTH/ELEV	24.0 feet		1			
				LABORATORY	DATE	06/24/04					
				TRIAXIAL COMPRESSION TEST REPORT							

Tue 07-06-:4, 09:59:00

LL 26.78	PL 16.67	PI 10.11	GS 2.65	TYPE OF SPECIMEN Pitcher TYPE OF TEST CU (R)						
REMARKS:				PROJECT Chabot Dam Siesmic						
1) TXCIU Test with Effective Pressure of 13.89 psi				PROJECT NO.26814536						
				BORING NO. WI-66	SAMPLE NO.	8 Top			1	
				TECH. S. Copps	DEPTH/ELEV	Z4.0 feet				
				LABORATORY	DATE	06/24/04	***			
				TRIAXIAL COMPRESSION TEST REPORT						

Tue 07-06-:4, 09:59:39

URS

Tue Jul 06 09:58:21 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Ch Project No. Boring No. : Sample No. : Sample Type Soil Descrip Remarks : TX	abot Dam Sie : 26814536 WI-66 8 Top : Pitcher tion : Gray CIU Test wit	smic fine sandy c h Effective	Location : San Lea Test No. : WI-66-8 Test Date : 06/24/ Depth : 24.0 feet Elevation : NA lay (CL) Pressure of 13.89	ndro, CA IT 04 psi	Tested by Checked b	y : S. Ca by : R. 1	apps Faraya	
leight Area /olume	: 5.000 (in : 6.424 (in : 32.121 (i) P ^2) P n^3) P	iston Diameter : 0 iston Friction : 0 iston Weight : 0	.000 (in) .00 (lb) .00 (gm)	Filter Cor Membrane (Area Corre	rrection Correctio ection	: 0.00 (l on : 0.00 (l : Uniform	b/in^2) b/in)
VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE A PRESSURE PARAMET (lb/in^2)	EFFECTIVE VERTICAL ER STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OE (lb/in^2)	BLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
1) 0.004 3) 0.24445 5) 0.24445 5) 0.244445 6) 1.265867 7) 1.267867 9) 1.222867 1.222867 1.2228677 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.222877 1.22277 1.222877 1.222877 1.222777 1.222777 1.22277 1.222777 1.222777 1.222777 1.222777 1.222777777 1.2227777777777777777777777777777777777	93.89 104.39 108.84 111.53 112.46 114.35 115.47 118.27 120.27 121.36 122.07 123.15 124.73 124.73 125.61 126.49 126.99 127.86 128.91 129.26 130.92 131.22 132.06 132.54 133.84 134.31 134.31 134.31 135.18 135.18 135.18 135.19 133.84 134.31 135.18 145.18 145.76 145.18 145.76 145.18 145.76 145.18 145.76 145.18 145.76 145.18 145.76 145.18 145.76 145.18 14	93.89 93.89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 13.89 20.66 23.67 225.87 26.53 226.53 226.53 29.86 30.84 30.84 33.4.68 30.84 33.4.68 30.87 65.42 31.087 33.4.68 32.29 28.43 34.127 44.33 35.90 38.18 36.90 38.18 37.654 32.38 38.18 41.27 44.3.05 44.3.05 44.3.05 44.3.05 44.3.05 44.3.05 51.23.06 65.4.22 009 8776 51.47.23 53.990 2100 1223.45 55.56 67.88 67.28 89.75 71.50 68.75 72.70 73.21	$\begin{array}{c} 13.89\\ 10.17\\ 8.72\\ 8.24\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 7.96\\ 8.31\\ 8.51\\ 8.93\\ 9.27\\ 9.96\\ 9.96\\ 10.51\\ 10.85\\ 11.00\\ 11.27\\ 11.61\\ 12.58\\ 12.64\\ 12.92\\ 13.33\\ 14.64\\ 14.92\\ 15.81\\ 16.16\\ 16.59\\ 17.33\\ 18.82\\ 18.50\\ 18.98\\ 19.12\\ \end{array}$	122333334444444444444444444444444444444	$\begin{array}{c} 13.89\\ 15.41\\ 16.19\\ 17.06\\ 17.25\\ 18.61\\ 19.45\\ 20.74\\ 922.81\\ 222.85\\ 24.69\\ 222.85\\ 24.69\\ 222.85\\ 24.69\\ 222.85\\ 223.55\\ 224.69\\ 225.22\\ 225.22\\ 225.22\\ 229.23\\ 31.85\\ 332.85\\ 333.33\\ 35.56\\ 37.06\\ 39.99\\ 41.21\\ 42.80\\ 39.99\\ 41.210\\ 42.80\\ 39.99\\ 41.210\\ 42.80\\ 43.81\\ 44.53\\ 44.53\\ 44.53\\ 45.84\\ 4$	0.00 5.258 8.829 10.794 12.64 13.739 14.63 15.426 16.558 16.5581 16.5581 16.5981 17.669 19.922 20.538 21.722 22.614 23.6792 24.476 25.488 25.488 25.930 26.506 27.049

Page: 1

140	43.46			5.34				2.02		
47)	15.19	147.98	95.89	-5.23	-0.10	73.21	19.12	3.83	46.16	27.04
48)	13.70	148.50	93.89	-5.50	-0.10	74.00	19.40	3.82	46.70	27.30
405	14 10	140 03	07 80	-5 85	-0 11	7/ 88	10 7/	3 70	17 31	27 57
222		4/0 7/	/3.0/	-2.05	- V. 11	14.00	17.14	3.17	74-27	54.4
20)	14.71	149.30	93.89	-2.92	-0.11	75.28	19.81	5.80	47.54	27.74
51)	15.21	150.03	93.89	-6.12	-0.11	76.15	20.02	3.80	48.08	28.07
525	16 23	150.00	03 80	-6 61	-0 12	77 60	20 50	3 70	40 05	28 55
275	4/ 77		07.00	(00	0.15	20.26	20.77	· · · / ·	77.03	
22)	10.75	121.40	73.6 7	-0.00	-0.12	78.35	20.77	5.77	49.00	28.79
54)	17.24	151.76	93.89	-7.02	-0.12	78.78	20.91	3.77	49.84	28.93
553	17.73	152 22	03 80	-7 29	-0.13	70 51	21 10	3 75	50 35	20 16
57	40 25	455 75	07 00		0.47	10.00		3.12	20.33	
20)	10.22	126.49	72.07	-/.43	-0.15	(7.92	21.32	3.13	50.02	29.30
57)	18.75	152.77	93.89	-7.98	-0.14	80.75	21.87	3.69	51.31	29-44
581	10 76	153 28	07 80	- 8 / 7	-0 1/	81 75	22 74	7 66	52 05	20 70
20/	17.10	133.20	75.07	-0.4/	-0.14	01.15	22.30	5.00	22.02	27.10
59)	20.27	155.38	95.89	-8.74	-0.15	82.12	22.63	3.63	52.38	29.74
-										
Tue Jul 06 09:58:21 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Sie Project No. : 26814536 Boring No. : WI-66 Sample No. : 8 Top Sample Type : Pitcher Soil Description : Gray Remarks : TXCIU Test wit	esmic Locati Test M Test D Depth Elevat fine sandy clay (C th Effective Pressu	ion : San Le No. : WI-66- Date : 06/24 : 24.0 feet tion : NA CL) ure of 13.89	andro, CA 8T /04 psi	Tested by : S. Capps Checked by : R. Taraya			
Height : 5.000 (ir Area : 6.424 (ir Volume : 32.121 (i	n) Piston n^2) Piston in^3) Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	r Correction ane Correcti Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform	
VERTICAL CHANGE STRAIN COR IN LENGTH AR (in) (%) (ir	RR. PORE REA PRESSURE n^2) (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)	
1) 0.000 0.00 0.00 2) 0.012 0.24 0.24 3) 0.022 0.44 4) 0.032 0.64 5) 0.042 0.85 6) 0.052 1.06 7) 0.062 1.26 8) 0.072 1.47 9) 0.082 1.66 10) 0.093 1.87 11) 0.103 2.07 12) 0.113 2.28 13) 0.122 2.46 14) 0.132 2.67 15) 0.141 2.86 16) 0.152 3.07 17) 0.162 3.28 18) 0.172 3.48 19) 0.182 3.68 20) 0.192 3.88 21) 0.202 4.08 22) 0.212 4.29 6 24 0.232 4.70 6 24) 0.223 4.50 6 6.51 6.20 0.272 5.50 6 0.252 5.09 6 0.302 6.51 6 0.292 5.91 6 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.52 7.72 6.53 0.443 8.95 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51 <t< td=""><td>6.28 80.00 6.30 83.72 6.31 85.17 6.32 85.65 6.34 85.93 6.35 85.93 6.37 85.93 6.39 85.93 6.37 85.93 6.37 85.93 6.39 85.93 6.39 85.93 6.39 85.93 6.40 85.79 6.41 85.58 6.43 85.17 6.45 84.96 6.47 84.76 6.48 84.62 6.49 84.34 6.51 83.93 6.52 83.93 6.54 83.93 6.55 83.04 6.58 82.83 6.59 82.69 6.60 82.62 6.63 82.00 6.65 81.73 6.66 81.31 6.68 81.25 6.69 80.97 6.75 80.14 6.78 79.59</td><td>$\begin{array}{c} 0.00\\ 68.37\\ 97.57\\ 115.34\\ 121.69\\ 134.30\\ 142.09\\ 134.30\\ 142.09\\ 161.04\\ 167.39\\ 167.39\\ 167.32\\ 206.74\\ 219.44\\ 229.59\\ 237.27\\ 239.59\\ 239.22\\ 239.59\\ 239.22\\ 242.29\\ 254.98\\ 265.14\\ 275.29\\ 284.18\\ 303.22\\ 312.11\\ 318.45\\ 326.53\\ 345.84\\ 356.54\\ 379.39\\ 392.08\\ 399.70\\ 404.78\\ \end{array}$</td><td>0.00 68.37 97.57 115.34 121.69 134.38 142.00 15.01 167.39 175.01 182.62 187.70 206.74 213.09 219.44 223.24 229.59 237.21 237.25 246.09 252.44 275.29 279.10 284.18 327.34 356.54 370.50 379.39 392.08 399.70 404.78</td><td>$\begin{array}{c} 0.00\\ 10.86\\ 15.46\\ 19.21\\ 21.17\\ 223.67\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.22\\ 225.25\\ 255.2$</td><td>$\begin{array}{c} 93.89\\ 104.39\\ 108.84\\ 111.53\\ 112.46\\ 114.35\\ 115.47\\ 118.77\\ 118.77\\ 120.27\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.06\\ 128.91\\ 129.21\\ 130.92\\ 127.86\\ 128.91\\ 129.21\\ 130.92\\ 127.86\\ 137.31\\ 134.96\\ 137.33\\ 138.41\\ 139.12\\ 142.08\\ 137.33\\ 138.41\\ 139.12\\ 142.08\\ 147.14\\ 142.08\\ 143.42\\ 144.84\\ 145.76\\ 144.84\\ 145.76\\ 144.84\\ 145.76\\ 146.89\\ 147.98\\$</td><td>$13.89 \\ 20.66 \\ 23.67 \\ 25.87 \\ 26.53 \\ 28.43 \\ 29.40 \\ 30.84 \\ 32.34 \\ 33.38 \\ 34.68 \\ 35.98 \\ 36.90 \\ 38.18 \\ 39.28 \\ 40.11 \\ 41.27 \\ 42.56 \\ 43.05 \\ 44.34 \\ 45.53 \\ 46.17 \\ 47.23 \\ 48.23 \\ 48.59 \\ 49.79 \\ 50.53 \\ 51.47 \\ 52.53 \\ 53.06 \\ 53.99 \\ 55.50 \\ 57.19 \\ 58.82 \\ 59.87 \\ 61.20 \\ 62.73 \\ 64.00 \\ 65.01 \\ 66.03 \\ 67.28 \\ 68.28 \\ 69.75 \\ 70.83 \\ 71.50 \\ 72.70 \\ 73.21 \\ \end{array}$</td></t<>	6.28 80.00 6.30 83.72 6.31 85.17 6.32 85.65 6.34 85.93 6.35 85.93 6.37 85.93 6.39 85.93 6.37 85.93 6.37 85.93 6.39 85.93 6.39 85.93 6.39 85.93 6.40 85.79 6.41 85.58 6.43 85.17 6.45 84.96 6.47 84.76 6.48 84.62 6.49 84.34 6.51 83.93 6.52 83.93 6.54 83.93 6.55 83.04 6.58 82.83 6.59 82.69 6.60 82.62 6.63 82.00 6.65 81.73 6.66 81.31 6.68 81.25 6.69 80.97 6.75 80.14 6.78 79.59	$\begin{array}{c} 0.00\\ 68.37\\ 97.57\\ 115.34\\ 121.69\\ 134.30\\ 142.09\\ 134.30\\ 142.09\\ 161.04\\ 167.39\\ 167.39\\ 167.32\\ 206.74\\ 219.44\\ 229.59\\ 237.27\\ 239.59\\ 239.22\\ 239.59\\ 239.22\\ 242.29\\ 254.98\\ 265.14\\ 275.29\\ 284.18\\ 303.22\\ 312.11\\ 318.45\\ 326.53\\ 345.84\\ 356.54\\ 379.39\\ 392.08\\ 399.70\\ 404.78\\ \end{array}$	0.00 68.37 97.57 115.34 121.69 134.38 142.00 15.01 167.39 175.01 182.62 187.70 206.74 213.09 219.44 223.24 229.59 237.21 237.25 246.09 252.44 275.29 279.10 284.18 327.34 356.54 370.50 379.39 392.08 399.70 404.78	$\begin{array}{c} 0.00\\ 10.86\\ 15.46\\ 19.21\\ 21.17\\ 223.67\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.21\\ 225.22\\ 225.25\\ 255.2$	$\begin{array}{c} 93.89\\ 104.39\\ 108.84\\ 111.53\\ 112.46\\ 114.35\\ 115.47\\ 118.77\\ 118.77\\ 120.27\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.07\\ 122.06\\ 128.91\\ 129.21\\ 130.92\\ 127.86\\ 128.91\\ 129.21\\ 130.92\\ 127.86\\ 137.31\\ 134.96\\ 137.33\\ 138.41\\ 139.12\\ 142.08\\ 137.33\\ 138.41\\ 139.12\\ 142.08\\ 147.14\\ 142.08\\ 143.42\\ 144.84\\ 145.76\\ 144.84\\ 145.76\\ 144.84\\ 145.76\\ 146.89\\ 147.98\\ $	$13.89 \\ 20.66 \\ 23.67 \\ 25.87 \\ 26.53 \\ 28.43 \\ 29.40 \\ 30.84 \\ 32.34 \\ 33.38 \\ 34.68 \\ 35.98 \\ 36.90 \\ 38.18 \\ 39.28 \\ 40.11 \\ 41.27 \\ 42.56 \\ 43.05 \\ 44.34 \\ 45.53 \\ 46.17 \\ 47.23 \\ 48.23 \\ 48.59 \\ 49.79 \\ 50.53 \\ 51.47 \\ 52.53 \\ 53.06 \\ 53.99 \\ 55.50 \\ 57.19 \\ 58.82 \\ 59.87 \\ 61.20 \\ 62.73 \\ 64.00 \\ 65.01 \\ 66.03 \\ 67.28 \\ 68.28 \\ 69.75 \\ 70.83 \\ 71.50 \\ 72.70 \\ 73.21 \\ \end{array}$	

Page : 2

40)	0.021	12.00	1.19	(4.91	377.10	399.70	55.56	147.61	/2.70
47) (0.652	13.19	7.24	74.77	404.78	404.78	55.94	147.98	73.21
48)	0.677	13.70	7.28	74.49	411.12	411.12	56.48	148.50	74.00
49)	0.701	14.19	7.32	74.15	417.47	417.47	57.03	149.03	74.88
50) (0.727	14.71	7.36	74.08	422.55	422.55	57.38	149 36	75 28
51)	0.752	15.21	7.41	73.87	430.16	430.16	58 07	150 03	76 15
52) (0.803	16.23	7.50	73.39	442.86	442 86	50 06	150.00	77 60
535	0.827	16.73	7.54	73.12	449.21	440 21	50 55	151 46	78 35
54)	0.852	17.24	7.59	72.98	454 28	454 28	50 85	151 76	78 78
55)	0.877	17.73	7.64	72.70	460.63	460 63	60 33	152 22	70.51
56)	0.903	18.25	7.68	72.57	465 71	465 71	60.61	152 /0	70 02
57)	0.927	18.75	7.73	72 02	470 79	470 70	60.00	152.47	90 75
581	0.977	19.76	7.83	71.53	480 94	480.04	61 /3	157 28	81 75
501	1.002	20 27	7 88	71 26	484 75	/8/ 75	41 5Z	157 70	01./J 03 43
577		20.21	1.00	11.20	404113	404.75	01.00	123-20	02.12

Tue Jul 06 09:58:21 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Siesmic Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-66 Test No. : WI-66-8T Tested by : S. Capps Checked by : R. Taraya Test Date : 06/24/04 Sample No. : 8 Top Depth : 24.0 feet Sample Type : Pitcher Elevation : NA Soil Description : Gray fine sandy clay (CL) Remarks : TXCIU Test with Effective Pressure of 13.89 psi : 5.000 (in) : 6.424 (in^2) : 32.121 (in^3) Height Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Area Volume Piston Weight : 0.00 (gm) : Uniform Area Correction Liquid Limit : 26.78 Plastic Limit : 16.67 Specific Gravity : 2.648 INITIAL Height : 5.000 (in) Area : 6.424 (in^2) Void Ratio: 0.47 Saturation: 96.64 % Dry Density : 112.06 (lb/ft^3) Moisture : 17.32 % Time : 0.00 (min) INITIALIZATION : 0.000 (in) : 0.000 (in³) Total Vert. Stress : 93.89 (lb/in² Total Hori. Stress : 93.89 (lb/in² Pore Pressure : 0.00 (lb/in²) : 5.000 (in) dH Height Dry Density : 112.06 (lb/ft^3) Area : 6.424 (in²) Void Ratio: 0.47 d٧ Moisture : 17.32 % Effect.Vert. Stress: 93.89 (lb/in² Effect.Hori. Stress: 93.89 (lb/in² Saturation: 96.64 % : 0.00 (min) Time END OF CONSOLIDATION - A Height : 5.000 (in) Area : 6.424 (in^2) Void Ratio: 0.47 : 0.000 (in) : 0.000 (in³) Total Vert. Stress : 93.89 (lb/in^2 Total Hori. Stress : 93.89 (lb/in^2 dH Dry Density : 112.06 (lb/ft^3) d٧ Moisture : 17.32 % : 0.00 (lb/in^2) Pore Pressure Saturation: 96.64 % Effect.Vert. Stress: 93.89 (lb/in² Effect.Hori. Stress: 93.89 (lb/in² : 0.00 (min) Time END OF SATURATION : 0.000 (in) : 0.000 (in³) : 0.000 (in³) dH : 5.000 (in) Total Vert. Stress : 93.89 (lb/in² Total Hori. Stress : 93.89 (lb/in² Height Dry Density : 112.06 (lb/ft^3) Area : 6.424 (in²) Void Ratio: 0.47 d٧ Moisture : 16.07 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 93.89 (lb/in^2 Effect.Hori. Stress: 93.89 (lb/in^2 dVCorr Saturation: 89.68 % Time : 0.00 (min) END OF CONSOLIDATION - B Total Vert. Stress : 93.89 (lb/in^2 Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 13.89 (lb/in^2 Effect.Hori. Stress: 13.89 (lb/in^2 : 4.944 (in) : 6.281 (in²) : 0.056 (in) : 1.066 (in³) Dry Density : 115.91 (lb/ft^3) Moisture : 16.07 % dH Height d٧ Area Void Ratio: 0.43 Saturation: 99.99 % Time : 0.00 (min) FAILURE DURING SHEAR dH : 1.002 (in) Height : 3.998 (in) Dry Density : 115.91 (lb/ft^3) Total Vert. Stress : 155.42 (lb/in^ dV : 1.066 (in/3) Area : 7.878 (i Strain : 20.27 % Void Ratio: 0.43 Strength: 30.77 (lb/in^2)Saturation: 99.99 % Time : 1170.80 (min) Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 71.26 (lb/in^2 Effect.Vert. Stress: 84.16 (lb/in^2 : 7.878 (in[^]2) : 16.07 % Moisture Effect.Hori. Stress: 22.63 (lb/in^2 END OF TEST dH : 1.002 (in) dV : 1.066 (in³) Strain : 20.27 % : 3.998 (in) Height Dry Density : 115.91 (lb/ft^3) Total Vert. Stress : 155.42 (lb/in' : 7.878 (in²) Area Moisture : 16.07 % Total Hori. Stress : 93.89 (lb/in^2 Pore Pressure : 71.26 (lb/in^2 Effect.Vert. Stress: 84.16 (lb/in^2 Void Ratio: 0.43 Saturation: 99.99 % : 1170.80 (min) Time Effect.Hori. Stress: 22.63 (lb/in^2

Page: 4

· · ·

· · ·

.

LL 28.13	PL 17.19	PI 10.94	GS 2.65	TYPE OF SPECIMEN F	TYPE OF SPECIMEN Pitcher TYPE OF TEST CU (R)						
REMARKS:				PROJECT Chabot D	PROJECT Chabot Dam Seismic						
1) TXCIU Test	with Effective	Pressure of 27.	.78 psi	PROJECT NO.26814536	ì						
				BORING NO. WI-66	SAMPLE NO.	8 Bottom					
				TECH. S. Copps	DEPTH/ELEV	24.0 feet					
				LABORATORY	DATE	06/24/04					
				TRIAXIAL COMPRESSION TEST REPORT							

Tue 07-06-:4, 09:52:04

LL 28.13	PL 17.19	PI 10.94	GS 2.65	TYPE OF SPECIMEN	Pitcher	TYPE OF TEST	CU (R)				
REMARKS:				PROJECT Chabot D	PROJECT Chabot Dam Seismic						
1) TXCIU Tes	t with Effective	Pressure of 27	7.78 psi	PROJECT NO.2681453	6						
				BORING NO. WI-66	SAMPLE NO.	8 Bottom					
				TECH. S. Copps	DEPTH/ELEV	24.0 feet	· · · · · · · · · · · · · · · · · · ·				
				LABORATORY	DATE	06/24/04					
					TRIAXI	L COMPRESSIO	N TEST REPO	RT			

Tue 07-06-:4, 09:51:27

Tue Jul 06 09:52:35 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Cha Project No. : Boring No. : Sample No. : Sample Type : Soil Descript Remarks : TX(abot Dam Sei : 26814536 WI-66 8 Bottom : Pitcher tion : Gray CIU Test wit	clayey sand ch Effective	Location : San leand Test No. : WI-66-8B Test Date : 06/24/04 Depth : 24.0 feet Elevation : NA with gravel (SC) Pressure of 27.78 ps	iro, CA	Tested by Checked b	/:S.C by:R.	apps Taraya	
Height Area Volume	: 5.945 (in : 6.424 (in : 38.192 (i	n^2) F n^3) F	Piston Diameter : 0.0 Piston Friction : 0.0 Piston Weight : 0.0	00 (in) 0 (lb) 0 (gm)	Filter Cor Membrane (Area Corre	rrection Correction ection	: 0.00 (on : 0.00 (: Uniform	b/in^2) b/in)
VERTICAL STRAIN (%)	TOTAL VERTICAL STRESS (lb/in^2)	TOTAL HORIZONTAL STRESS (lb/in^2)	EXCESS PORE A PRESSURE PARAMETER (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)	EFFECTIVE HORIZONTAL STRESS OB (lb/in^2)	BLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 107.78\\ 125.24\\ 130.25\\ 133.67\\ 135.74\\ 136.91\\ 138.18\\ 139.56\\ 140.61\\ 141.64\\ 142.23\\ 143.04\\ 1443.85\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 1445.70\\ 145.70\\ 145.70\\ 145.70\\ 145.70\\ 145.70\\ 145.50\\ 151.55\\ 151.99\\ 152.36\\ 153.20\\ 155.52\\ 156.35\\ 156.35\\ 156.35\\ 157.88\\ 159.07\\ 159.66\\ 161.24\\ 162.83\\ 161.24\\ 162.84\\ 162.$	107.78 107.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.78 37.06 38.95 40.67 41.96 42.91 43.98 45.28 46.40 47.51 48.24 49.12 53.29 54.20 55.58 56.06 61.30 61.99 62.63 64.97 71.77 74.06 69.95 70.87 77.74 75.28 77.76 75.28 77.77 74.06 77.77 74.06 77.77 74.06 77.77 74.06 77.77 74.20 75.27 77.77 74.20 75.28 77.77 74.20 77.777	27.78 19.60 16.48 14.78 14.00 13.79 13.57 13.57 13.57 13.64 14.21 14.35 14.07 14.25 14.78 14.92 15.63 15.28 15.63 15.64 15.28 15.63 15.63 15.64 15.28 15.63 15.63 15.64 15.28 15.63 15.63 16.77 16.91 17.76 18.67 19.60 19.897 20.608 21.230 21.87 21.87 22.23	1.0096550145528046990223345566556666676666653333333333333333333	27.78 28.33 27.72 27.98 28.35 29.39 31.09 31.49 32.65 29.39 31.49 32.65 33.44.14 34.93 35.80 36.84 37.51 37.95 38.73 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.39 39.45 37.57 38.377 39.577 27.28 31.49 3	0.00 8.73 11.23 12.94 13.98 14.50 15.29 16.41 16.93 17.63 18.64 19.64 19.64 19.64 19.87 20.38 21.00 21.39 22.57 316 22.25 23.65 24.55 25.94 26.23 27.52 26.23 27.52 28.55 26.23 27.52 28.55 26.23 27.55 28.55 26.23 27.55 27.55 28.55 28.55 25.2

Page: 1

47) 48) 50) 52) 52) 53) 55) 55) 55) 55) 55) 55) 55)	13.16 13.68 14.18 14.69 15.19 16.20 16.70 17.21 17.71 18.22 18.74 19.74 20.24	164.83 165.26 165.89 166.60 167.22 168.11 168.69 169.15 169.71 170.06 170.50 171.44 171.67	107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78 107.78	5.55 5.19 4.91 4.27 3.77 3.49 3.28 3.14 2.85 2.50 2.00 1.86	0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.03	79.27 80.07 80.98 82.04 82.94 84.33 85.19 85.87 86.57 87.21 87.99 89.44 89.81	22.23 22.58 22.87 23.22 23.50 24.00 24.29 24.50 24.64 24.92 25.28 25.77 25.92	3.57 3.55 3.55 3.53 3.53 3.51 3.51 3.51 3.51	50.75 51.32 51.92 52.63 53.22 54.17 54.74 55.18 55.61 56.06 56.64 57.61 57.86	28.52 28.74 29.06 29.41 29.72 30.45 30.69 30.97 31.14 31.36 31.83 31.94
---	---	--	--	--	--	---	---	--	---	--

Tue Jul 06 09:52:35 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Project No. : 26814536 Boring No. : WI-66 Sample No. : 8 Bottom Sample Type : Pitcher Soil Description : Gray clayey sand Remarks : TXCIU Test with Effective	Location : San leandro, CA Test No. : WI-66-8B Test Date : 06/24/04 Depth : 24.0 feet Elevation : NA With gravel (SC) Pressure of 27 78 psi	Tested by : S. Capps Checked by : R. Taraya
--	---	--

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Height Area Voluma	: 5.94 : 6.42 : 38.1	65 (in) 24 (in^2) 192 (in^3)	Piston Piston Piston	Diameter : Friction : Weight :	0.000 (in) 0.00 (lb) 0.00 (gm)	Filte Membr Area	er Correction ane Correcti Correction	: 0.00 (lb/in^2) on : 0.00 (lb/in) : Uniform
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C IN	VERTICA CHANGE STRAIN I LENGTH (in) (%)	NL I CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
43) 0.656 11.16 7.08 86.90 397.88 397.88 56.17 162.24 75.34 44) 0.686 11.66 7.12 86.55 404.46 404.46 56.77 162.83 76.28 45) 0.716 12.16 7.16 86.19 409.58 409.58 57.16 163.21 77.01 46) 0.745 12.66 7.21 85.91 419.08 419.08 58.16 164.17 78.26	123456789011234567890123456789012345678901233456789000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.29 6.33 6.335 6.335 6.441 6.445 6.446 6.445 6.445 6.445 6.445 6.445 6.445 6.445 6.445 6.445 6.445 6.446 6.445 6.446 6.446 6.446 6.447 7.446 7.447 7.	80.00 88.18 91.30 93.78 93.99 94.21 94.28 94.28	$\begin{array}{c} 0.00\\ 113.59\\ 146.48\\ 169.13\\ 183.02\\ 191.06\\ 209.83\\ 216.64\\ 223.95\\ 228.33\\ 240.02\\ 245.87\\ 249.52\\ 253.91\\ 264.14\\ 267.80\\ 275.85\\ 285.34\\ 267.80\\ 275.85\\ 285.34\\ 291.57\\ 306.53\\ 310.91\\ 321.15\\ 329.361\\ 347.46\\ 355.49\\ 367.19\\ 373.051\\ 388.38\\ 404.46\\ 409.58\\ 419.08\\ \end{array}$	$\begin{array}{c} 0.00\\ 113.59\\ 146.48\\ 169.13\\ 183.02\\ 191.06\\ 199.83\\ 209.33\\ 216.64\\ 223.95\\ 228.33\\ 234.18\\ 240.02\\ 245.87\\ 249.52\\ 253.91\\ 259.76\\ 264.14\\ 267.88\\ 272.18\\ 275.83\\ 280.95\\ 285.34\\ 281.91\\ 295.57\\ 299.95\\ 303.61\\ 314.57\\ 321.15\\ 329.19\\ 334.30\\ 347.46\\ 355.49\\ 367.19\\ 373.03\\ 379.61\\ 388.88\\ 409.58\\ 419.08\\ \end{array}$	$\begin{array}{c} 0.00\\ 18.01\\ 23.17\\ 26.70\\ 28.84\\ 30.04\\ 31.36\\ 32.88\\ 34.92\\ 35.51\\ 37.20\\ 38.51\\ 39.91\\ 40.97\\ 42.73\\ 38.51\\ 39.51\\ 997\\ 42.73\\ 16.29\\ 44.58\\ 45.93\\ 99.91\\ 44.58\\ 45.93\\ 99.51\\ 52.90\\ 51.67\\ 52.90\\ 53.51\\ 55.55\\ 55.55\\ 56.77\\ 57.16\\ 58.16\end{array}$	107.78 125.24 130.25 133.67 135.74 136.91 138.18 139.66 141.64 142.23 144.65 144.65 145.70 146.49 147.06 147.06 147.05 148.54 149.77 150.15 151.05 151.59 152.31 152.35 155.59 1	27.78 37.06 38.95 40.67 41.96 42.91 43.98 45.28 46.40 47.51 48.24 49.12 50.14 51.08 51.70 52.42 53.49 54.20 54.80 55.58 56.18 57.06 57.83 58.24 58.90 59.56 60.25 60.83 61.30 61.99 62.63 63.66 64.97 65.78 67.04 67.86 69.13 69.95 70.89 71.77 72.73 74.06 75.34 77.01 78.26

Page : 2

×

49) 52) 52) 553) 557) 557) 557) 557) 559)	0.805 0.834 0.865 0.894 0.953 0.983 1.013 1.042 1.072 1.102 1.102 1.161 1.191	13.68 14.18 14.69 15.19 16.20 16.70 17.21 17.71 18.22 18.74 19.74 20.24	7.29 7.33 7.42 7.51 7.56 7.60 7.65 7.70 7.74 7.84 7.89	85.20 84.91 84.56 84.28 83.78 83.49 83.28 83.14 82.86 82.50 82.01 81.86	432.23 439.54 447.58 454.89 467.31 474.62 481.20 488.51 494.35 500.93 514.82 519.93	432.23 439.54 447.58 454.89 467.31 474.62 481.20 488.51 494.35 500.93 514.82 519.93	59.29 59.94 60.67 61.30 62.23 62.82 63.30 63.87 64.24 64.68 65.66 65.89	165.26 165.89 166.60 167.22 168.11 168.69 169.15 169.71 170.06 170.50 171.44 171.67	80.07 80.98 82.04 82.94 84.33 85.19 85.87 86.57 87.21 87.99 89.44 89.81	

Tue Jul 06 09:52:35 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Location : San leandro, CA Project No. : 26814536 Test No. : WI-66-8B Boring No. : WI-66 Test Date : 06/24/04 Tested by : S. Capps Sample No. : 8 Bottom Sample Type : Pitcher Depth : 24.0 feet Checked by : R. Taraya Elevation : NA Soil Description : Gray clayey sand with gravel (SC) Remarks : TXCIU Test with Effective Pressure of 27.78 psi Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Filter Correction : 0.00 (lb/in²) Membrane Correction : 0.00 (lb/in) Height Area Volume Piston Weight : 0.00 (gm) Area Correction : Uniform Liquid Limit : 28.13 Plastic Limit : 17.19 Specific Gravity: 2.648 INITIAL Height : 5.945 (in) Dry Density : 122.36 (lb/ft^3) Area : 6.424 (in^2) Void Ratio: 0.35 Area Moisture : 12.50 % Saturation: 94.45 % : 0.00 (min) Time INITIALIZATION : 0.000 (in) : 5.945 (in) Total Vert. Stress : 107.78 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ dH Height Dry Density : 122.36 (lb/ft^3) Area : 6.424 (in^2) Void Ratio: 0.35 dV : 0.000 (in^3) Moisture : 12.50 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ Saturation: 94.45 % Time : 0.00 (min) END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in³) Height : 5.945 (in) Area : 6.424 (in^2) Void Ratio: 0.35 Dry Density : 122.36 (lb/ft^3) Total Vert. Stress : 107.78 (lb/in^ Moisture : 12.50 % Total Hori. Stress : 107.78 (lb/in^ dH d٧ Pore Pressure : 0.00 (lb/in²) Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ Saturation: 94.45 % Time : 0.00 (min) END OF SATURATION dH : 0.000 (in) dV : 0.000 (in³) dVCorr : 0.000 (in³) Dry Density : 122.36 (lb/ft^3) : 5.945 (in) Height Total Vert. Stress : 107.78 (lb/in Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 107.78 (lb/in^ Effect.Hori. Stress: 107.78 (lb/in^ Area : 6.424 (in²) Void Ratio: 0.35 : 11.67 % Moisture Saturation: 88.20 % Time : 0.00 (min) END OF CONSOLIDATION - B Height : 5.884 (in) Area : 6.293 (in²) Void Ratio: 0.31 : 0.061 (in) : 1.163 (in³) dH Dry Density : 126.20 (lb/ft^3) Total Vert. Stress : 107.78 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 80.00 (lb/in^2 Effect.Vert. Stress: 27.78 (lb/in^2 d٧ Moisture : 11.67 % Saturation: 99.93 % Time : 0.00 (min) Effect.Hori. Stress: 27.78 (lb/in^2 FAILURE DURING SHEAR dH : 1.191 (in) Height : 4.754 (i dV : 1.163 (in³) Area : 7.890 (i Strain : 20.24 % Void Ratio: 0.31 Strength: 32.95 (lb/in²)Saturation: 99.93 % Time : 1392.17 (min) Total Vert. Stress : 173.67 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 81.86 (lb/in^2 Effect.Vert. Stress: 91.81 (lb/in^2 Effect.Hori. Stress: 25.92 (lb/in^2 : 4.754 (in) Dry Density : 126.20 (lb/ft^3) Area : 7.890 (in²) Void Ratio: 0.31 Moisture : 11.67 % END OF TEST dH : 1.191 (in) dV : 1.163 (in³) Strain : 20.24 % Total Vert. Stress : 173.67 (lb/in^ Total Hori. Stress : 107.78 (lb/in^ Pore Pressure : 81.86 (lb/in^2 Effect.Vert. Stress: 91.81 (lb/in^2 Effect.Hori. Stress: 25.92 (lb/in^2 : 4.754 (in) : 7.890 (in²) Height Dry Density : 126.20 (lb/ft^3) Moisture Area : 11.67 % Void Ratio: 0.31 Saturation: 99.93 % Time : 1392.17 (min)

Page: 4

LL 37.10	PL 18.26	PI 18.84	GS 2.66	TYPE OF SPECIMEN	Pitcher	TYPE OF TEST	CU (R)		• ·····		
REMARKS:			PROJECT Chabot D	PROJECT Chabot Dam Seismic							
1) TXCIU Tes	st with Effective	Pressure of 55	5.56 psi	PROJECT NO.26814534	ô		<u>.</u>				
				BORING NO. WI-67	SAMPLE NO.	6A Bottom	· · · · · · · · · · · · · · · · · · ·	1	<u> </u>		
				TECH. S. Capps	DEPTH/ELEV	19.5-21.0					
				LABORATORY	DATE	06/24/04		1			
					TRIAXI	L COMPRESSIO	N TEST REP(ORT	lin		

Tue 07-06-:4, TU:19:56

.

LL 37.10	PL 18.26	PI 18.84	GS 2.66	TYPE OF SPECIMEN F	Pitcher	TYPE OF TEST	CU (R)	****	<u></u>			
REMARKS:				PROJECT Chabot D	PROJECT Chabot Dam Seismic							
1) TXCIU Tes	t with Effective	Pressure of 55	5.56 psi	PROJECT NO.26814534	6							
				BORING NO. WI-67	SAMPLE NO.	6A Bottom						
				TECH. S. Copps	DEPTH/ELEV	19.5-21.0						
				LABORATORY	DATE	06/24/04						
					TRIAXI	L COMPRESSION	N TEST REP	DRT				

Tue 07-06-:4, 10:20:36

Tue Jul 06 10:19:25 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

-

Project : Ch Project No. Boring No. Sample No. Sample Type Soil Descrip Remarks : Type	habot Dam S : 26814536 : WI-67 : 6A Bottom : Pitcher ption : Gra KCIU Test w	Seismic n ay fine sandy with Effectiv	Location : San Test No. : WI- Test Date : 06, Depth : 19.5-2 Elevation : NA silty clay with Pressure of 55.	Leandro, CA 57-6A /24/04 1.0 gravel (CL) .56 psi	Tested by : S. Capps Checked by : R. Taraya
Height Area Volume	: 5.945 (: 6.424 (: 38.192	(in) (in^2) (in^3)	Piston Diameter Piston Friction Piston Weight	: 0.000 (in) : 0.00 (lb) : 0.00 (gm)	Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Correction : Uniform
	TOTAL	TOTAL	EVCECC	EFFECTIVE	EEEEATINE

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		VERTICAL STRAIN (%)	VERTICAL STRESS (lb/in^2)	HORIZONTAL STRESS (lb/in^2)	PORE PRESSURE (lb/in^2)	A PARAMETER	VERTICAL STRESS (lb/in^2)	HORIZONTAL STRESS (lb/in^2)	OBLIQUITY	EFFECTIVE p (lb/in^2)	q (lb/in^2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12345678901123456789012345678901234567890123456789012345678901234555555555555555555555555555555555555	VERTICAL STRAIN (%)) 0.00) 0.27) 0.48) 0.00) 0.27) 0.48) 0.00) 1.29) 1.49) 1.49) 1.49) 1.49) 1.49) 1.49) 1.49) 1.29 2.30 1.29 2.33 3.57 3.57 5.55 5.75 6.57 8.80 0.22 2.77 7.20 0.42 2.77 7.78 9.42 2.77 7.78 9.00 10.27 2.30 10.27 2.30 1.29 2.30 1.29 2.30 2.30 1.29 2.30 2.30 2.30 2.30 3.57 5.55 5.55 5.75 6.57 8.80 9.42 2.77 7.88 8.00 2.27 11.75 6.57 8.80 9.42 2.77 7.78 9.00 11.29 2.30 10.27 2.30 1.29 2.30 1.29 2.30 3.57 5.55 5.55 5.75 6.57 8.80 9.42 2.77 7.78 9.00 11.29 2.27 2.31 2.27 7.77 8.80 0.12 9.12 2.77 7.78 9.00 10.27 11.29 10.22 2.77 7.78 9.00 10.27 11.20 11.29 10.22 2.77 7.78 9.00 10.27 11.20 9.12 2.77 7.78 9.00 10.27 11.22 2.77 7.78 9.00 10.23 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 8.80 10.77 11.22 7.77 7.78 9.00 11.22 7.77 7.78 9.00 11.22 7.77 7.77 7.77 7.77 7.77 7.77 7.7	VERTICAL STRESS (lb/in^2) 135.56 149.55 154.16 156.43 157.78 158.65 159.94 160.80 160.75 161.15 161.55 162.35 162.63 163.24 163.30 163.24 163.30 163.57 163.51 163.51 163.51 163.57 163.71 163.83 163.77 163.71 163.83 163.71 163.83 163.71 163.83 163.71 163.63 163.24 163.63 163.63 163.63 163.63 163.63 163.24 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.24 163.63 163.63 163.63 163.63 163.63 163.63 163.63 163.24 163.63 163.24 163.24 163.24 163.24 163.24 163.22 163.24 163.22 163.	HOR IZONTAL STRESS (lb/in^2) 135.56	PORES PORE (lb/in 0.00 9.70 16.29 224.78 225.49 224.78 227.67 311.36 322.67 331.36 332.67 333.32.67 333.32.67 333.33 34.27 34.35 34.96 35.34 35.34 35.34 35.34 35.34 35.35 35.50 35.50 35.50 35.50 35.50	A PARAMETER 0.00 0.69 0.88 0.94 1.01 1.07 1.09 1.14 1.15 1.20 1.22 1.23 1.23 1.23 1.23 1.23 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.26 1.28 1.29 1.29 1.29 1.29 1.29 1.22 1.22 1.22	VERTICAL STRESS (lb/in ²) 55.56 59.85 57.88 55.29 53.45 55.29 53.45 55.29 53.45 50.71 50.42 50.59 50.164 50.03 49.24 49.03 49.24 49.03 48.89 48.61 48.93 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 48.56 48.74 47.51 47.50 47.51 47.50 47.51 47.50 47.51	Errective Horizontal STRESS (1b/in^2) 55.56 45.86 39.28 35.91 33.08 29.48 27.87 26.65 26.19 25.12 24.43 24.20 23.36 20.22 21.90 21.21 20.98 20.76 20.76 20.76 20.76 20.76 20.22 20.30 20.22 20.30 20.22 20.30 20.22 20.30 20.22 20.30 20.22 20.30 20.22 20.30 20.3	OBLIQUITY 1.00 1.31 1.47 1.58 1.67 1.75 1.87 1.95 2.02 2.09 2.17 2.22 2.30 2.32 2.33 2	EFFECTIVE p (lb/in^2) 55.56 52.85 48.58 46.35 44.19 42.33 41.46 40.06 39.27 38.78 37.43 36.75 36.46 35.53 35.64 35.53 35.34 35.55 34.80 34.77 34.67 34.67 34.45 34.48 34.77 34.45 34.48 34.37 34.48 34.38 34.88 34.83 34.83 34.88 33.88 33.88 33.88 34.88 33.88 34.88 33.88 33.88 34.88 33.88 33.88 34.88 33.88 34.88 33.88 33.88 33.88 33.88 33.88 34.88 33.88	q (lb/in^2) 0.00 7.00 9.30 10.44 11.11 11.55 11.98 12.19 12.62 12.59 12.80 13.00 13.30 13.37 13.56 13.73 13.90 13.87 13.81 14.07 14.17 14.23 14.17 14.20 14.17 14.20 14.14 14.20 14.14 14.20 14.14 14.05 13.89 13.89 14.03 13.88 13.72 13.84 13.72 13.84 13.72 13.84 13.72 13.84 13.72 13.84 13.72 13.84 13.72

Page: 1

Tue Jul 06 10:19:25 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam SeismicLocation : San Leandro, CAProject No. : 26814536Test No. : WI-67-6ABoring No. : WI-67Test Date : 06/24/04Sample No. : 6A BottomDepth : 19.5-21.0Sample Type : PitcherElevation : NASoil Description : Gray fine sandy silty clay with gravel (CL)Remarks : TXCIU Test with Effective Pressure of 55.56 psiHeight: 5.945 (in)Piston Diameter : 0.000 (in)Filter Correction : 0.00 (lb/in^2)Area: 6.424 (in^2)Piston Friction : 0.00 (lb)Volume: 38.192 (in^3)Piston Weight : 0.00 (gm)

Volume	: 38.19	2 (in^3)	Piston	Weight :	0.00 (gm)	Area	Correction	: Uniform
CHANGE IN LENG (in)	VERTICAL STRAIN TH (%)	CORR. AREA (in^2)	PORE PRESSURE (lb/in^2)	DEV. LOAD (lb)	CORR. DEV. LOAD (lb)	DEV. STRESS (lb/in^2)	TOTAL VERTICAL STRESS (lb/in^2)	EFFECTIVE VERTICAL STRESS (lb/in^2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.27 0.48 0.69 1.29 1.49 1.69 1.29 1.49 1.20 2.51 2.71 2.51 2.51 2.55 5.75 6.57 8.60 9.42 2.51 5.55 5.766 7.79 8.60 9.42 2.23 10.74 1.29 1.29 1.29 1.49 1.29 1.49 1.29 1.49 1.29 1.49 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.2	6.2245788900233467800142445688912335667900236692258144700371	80.00 89.70 96.28 99.65 102.48 104.78 106.08 107.69 108.91 109.37 110.44 111.13 111.36 112.20 112.66 113.35 113.66 113.73 114.12 114.27 114.58 114.73 114.58 114.73 114.80 115.34 115.34 115.34 115.34 115.34 115.34 115.34 115.34 115.42 15	0.00 91.59 121.99 137.19 146.31 152.39 158.47 161.51 167.59 170.63 173.67 176.71 179.75 182.79 182.79 185.83 191.92 191.92 194.96 194.96 198.00 198.00 198.00 201.04 201.0	0.00 91.59 121.99 137.19 146.31 152.39 158.47 161.51 167.59 173.67 176.71 179.75 182.79 185.83 185.92 194.96 194.96 194.00 201.04 201.04 201.04 201.04 201.04 201.04 201.04 201.04 201.04 204.08 204.08 204.08 204.08 204.08 205.00	0.00 14.68 19.51 21.90 23.31 24.22 25.14 25.57 26.48 26.42 26.42 26.42 26.42 26.42 26.42 26.42 26.42 27.27 27.69 28.10 28.05 28.40 28.05 28.40 28.05 28.40 28.97 29.03 29.03 29.38 29.31 29.72 29.53 29.66 29.53 29.60 29.53 29.53 29.20 29.53 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.40 29.53 29.53 29.40 29.53 29.54 29.53 29.54 29.53 29.54 29.53 29.54 29.55 29.54 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 2	$\begin{array}{c} 135.56\\ 149.55\\ 154.16\\ 156.43\\ 157.78\\ 158.65\\ 159.53\\ 159.94\\ 160.80\\ 160.75\\ 161.15\\ 161.55\\ 161.55\\ 161.25\\ 162.30\\ 162.63\\ 163.03\\ 162.69\\ 162.63\\ 163.30\\ 163.30\\ 163.24\\ 163.30\\ 163.57\\ 163.51\\ 163.89\\ 163.71\\ 164.08\\ 164.02\\ 163.90\\ 163.90\\ 163.83\\ 163.71\\ 163.63\\ 163.63\\ 163.33\\ 163.71\\ 163.58\\ 163.63\\ 163.33\\ 163.71\\ 163.58\\ 163.63\\ 163.33\\ 163.71\\ 163.58\\ 163.63\\ 163.33\\$	55.56 59.85 57.88 56.78 55.29 53.87 53.45 52.25 51.89 51.38 50.72 50.59 50.15 49.64 50.03 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 49.24 48.61 48.56 48.52 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.82 57.52
45) 0.717 46) 0.747 47) 0.777	12.26 12.77 13.27	7.09 7.13 7.18	115.26 115.57 115.57	204.08 204.08 207.12 207.12	204.08 204.08 207.12 207.12	28.77 28.77 29.03 28.87	162.99 163.24 163.08	47.00 47.73 47.67 47.51

Page: 2

48)	0.806	13.78	7.22	115.42	207.12	207.12	28.70	162.92	47.50
49)	0.836	14.29	7.26	115.49	210.16	210.16	28.95	163.16	47.66
50)	0.866	14.80	7.30	115.03	210.16	210.16	28.77	162.99	47.96
51)	0.896	15.32	7.35	115.49	213.20	213.20	29.01	163.22	47.73
52)	0.955	16.32	7.44	115.34	216.24	216.24	29.08	163.28	47 94
53)	0.985	16.84	7.48	115.49	216.24	216.24	28.90	163 11	47 62
54)	1.015	17.34	7.53	115.49	216.24	216.24	28.72	162.94	47.45
55)	1.044	17.85	7.57	115.57	219.28	219.28	28.95	163 16	47 50
56)	1.074	18.36	7.62	115.57	219.28	210 28	28 77	162 00	47 42
57)	1.104	18.86	7.67	115.49	222 32	222 32	28 00	163 10	47 70
585	1.163	19.88	7.77	115 42	225 36	225 36	20.02	163.17	47.70
505	1 103	20 30	7 82	115 42	225 36	225 36	29.02	147 04	47.00
		20137		112176	227.30	223.30	20.05	103.04	47.05

Tue Jul 06 10:19:25 2004

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Project : Chabot Dam Seismic Location : San Leandro, CA Project No. : 26814536 Boring No. : WI-67 Sample No. : 6A Bottom Test No. : WI-67-6A Test Date : 06/24/04 Depth : 19.5-21.0 Tested by : S. Capps Checked by : R. Taraya Sample Type : Pitcher Elevation : NA Soil Description : Gray fine sandy silty clay with gravel (CL) Remarks : TXCIU Test with Effective Pressure of 55.56 psi : 5.945 (in) : 6.424 (in²) : 38.192 (in³) Height Piston Diameter : 0.000 (in) Filter Correction : 0.00 (lb/in^2) Membrane Correction : 0.00 (lb/in) Area Piston Friction : 0.00 (lb) Volume Piston Weight : 0.00 (gm) Area Correction : Uniform Liquid Limit : 37.1 Plastic Limit : 18.26 Specific Gravity : 2.655 INITIAL Height : 5.945 (in) Area : 6.424 (in²) Void Ratio: 0.78 Dry Density : 92.82 (lb/ft^3) : 28.58 % Moisture Saturation: 96.67 % Time : 0.00 (min) INITIALIZATION : 0.000 (in) : 5.945 (in) Dry Density : 92.82 (lb/ft^3) dH Height Total Vert. Stress : 135.56 (lb/in Area : 6.424 (in²) Void Ratio: 0.78 d٧ : 0.000 (in^3) : 28.58 % Moisture Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ Saturation: 96.67 % : 0.00 (min) Time END OF CONSOLIDATION - A : 0.000 (in) : 0.000 (in³) Height : 5.945 (in) Area : 6.424 (in^2) Void Ratio: 0.78 dH Dry Density : 92.82 (lb/ft^3) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ d٧ Moisture : 28.58 % Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ Saturation: 96.67 % Time : 0.00 (min) END OF SATURATION dH : 0.000 (in) dV : 0.000 (in^3) dVCorr : 0.000 (in^3) Dry Density : 92.82 (lb/ft^3) Moisture : 26.41 % : 5.945 (in) Height Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Area : 6.424 (in²) Void Ratio: 0.78 Pore Pressure : 0.00 (lb/in^2) Effect.Vert. Stress: 135.56 (lb/in^ Effect.Hori. Stress: 135.56 (lb/in^ Saturation: 89.35 % : 0.00 (min) Time END OF CONSOLIDATION - B : 0.094 (in) : 1.783 (in³) : 5.851 (in) : 6.223 (in²) Total Vert. Stress : 135.56 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 80.00 (lb/in^2 dH Height Dry Density : 97.37 (lb/ft^3) d٧ Агеа Moisture : 26.41 % Void Ratio: 0.70 Saturation: 99.96 % Effect.Vert. Stress: 55.56 (lb/in^2 Effect.Hori. Stress: 55.56 (lb/in^2 : 0.00 (min) Time FAILURE DURING SHEAR Height : 5.537 (in) Area : 6.690 (in²) Void Ratio: 0.70 : 0.408 (in) : 1.783 (in³) dH Dry Density : 97.37 (lb/ft^3) Total Vert. Stress : 165.61 (lb/in[^] Total Hori. Stress : 135.56 (lb/in^ Pore Pressure : 114.96 (lb/in^ Effect.Vert. Stress: 50.65 (lb/in^2 Effect.Hori. Stress: 20.60 (lb/in^2 đ٧ Moisture : 26.41 % Strain : 6.98 % Void Ratio: 0.70 Strength: 15.03 (lb/in^2)Saturation: 99.96 % Time : 483.15 (min) END OF TEST : 1.193 (in) : 1.783 (in³) : 4.752 (in) : 7.817 (in²) dH Height Dry Density : 97.37 (lb/ft^3) Total Vert. Stress : 164.39 (lb/in^ Total Hori. Stress : 135.56 (lb/in^ d٧ Area : 26.41 % Moisture Void Ratio: 0.70 Saturation: 99.96 % Pore Pressure : 115.42 (lb/in^ Effect.Vert. Stress: 48.97 (lb/in^2 Effect.Hori. Stress: 20.14 (lb/in^2 Strain : 20.39 % : 1415.87 (min) Time

Page: 4

.

Appendix G Site Geology

John Wakabayashi, Ph.D., R.G. 1329 Sheridan Lane Hayward, CA 94544-4332 ph: (510) 887-1796 fax: (510) 887-2389 email: wako@tdl.com http://www.tdl.com/~wako 25 March, 2004

Lelio Mejia, Ph.D., P.E. Prinicipal and Vice President URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612

Dear Dr. Mejia,

The following memorandum is a description of the site geology at Lake Chabot Dam.

Please contact me if you have any questions.

Mac Sincerely,

John Wakabayashi

SITE GEOLOGY, LAKE CHABOT DAM

<u>General</u>

Lake Chabot dam is situated in a narrow canyon incised by San Leandro Creek. The bedrock at the dam site is composed of the Upper Jurassic Knoxville Formation of the Great Valley Group, and volcanic and intrusive rocks of the Middle-to-Upper Jurassic Coast Range ophiolite. Most of the faults within and between these Mesozoic rocks formed prior to the late Cenozoic and are no longer active (e.g. Wakabayashi and Unruh, 1995; Coleman, 2000, and references therein), but it is difficult to distinguish these older faults from younger, potentially active structures on the basis of geologic relationships in bedrock alone. This is because most of the older deformation took place under brittle conditions, so the physical appearance and characteristics of the fault zones produced at different times are similar. In addition, there are no stratigraphic overlap relationships or intrusive relationships to constrain the age of faults or shears in the dam site area. Our investigation shows that Quaternary alluvium deposits are found in the stream valley itself, and the largest such deposits in the area are apparently beneath the reservoir or beneath the dam embankment.

The site geology is shown on Figure 1. The bedrock will be described in approximate upstream to downstream order, followed by a description of the Quaternary deposits, and a discussion of faults in the dam site area.

Great Valley Group: Upper Jurassic Knoxville Formation

North and east of the dam are outcrops of the Upper Jurassic Knoxville Formation of the Great Valley Group. This unit may underlie the upstream toe of the dam. Most of the exposures consist of weak and friable shales or siltstones with some interbeds of sandstones or siltstones that are harder and stronger. The freshest sandstones are only moderately hard and strong in outcrops observed in the dam site area. Hard and strong conglomerate crops out below Lake Chabot dam road (about 400 m ESE of the dam), but these conglomerates do not appear in the part of the Knoxville nearest to the dam. The Knoxille Formation is folded and bedding orientations, where observable, vary considerably (Fig. 1).

Coast Range Ophiolite: Jurassic Leona Rhyolite and Major Bounding Contacts

The Jurassic Leona rhyolite of the Coast Range ophiolite crops out in two main bodies in the site area. The two outcrop areas of the Leona rhyolite will be referred to as the northern and southern exposures for purposes of discussion. The northern exposure of the Leona rhyolite comprises both abutments of Lake Chabot Dam and underlies the dam axis. The Leona rhyolite is not a true rhyolite as it is rather low in potassium, so it has been called a "quartz keratophyre" (Bailey et al., 1970; Hopson et al., 1981). This unit was once thought to be Plio-Pleistocene in age, but the work of Bailey et al. (1970) and several subsequent studies demonstrated that this unit was depositionally overlain by the Upper Jurassic Knoxville Formation. The Leona is hard and strong. Outcrop fracture density ranges from widely spaced (30 cm to 1 m) to closely spaced (3 cm to 10 cm), and local faults or shear zones up to several centimeters wide can be observed

in several outcrops. Bedding orientation could not be ascertained in this massive rock.

The contact between the northern Leona rhyolite exposure and the Knoxville Formation north of it (Fig. 1) has been mapped as a fault or "cross fault" (Marliave, 1965). The actual contact is not exposed, however, and there is no evidence to demonstrate that the contact is a fault. The original Jurassic contact of the Knoxville Formation on Leona rhyolite is a depositional one and good exposures of the depositional contact are observed several km north of the dam site (Wakabayashi, 1999). The contact directly north of the dam appears to be folded. The trace of the contact over topography on the peninsula northeast of the dam indicates an average E-W strike and moderate northerly dip, whereas the strike of the contact is clearly more northwesterly west of the reservoir (Fig. 1).

East and southeast of the dam the northern exposure of Leona rhyolite is in contact with Knoxville Formation rocks along its southern border (Fig. 1). The contact is not exposed and it is not clear whether it is a depositional contact, the same contact as the one bounding the rhyolite on the north repeated by folding, or whether the contact is a fault. This contact appears to be truncated by a serpentinite-bearing shear zone east of, or below, the downstream toe of the dam (Fig. 1). This serpentinite-bearing zone appears to locally form the southern boundary of the northern exposure of Leona rhyolite west of the dam (Fig. 1). The shear zone consists of pervasively sheared, friable serpentinite. Locally, the serpentinite encloses lenses of hard strong gabbro up to several meters in size. The best exposure of this shear zone is near the bottom of the cut face north of the spillway and in the cliff to the west, just below the access road to the dam. The location of this shear zone northwest of the dam access road is uncertain as no exposures were seen (Fig. 1). The exposures of the shear zone east of San Leandro Creek are widely scattered and poor. Although serpentinite is found in two places along Lake Chabot Road and on a small peninsula 550 m ESE of the dam (Fig. 1), there is insufficient exposure to determine whether the serpentinite is actually a continuous zone between these outcrops as shown on Figure 1. The serpentinite-bearing zone appears to vary in orientation, so the zone has probably been folded. Where exposed north of the spillway, the serpentinite appears to strike about N55°W and dip about 60° to the northeast, whereas the trace of this unit east of San Leandro Creek suggests a more westerly strike and a southerly dip (Fig. 1).

The southern exposure of the Leona rhyolite is located entirely south and east of the canyon downstream of the dam (Fig. 1). The eastern part of this exposure is bounded to the north by Knoxville Formation along a contact that was not observed in this study. This contact would appear to dip westward based on its trace across topography. The western part of the northern boundary of the southern Leona rhyolite exposure appears to be a fault that locally parallels the axis of the stream valley downstream of the dam (Fig.1).

Coast Range ophiolite: Jurassic basalt.

Jurassic basalt of the Coast Range ophiolite is exposed west of the dam. The best exposures of this unit are along the cut face north of the spillway (Fig. 1). The basalt here is hard, strong, with generally close fracture spacing (3 cm to 10 cm). The basalt can be distinguished from Franciscan basalt on the basis of common patches of epidote, which are common for basalts of the Coast Range ophiolite but lacking in similar basalts of the Franciscan (e.g. Evarts and Schiffmann, 1983; Blake et al. 1988). This unit also includes diabase dikes, and the chilled margins of some of these dikes are visible in the spillway cut. The north and east margin of this unit is in contact with Leona rhyolite. It is likely that this contact is a depositional one with the Leona rhyolite atop the basalt as no obvious shearing along the contact was noted in the good exposure along the spillway cut. The southwestern contact of the basalt unit is the serpentinite shear zone described above. The western margins of the basalt unit and contact geometry are uncertain.

Coast Range ophiolite: Jurassic gabbro

Jurassic gabbro of the Coast Range ophiolite crops out west (downstream) of the dam. This gabbro is generally hard and strong and fracture spacing ranges from widely-spaced to local zones with very close fracture spacing (less than 3 cm). Local zones of sheared gabbro or

serpentinite are present. The gabbro on the north wall of the San Leandro Creek canyon is bounded on its north side by the serpentinite shear zone described above and on the south by a fault that approximately coincides with the stream valley axis (Fig.1).

Quaternary Units: Colluvium and Alluvium

Quaternary units present in the site area include alluvium and colluvium. Colluvium mantles most of the slopes in the area where bedrock outcrops are not seen, but without artificial cuts or data from borings it is difficult to assess its depth, so colluvial deposits are not shown on Figure 1. Alluvium is present in the stream bottom downstream of the major deposits of fill, which include the dam embankment (Fig. 1). This part of the stream bottom is the narrowest part of the canyon. No bedrock exposures were seen in the streambed, so the streambed must consist of alluvium, although the thickness of the alluvium is not known in this area.

Beneath the dam embankment, several borings have encountered alluvium or colluvium, which apparently ranges in composition from gravelly sandy clay to gravelly sand and clayey gravel. The contact between embankment fill and native alluvium and colluvium was noted on the logs of some borings, but these constitute a minority of the borings drilled through the embankment. It is possible to estimate the thickness of alluvium or colluvium, by comparing the 1886 ground surface elevation (shown on EBMUD, 1934, with reference features on the dam that can be tied to later maps) to the elevation at which bedrock was encountered in a boring (with borings located on pre-1980 topography from EBMUD, 1979). If the 1886 surface elevation for the location is higher than the elevation of the top of bedrock, the difference between the two elevations may be native alluvium or colluvium. For some borings, such as WI-26, the interpreted top of bedrock appears to be actually higher, within uncertainty, than the 1886 topography. This probably results from inaccuracy in the 1886 topography and errors resulting from mis-registering the boring locations on the older topography. The uncertainty in estimating alluvium and colluvium thickness by this method may be greater than 3m (10 feet). The embankment fill was apparently placed largely on the original ground surface except for the core trench, which was excavated into bedrock (reviewed in Lessman, 2002). Outside of this core trench area, data from borings indicates an irregular distribution of native alluvium and colluvium beneath the embankment ranging in thickness from 0 to 11 m (0 to 37 feet). Most of the alluvial and/or colluvial deposits encountered in borings appear to be 4.5 m (15 feet) in thickness or less. There does not appear to be a continuous sheet of native deposits beneath the embankment (exclusive of the core trench), as some boreholes may have encountered only fill over bedrock (WI-12, WI-34, WI-36, WI-37)¹. The boring that appears to record the greatest thickness of alluvium or colluvium is WI-13, where the difference between the 1886 ground surface and the elevation of the top of bedrock recorded in the boring log is about 11 m (37 feet). This boring is located north of the former channel. The difference in elevation between the original ground surface at the location of the boring and the former channel bottom was about 14 m (45 feet). This may suggest the presence of a buried stream terrace deposit that also may be draped with colluvium.¹

Faults in the Damsite Area

As noted above there are several faulted contacts of bedrock units in the site area as well as some contacts that may be either depositional or tectonic. Faulted Quaternary deposits have not been identified along any of the faults at the site (the Hayward fault is considered outside of the dam site area and is not part of the geology discussed in this memorandum). The various geologic contacts will be discussed in approximate upstream to downstream order, followed by a

¹ See Figure 1 of URS Task A Memorandum dated March 2004 for locations of borings.

discussion of possible fault features that may not coincide with a contact between different bedrock types. Only features that potentially pass beneath part of the dam are discussed.

The contact between the northern exposure of Leona rhyolite and the Knoxville Formation to its north may pass beneath the upstream toe of the dam and it is not clear whether the contact is tectonic or depositional. The contact is folded, so if it is a fault, then it is unlikely to have been active in late Quaternary time. In addition, no geomorphic features suggestive of late Quaternary reactivation of this contact were noted during inspection of air photos or in the field. This contact was trenched and considered inactive by (Thronson, 1966), although the justification for this conclusion is not clear (reviewed by Lessman, 2002). Offset Quaternary soils in the trench were not reported by either Thronson (1966) or Peak (1966), and the trench was located in a swale that is likely to have Quaternary colluvium or alluvium deposits.

The serpentinite shear zone that is exposed in the spillway cut passes beneath the downstream toe of the dam. This fault zone probably formed during the formation of the Coast Range ophiolite near an oceanic spreading center in the Jurassic or during its subsequent Jurassic and Cretaceous history. This fault zone is folded, so it is unlikely to have been reactivated during late Quaternary time. No geomorphic features suggestive of late Quaternary reactivation of this contact were noted in air photos or in the field along this feature.

The fault that locally follows the stream valley axis and separates gabbro from Leona rhyolite may pass beneath the downstream toe of the dam. The exposures of the serpentinite shear zone east and southeast of the dam are not sufficient to determine whether the serpentinite shear zone truncates this fault or whether this fault truncates and offsets the serpentinite shear zone. If the former, then this feature would be offset by what appears to be an inactive fault so it would itself be inactive. If this fault offsets the serpentinite, it is somewhat more difficult to constrain activity on this feature on the basis of surface field relationships alone. The fault must change strike or step over in order not to show up in the downstream part of the spillway cut, so the fault may be folded and thus unlikely to have accommodated late Quaternary movement. Part of the stream valley segment occupied by this fault is fairly linear, but no geomorphic features consistent with late Quaternary fault movement were observed in air photos or in the field along the hypothetical projection of this feature southeast and east of the dam.

The map of active traces of the Hayward fault (Lienkaemper, 1992) shows an eastern splay of the Hayward fault zone that passes through the western wall of a now-inactive quarry south of Lake Chabot dam, and projects northwestward to cross San Leandro Creek about 350 m downstream (west) of the dam (Fig. 1). Our interpretation of air photos, as well as air photo interpretation by URS (2000), identified a lineament marked by a prominent linear sidehill bench and linear drainage corresponding to the southern part of the mapped fault trace of Lienkaemper (1992), but the northernmost part of this lineament appears to trend toward the eastern, rather than western part of the quarry wall before losing geomorphic expression about 150 meters south of the quarry rim. If a fault continued northward along this trend, it might pass beneath Lake Chabot Dam axis at a high angle to the axis, so we will discuss this feature in more detail.

Our field investigation of the quarry shows the likely reason for this apparent discrepancy in

interpretations of the northern part of the lineament. The air photos examined by us and by URS (2000) were taken in 1953 and the topography on the US Geologic Survey 7.5 minute quadrangle we used to record our interpretations was surveyed in 1959. The quarry continued operation until 1986, resulting in considerable topographic modification. By 1986, the rim of the quarry was much further south than in 1953 or 1959, so that the prominent lineament extended to the rim.

Detailed geologic investigations appear to indicate that the fault associated with the lineament indeed bends along its northern reach to a more northwesterly strike as depicted in Lienkaemper (1992). This feature was identified as a bedrock fault in trenches by Terrasearch (1990) and traced through the quarry by exposures on the quarry wall and test pits in the floor of the quarry, although the activity of this fault could not be determined because of the lack of late Quaternary deposits. Detailed mapping of the walls and floor of the quarry was conducted by Berlogar Geotechnical Consultants (BGC) in 1998 (BGC, 1998). Their mapping and test pits showed that the fault formed a sheared contact between Leona rhyolite on the east and basalt on the west. They traced the fault from the top of the western quarry wall and northwestward across the floor of the quarry to Lake Chabot road. They found that the fault was continuous with lineament to the south observed in other studies. The location they mapped for this fault is the same location shown on the Lienkaemper (1992) map. BGC (1998) measured the strike and dip of the fault as N50°W, 85°SW, N54°W, 88°NE, N52°W, 65°NE, and N54°W, 75°NE, respectively, in four test pits. They estimated the dip, averaged over the height of the quarry wall, as 60-70°. The orientation of this shear zone and its location in the western quarry wall coincides with a bedrock shear mapped in reconnaissance by Wakabayashi (1984), who measured the strike and dip of the feature as N60°W, 70°NE. No other shears were noted in the quarry wall or floor by either BGC (1998) or in another geotechnical study of the quarry site by Lowney Associates (1997). Wakabayashi (1984) mapped a "major breccia zone and fault", in the eastern wall of the quarry, one of the only two major faults he saw in the quarry walls, and measured a strike and dip of N55°W, 70°NE for it (the isolated shear symbol in the eastern part of the quarry shown on Fig. 1).

Based on the reviewed information, it appears that the lineament and corresponding bedrock fault coincides with the fault as shown by Lienkaemper (1992) and this fault does not pass beneath Lake Chabot Dam. The fault appears to change strike from approximately N10-20°W south of the quarry to ~N50-55°W within the quarry. An enlarged color air photo (post-1986) on display at the office of the San Leandro Rock Company (owners of the quarry property) shows a vegetation lineament in the quarry wall that diverges eastward from the fault near the rim of the quarry. This lineament may pass through the lower quarry walls near the position that Wakabayashi (1984) mapped the eastern fault. Our field investigation could not find the eastern fault mapped by Wakabayashi (1984) and we did not find a fault in the position of the vegetation lineament. Growth of vegetation and small-scale raveling of the slope have degraded the upper quarry exposures so that structures are not as easy to see as in 1984. The strike and dip of the eastern fault appears incompatible with the trace of the vegetation lineament. The vegetation lineament, if a fault, should have an approximate north-south strike. We conclude that the eastern fault mapped by Wakabayashi (1984) does not connect to the prominent lineament south of the quarry. If projected northwestward, the eastern fault may project beneath the downstream toe of Lake Chabot dam (Fig. 1), although a straight line projection passes slightly west of the toe). No geomorphic features suggestive of late Quaternary faulting were observed along the projection of this feature northwest or southeast of the quarry wall.

Studies of Marliave (1978), WCC (1978) and Weaver (1979) concluded that faults passing beneath the dam are inactive and that any sympathetic movement on these structures during an earthquake on the Hayward would be less than 30 cm. Although our interpretations of the geology at the Lake Chabot dam site from this study differ from previous studies, the conclusions reached by previous studies regarding the potential for movement on structures passing beneath the dam are not significantly changed.

Allen (1966), in his seismic assessment of Lake Chabot Dam, stated that creation of a new fault in an earthquake had never been documented. This statement is still valid after decades of paleoseismic studies conducted following earthquakes. In all cases where fault movement occurred, whether on a seismogenic fault or as sympathetic slip, trenching investigations revealed that such faults had experienced prior movement in the late Quaternary. Thus, Allen's (1966) assertion could be strengthened to include reactivation of older faults and say that fault movement, sympathetic or otherwise, has never occurred on a fault that has not experienced prior late Quaternary movement.

There is no evidence for late Quaternary activity associated with any of the faults passing beneath the dam. Bedrock structural relationships (folded faults) suggest that these faults are inactive, although we found no cross cutting or overlapping geologic relationships that allow us to conclusively demonstrate the lack of late Quaternary movement on the faults. Accordingly, we conclude that the likelihood for sympathetic movement on faults passing beneath the dam is very low.

REFERENCES CITED

- Allen, C.R., 1966, Letter to Robert Jansen of the Division of Safety of Dams, dated May 26, 1966.
- Bailey, E.H.; Blake, M. C., Jr.; and Jones, D. L., 1970, On-land Mesozoic ocean crust in California Coast Ranges: U. S. Geol. Survey Professional Paper 700-C, p. 70-81.
- BGC (Berlogar Geotechnical Consultants), 1998, Geotechnical investigation, landslide, west slope, San Leandro Quarry, San Leandro, California: report for the DeSilva Group dated September 17, 1998.
- Blake, M.C., Jr.; Jayko, A. S.; McLaughlin, R. J.; and Underwood, M. B., 1988, Metamorphic and tectonic evolution of the Franciscan Complex, northern California: in Ernst, W. G., ed., Metamorphism and crustal evolution of the western United States: Rubey Volume VII, p. 1035-1060.
- Coleman, R.G., 2000, Prospecting for ophiolites along the California continental margin: in Dilek, Y., Moores, E.M., Elthon, D., and Nicolas, A., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, Geological Society of America Special Paper 349, p. 351-364.
- EBMUD (East Bay Municipal Utility District), 1934, Chabot Dam, topography-1934 survey groundwater investigation: drawing no. 1497, dated 1934.
- EBMUD (East Bay Municipal Utility District), 1979, Chabot Dam and spillway modifications general, existing topography and location of borings: drawing no. 6948-G-1.05, dated May 14, 1979.
- Evarts, R.C., and Schiffman, P., 1983, Submarine hydrothermal alteration of the Del Puerto ophiolite, California: American Journal of Science, v. 283, p. 289-340.
- Hopson, C. A.; Mattinson, J. M.; and Pessagno, E. A., Jr., 1981, The Coast Range ophiolite, western California: in Ernst, W. G., ed. The Geotectonic Development of California, New

Jersey, Prentice-Hall, p. 419-510.

Lessman, J. L., 2002, Geologic review of the seismic and foundation conditions, Chabot Dam, No. 31-5, Alameda County: Division of Safety of Dams report dated September 9, 2002.
Lienkaemper, J.J., 1992, Map of recently active traces of the Hayward fault, Alameda and Contra Costa Counties, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2196.

- Lowney Associates, 1997, Geotechnical investigation, Boulders Residential Development: report for the Riding Group dated August 25, 1997.
- Marliave, B. H., 1965, Geologic study of Chabot dam: report to EBMUD dated April 10, 1965
- Marliave, B.H., 1978, Chabot Dam and sympathetic movement on the Hayward fault: letter prepared for the East Bay Municipal Utility District, dated September 12, 1978
- Peak, W.W., 1966, Geologic inspection of fault conditions at Lower San Leandro Dam: internal Division of Safety of Dams memorandum dated April 12, 1966.
- Terrasearch, 1990, Supplemental geologic/seismic investigation on Lake Chabot Terrace, 13575 Lake Chabot Road, Alameda County, California (on file at California Geological Survey, San Francisco; file no. AP-2590).
- Thronson, R.E., 1966, Geologic inspection of exploratory trench, Lower San Leandro Dam, internal Division of Safety of Dams memorandum dated April 5, 1966
- WCC (Woodward Clyde Consultants), 1978, Potential for sympathetic fault displacement, Chabot fault and cross fault traces: letter prepared for the East Bay Municipal Utility District, dated October 5, 1978.
- Weaver, K.D., 1979, Geologic inspection, Chabot Dam, Alameda County, California: report prepared for the East Bay Municipal Utility District, dated September 20, 1979.
- URS (URS Corporation) 2000, East Bay Municipal Utility District Concrete Reservoir Seismic Upgrade, Phase V, Task Order No.1, Landslide Risk Assessment and Geotechnical Design Parameters, URS Greiner Woodward-Clyde: report for East Bay Municipal Utility District, Seismic Improvement Program, dated February 2000.
- Wakabayashi, J., 1984 (unpublished geologic mapping), Geologic mapping of Franciscan Complex, Coast Range ophiolite, and related rocks, Richmond to Hayward.
- Wakabayashi, J., 1999, The Franciscan Complex, San Francisco Bay area: A record of subduction processes: in Wagner, D.L., and Graham, S. A., eds. Geologic field trips in northern California, California Division of Mines and Geology Special Publication 119, p. 1-21.
- Wakabayashi, J., and Unruh, J.R., 1995, Tectonic wedging, blueschist metamorphism, and exposure of blueschist: are they compatible?: Geology, v. 23, p. 85-88.

Lienkaemper (1992).

Appendix H Seismotectonic Setting and Seismic Sources

WILLIAM LETTIS & ASSOCIATES, INC.

1777 Botelho Drive, Suite 262, Walnut Creek, California 94596 tel (925) 256-6070 fax (925) 256-6076

April 13, 2004

Dr. Lelio H. Mejia Principal and Vice President URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612

RE: Characterization of Seismotectonic Setting and Seismic Sources, EBMUD Chabot Dam

Dear Dr. Mejia:

This letter report presents our review of the seismotectonic environment of the East Bay hills, and a characterization of local and regional faults that are potentially significant for evaluating strong vibratory ground motion at Chabot dam.

Seismotectonic Setting of Chabot Dam

Chabot Dam is located within the tectonically and seismically active region between the Pacific plate on the west and the Sierra Nevada-Central Valley ("Sierran") microplate on the east. Geodetic data demonstrate that net motion between the two plates is obliquely convergent. The NUVEL-1A global plate motion model predicts that, relative to a point in the stable interior of North America, the Pacific plate moves about 47 mm/yr toward N34°W (DeMets et al., 1994). The dextral San Andreas and Hayward faults, which are the most active structures of the plate boundary at the latitude of the Bay Area, strike about N34°W, and thus are parallel to this motion. In contrast, space-based geodesy indicates that the Sierran microplate has a more westerly direction of motion at this latitude than the average strike of the San Andreas and Hayward faults (Argus and Gordon, 1991; 2001). The oblique motion of the Sierran microplate relative to the strike of the San Andreas and Hayward faults results in a small component of net convergence normal to these structures, which is accommodated by both strike-slip and thrust faulting in the eastern San Francisco Bay area (see summary in Unruh, 2001).

Chabot Dam is located within the East Bay hills, a belt of youthful, elevated topography bounded by the Hayward fault on the west and the Northern Calaveras fault on the east (Figure 1). Both of these faults are part of the San Andreas system of right-lateral strike-slip faults that accommodate most of the relative motion between the Pacific plate and Sierran microplate at this latitude. The late Cenozoic structure of the East Bay hills is characterized by northwest-trending folds and thrust faults, (Aydin, 1982; Crane, 1995) and by NNW-striking dextral faults and lineament zones such as the Contra Costa shear zone (Unruh and Kelson, 2002; William Lettis & Associates, 2003).

WLA Project 1650

1

Based on variations in fault and fold geometry, the 1999 Working Group on Northern California Earthquake Probabilities (Thrust Fault Subgroup, 1999) divided the East Bay hills into three areal source zones: (1) the western East Bay hills domain; (2) the southern East Bay hills domain; and (3) the northern East Bay hills domain. The western East Bay hills domain is characterized by folds and thrust faults that are subparallel to the Hayward fault. The most prominent examples of these faults are the Moraga, Miller Creek and Palomares faults, which form the eastern structural boundary of the western East Bay hills domain. The southern and northern East Bay hills domains are characterized by folds and thrust faults that are oblique to the strike of the northern Calaveras fault. Examples of these structures include the Bollinger thrust fault and Las Trampas anticline. Based on work by Unruh and Kelson (2002), we treat the Northern and Southern domains of the East Bay hills as a single structural domain for this study.

The main trace of the Hayward fault, which we interpret to directly overlie the zone of maximum energy release at depth during a large earthquake, approaches within 500 m of the center of Chabot Dam. The Hayward fault is associated with small earthquakes and was the source of a large earthquake on 21 October 1868 (see summary in Lettis, 2001). The Northern Calaveras fault on the eastern margin of the East Bay hills also is associated with small earthquakes, and paleoseismic trenching studies indicate that the fault has produced multiple surface-rupturing earthquakes during the Holocene (Kelson, 2001). Other active faults within about 50 km of Chabot Dam that have been sources of historical earthquakes, or are regarded as potential sources of large earthquakes (e.g., WGCEP, 2003), include the San Andreas, San Gregorio, Greenville, Mt. Diablo and Concord-Green Valley faults (Table 1).

The interior of the East Bay hills is characterized by low to moderate levels of background seismicity. In 1977, a swarm of small earthquakes occurred in the northern East Bay hills along an approximately 6 km long, north-northwest-trending alignment subparallel to the northern Calaveras fault (Ellsworth et al., 1982; Oppenheimer and Macgregor-Scott, 1992). These events occurred in the general vicinity of Briones Regional Park and Briones Reservoir, and are informally referred to as the "Briones swarm". A cross section of hypocenters normal to the trend of the swarm (Figure 3 in Oppenheimer and Macgregor-Scott, 1992) shows a well-defined planar alignment in the 6 to 12 km depth range, and focal mechanisms indicate primarily right lateral strike-slip displacement.

Seismic Sources

The major seismic sources evaluated for this study, distances from Chabot Dam, and maximum earthquake magnitudes, are summarized in Table 1. We discuss the sources and their characterization in detail below.

Faults of the San Andreas System

At the latitude of Chabot Dam, the major right-lateral strike-slip faults of the San Andreas system include the San Gregorio-Seal Cove, San Andreas, Hayward-Rodgers Creek, Northern Calaveras, Concord-Green Valley and Greenville faults (Figure 1). All of these faults are considered to be capable of generating large earthquakes by WGCEP (1999; 2003), and the San Andreas and Hayward faults in particular are estimated to have the highest probabilities of generating M > 6.7 earthquakes in the next 30 years (WGCEP, 2003).

WLA Project 1650

2

At a site-source distance of 500 m, the Hayward fault is the most proximal source of large earthquakes to Chabot Dam (Table 1). The Hayward fault is considered by most workers to be part of a system of generally collinear strike-slip faults that includes the Rodgers Creek fault north of San Pablo Bay; however, the Hayward fault is physically separated from the Rodgers Creek fault by a 4- to 6-km-wide right stepover across San Pablo Bay. As summarized in Lettis (2001), the 87-km-long (+10 km) Hayward fault traditionally has been divided into two segments, primarily based on the interpretation that large earthquakes occurred in 1836 and 1868 on distinct northern and southern rupture segments of the fault, respectively. Recent work suggests that the 1836 earthquake did not occur on the Hayward fault, however, and WGCEP (1999) did not identify any specific physical feature along the fault that could serve as a rupture segmentation point (Lettis, 2001).

In evaluating the maximum earthquake for the Hayward fault, we conservatively assume that the potential rupture length is 97 km, which includes the full 87 km length of the fault plus the uncertainty in the northern and southern termination points. Using a rupture width of 12 km (based on the lower depth limit of seismicity in the vicinity of the Hayward fault; Lettis, 2001) and empirical relations between rupture area and earthquake magnitude for all earthquakes in Wells and Coppersmith (1994), we calculate a median magnitude of M 7.1 for the Hayward fault. The same median magnitude is obtained from using the regression relations on magnitude and rupture area for strike-slip faults only (Wells and Coppersmith, 1994).

This result strongly implies that in order for larger earthquakes to occur on the Hayward fault, coseismic rupture must include parts of the adjacent Rodgers Creek and/or Calaveras fault. If it is assumed that rupture width along the fault is a constant 12 km, then the regression relations in Wells and Coppersmith (1994) imply that a **M** 7 1/4 earthquake would require a 146 km rupture, and a **M** 7 1/2 earthquake would require a 263 km rupture. For comparison, the 146 km length for a hypothetical **M** 7 1/4 earthquake is very close to the combined 150 km length of the Hayward and Rodgers Creek fault (Lettis, 2001). This result is in agreement with the **M** 7.26 magnitude assigned to a combined rupture of the Hayward fault and the Rodgers Creek fault by WGCEP (2003), using regression relations on rupture dimensions and earthquake magnitude for a restricted dataset of strike-slip events only (Ellsworth, 2003), and including a correction factor that accounts for strain released by fault creep during the period between large earthquakes.

Given the uncertainty in maximum rupture length for the Hayward fault, we conservatively adopt **M** 7 1/4 as the maximum earthquake magnitude (Table 1). This magnitude assumes full and complete rupture of the entire Hayward fault, as well as additional rupture totaling about 50 km in length on adjacent faults. Such an earthquake could be produced by a combined Hayward-Rodgers Creek fault rupture, or an approximately 150-km-long "floating" rupture that breaks all of the Hayward fault and parts of both the Rodgers Creek and Calaveras faults. This magnitude also allows for some uncertainty in the maximum rupture width. For example, if a large earthquake on the Hayward fault ruptures to 15 km depth rather than 12 km, as inferred from the present depth distribution of seismicity (Lettis, 2001), then the associated rupture length for a **M** 7 1/4 earthquake from the Wells and Coppersmith regressions on rupture area and magnitude is 117 km. This predicted rupture length encompasses the full 87 ± 10 km length of the Hayward fault, and still would require additional rupture on the adjacent Rodgers Creek and/or Calaveras fault.

WLA Project 1650

3

The next most-proximal known source of large earthquakes to Chabot Dam is the Calaveras fault, which is divided into three primary sections (Kelson, 2001): (1) the Southern Calaveras fault, which extends for about 24 km from the Pacines fault to San Felipe Lake; (2) the Central Calaveras fault, which extends for about 64 km from San Felipe Lake to Calaveras Reservoir; and (3) the Northern Calaveras fault, which extends for about 42 km from Calaveras Reservoir to a point near the town of Danville, where the fault dies out as a well-defined geomorphic feature. From Kelson (2001), we adopt the full measured length of the Northern Calaveras fault plus uncertainty ($42 \text{ km} \pm 10 \text{ km}$) for the purposes of estimating maximum magnitude. Using a 52 km rupture length and 15 km rupture width, empirical relations between rupture area and earthquake magnitude in Wells and Coppersmith (1994) provide a maximum magnitude of **M** 7 for the Northern Calaveras fault (Table 1).

Based on maximum magnitudes determined by WGCEP (1999; 2003), the San Andreas and San Gregorio-Seal Cove faults both are capable of producing larger earthquakes than the Hayward and Northern Calaveras faults (**M** 8 and **M** 7 1/2, respectively), but are located 30 km or more from Chabot Dam (Table 1). Other major strike-slip faults of the San Andreas system (i.e., Concord-Green Valley and Greenville faults) are capable of producing large earthquakes, but smaller than those of the Hayward and Northern Calaveras faults, and at greater site-source distances (Table 1).

Faults in the East Bay Hills

a) Moraga, Miller Creek and Palomares Faults

The western East Bay hills was defined by the Thrust Fault Subgroup (1999) to be an elongated, 4- to 6km-wide domain bounded by the Hayward fault on the west, and by the Moraga, Miller Creek and Palomares reverse faults on the east. Geologic maps by Dibblee (1980), Crane (1988), Graymer et al. (1994; 1996) and Graymer (2000) generally show that the Moraga, Miller Creek and Palomares faults share a common northwest strike, subparallel to the Hayward fault, and all dip to the southwest, toward the Hayward fault. Depictions of the faults differ significantly among these workers, however, indicating that there is uncertainty regarding the exact location of these structures, as well as their linkages (if any) to each other.

The Miller Creek fault, which approaches to within 4 km of Chabot Dam, is the most prominent and best studied of the structures that form the eastern boundary of the western East Bay hills domain (Wakabayshi et al., 1992). The fault generally juxtaposes Cretaceous and Miocene marine strata on the west with late Neogene continental deposits on the east. Based on trench exposures and topographic expression, the fault dips between about 60° and 80° southwest, with a preferred dip range of 70° to 80° (J. Wakabayashi, written communication, 2004). The Miller Creek fault may be the southern continuation of the Moraga fault (e.g., Graymer, 2000), or a distinctly different structure (e.g., Crane,

1988). Total length of the fault is difficult to determine with confidence because map depictions vary among workers. Wakabayshi et al. (1992) interpret that the Miller Creek fault is at least 10 km long.

Paleoseismic investigation of the Miller Creek fault provides additional information on the activity and kinematics of this structure (Wakabayshi and Sawyer, 1998a; 1998b). Trench exposures in the Upper San Leandro Reservoir area reveal that late Quaternary (probably Holocene; J. Wakabayashi, personal communication, 2004) colluvial deposits overlying the Miller Creek fault are sheared and deformed,

WLA Project 1650

4

indicating that the fault is active and capable of producing surface rupture. Slickenside lineations exposed in the trench indicate that movement on the fault is characterized primarily by strike-slip displacement with a component of reverse (up on the west) motion (Wakabayshi and Sawyer, 1998a; 1998b). Significantly, a second trench located less than 3 km from the first revealed evidence for no late Quaternary displacement on the fault (Wakabayshi and Sawyer, 1998a; 1998b).

The Thrust Fault Subgroup (1999) considered two end-member models to explain observed late Quaternary activity of the Miller Creek fault, and by analogy potential activity of the Moraga and Palomares faults:

- 1) Triggered, Aseismic Slip: This model assumes that the Moraga, Miller Creek and Palomares faults are not independent seismic sources. Cumulative stratigraphic offset documented by geologic mapping, and Quaternary displacements observed in trench exposures, are the result of aseismic, triggered slip during moderate to large magnitude earthquakes on the Hayward fault to the west.
- 2) Independent Seismic Sources: This model assumes that the Moraga, Miller Creek and Palomares faults move independently of the Hayward fault, and are capable of generating surface-rupturing earthquakes.

In the case of the latter model, the Thrust Fault Subgroup (1999) noted that the Moraga, Miller Creek and Palomares faults are limited in potential rupture width by their proximity to the Hayward fault; that is, the structures cannot extend farther west than their downdip intersection with the Hayward fault. For a range for potential fault geometries, the Thrust Fault Subgroup (1999) estimated that the Moraga, Miller Creek and Palomares faults are capable of generating earthquakes ranging in magnitude from about M 5 1/2 to M 6 1/2, and placed the highest weight on M 6 for the maximum earthquake.

In our judgment, we believe that it is very unlikely the Moraga, Miller Creek and Palomares faults, either individually or in a combined multi-segment rupture, are independent sources of M 6 1/2 or larger earthquakes, primarily because of the constraint on maximum rupture width due to the proximity of the structures to the Hayward fault. For example, a cross section in Wakabayashi et al. (1992) located several kilometers north of Lake Chabot shows an interpretation of the Miller Creek fault dipping 50° to 70° toward the southwest and joining the Hayward fault at the base of the seismogenic crust. This interpretation illustrates the *maximum* potential rupture width of the Miller Creek fault, because a more shallow fault dip will result in the Miller Creek fault intersecting the Hayward fault at shallower depths. The rupture width of the Miller Creek fault shown in the Wakabayashi et al. (1992) cross section is 12 km. If it is assumed that the aspect ratio (i.e., rupture length divided by rupture width) of an earthquake rupture on the Miller Creek fault is 1, then the maximum rupture length is about 12 km, and potential rupture area is 144 km². Regression relations in Wells and Coppersmith (1994) provide an associated median earthquake magnitude of about M 6.2. Given that the physical relationship of the Miller Creek fault to the Hayward fault limits the rupture width to about 12 km, larger earthquakes are possible only if the rupture length significantly exceeds 12 km. The fact that two trenches located 3 km apart on the Miller Creek fault did not produce consistent evidence for late Quaternary displacement on what is arguably the best-expressed fault in this system (Wakabayashi et al, 1992) strongly suggests that laterally continuous ruptures in excess of 12 km do not occur on these faults.

WLA Project 1650

5

Based on these considerations, we adopt M 6 1/4 as the maximum earthquake for these structures. This interpretation is conservative because: (1) it assumes that the faults are independent earthquake sources, despite uncertainty regarding their earthquake potential (i.e., Thrust Fault Subgroup, 1999); and (2) it adopts a slightly higher magnitude than predicted by the regression relations in Wells and Coppersmith (1994) for what we believe to be the maximum likely rupture dimensions.

b) Contra Costa Shear Zone

The Northern Calaveras fault dies out as a significant strike-slip fault in the vicinity of Danville, California, and dextral slip on this structure is transferred, at least in part, to the interior of the East Bay hills by a complex system of strike-slip faults and poorly integrated shear zones that are connected by restraining stepovers (Unruh and Kelson, 2002). For convenience, we refer to these structures collectively as the "Contra Costa shear zone". The faults and lineaments in the East Bay hills that we associated with the Contra Costa shear zone are highlighted with orange shading on Figure 1. The southern part of the Contra Costa shear zone is a series of strike-slip faults that includes the Cull Canyon, Lafayette and Reliez Valley faults (Figure 1). These structures strike about N15°W, subparallel to the Northern Calaveras fault, and they obliquely cross the interior of the East Bay hills east of the Moraga-Miller Creek-Palomares fault system. The Lafayette and Reliez Valley faults die out as well-defined structures at the latitude of the town of Pleasant Hill. North of this point, dextral slip in the Contra Costa shear zones that exhibit geomorphic features consistent with late Cenozoic strike-slip faulting (Unruh and Kelson, 2002; see Figure 1).

In the following sections, we describe the strike-slip faults and lineaments of the Contra Costa shear zone and characterize them as seismic sources. We also assess restraining stepovers among individual strands of the Contra Costa shear zones as potential sources of earthquakes from blind thrust faults. Finally, we discuss an alternative tectonic model (Geomatrix, 2001) for accommodation of dextral slip north of the termination of the Calaveras fault by activity on the Franklin and Southhampton faults, rather than the Contra Costa shear zone.

Cull Canyon, Lafayette and Reliez Valley faults

In terms of proximity to Chabot Dam, the most significant potential seismic sources associated with the Contra Costa shear zone are the Cull Canyon, Lafayette and Reliez Valley faults, which together comprise an approximately 25-km-long, NNW-trending zone of late Cenozoic dextral faulting (Crane, 1988; Unruh and Kelson, 2002). This entire zone is well expressed on Landsat satellite imagery as a lineament that cuts across the WNW-trending structural and topographic grain of the East Bay hills. The closest approach of Chabot Dam to the Cull Canyon fault at the southern end of this zone is 6 km (Table 1).

The Cull Canyon fault is mapped by Crane (1988) along the linear, north-northwest-trending valley of Cull Creek in the East Bay hills south of Kaiser Creek. Crane (1988) interpreted the axis of the NW-trending Kaiser Creek syncline at the latitude of Upper San Leandro Reservoir (6 km northeast of Lake Chabot) to be offset about 2 km in a right-lateral sense by the Cull Canyon fault. As mapped by Crane (1988), the fault follows Cull Canyon south to about the latitude of Lake Chabot, and it dies out in a zone

WLA Project 1650

6

of folding between Cull Creek and Crow Creek in the hills northeast of Castro Valley. Total length of the Cull Canyon fault south of Kaiser Creek is about 8 km.

It is important to note that neither Dibblee (1980) nor Graymer (2000) map a fault in Cull Creek canyon. Although Dibblee (1980) did not interpret a fault in the canyon, he depicted stratigraphic contacts that cross the canyon as being deflected in a right-lateral sense. Similarly, Graymer's map (2000) shows no discrete fault along Cull Creek, but some stratigraphic and structural contacts are deflected right-laterally across the canyon. Although these varying map interpretations indicate that there is uncertainty regarding the existence of a fault along Cull Creek, the fact that all three maps show some right-lateral deflection of stratigraphic units and contacts is consistent with the hypothesis that the canyon may be localized along a zone of dextral shearing and nascent strike-slip faulting.

In the vicinity of Kaiser Creek, the Cull Canyon fault merges with a N15°W-striking fault that can be traced northward through the city of Lafayette to Briones Regional Park (Crane, 1988). Dibblee (1980) also mapped a similar structure in this location called the "Lafayette fault". Crane (1988) refers only to the reach of this fault north of Lafayette as the "Lafayette fault". Following Dibblee, we consider the Lafayette fault to extend from Kaiser Creek to Briones Regional Park. Thus defined, the total length of the Lafayette fault is about 17 km. The Lafayette fault consistently displaces contacts between late Neogene stratigraphic units in a right-lateral sense (Dibblee, 1980; Crane, 1988), and is associated with strongly pronounced geomorphic features suggestive of Quaternary strike-slip activity along most of its length (Unruh and Kelson, 2002).

As documented by Dibblee (1980), Crane (1988) and Graymer et al. (1994), the NNW-striking Reliez Valley fault extends from the vicinity of Las Trampas Creek in western Walnut Creek to Briones Regional Park, for a total length of about 8 km. The Reliez Valley fault is subparallel to and located about 0.5 km east of the Lafayette fault; the two structures merge at their northern ends. We interpret that the two faults merge downward into a single shear zone, and we regard them to be a single fault for the purpose of evaluating their seismic potential.

Lineament Zones in the Northern East Bay Hills

Based on analysis of air photos and limited field reconnaissance, Unruh and Kelson (2002) proposed that dextral slip on the Lafayette and Reliez Valley faults is transferred in a left-restraining step across the Briones hills to the NNW-trending Russell Peak and Dillon Point-McEwan Road lineament zones, which can be traced north of the Carquinez Strait to the Vallejo area (Figure 1). Unruh and Kelson (2002) also documented the Larkey lineament zone, which can be traced for about 8 km along the eastern edge of the East Bay hills at the latitude of Walnut Creek and Pleasant Hill. Unruh and Kelson (2002) interpreted the Russell Peak, Dillon Point-McEwan Road, and Larkey lineament zones to be strike-slip shear zones that lack surface expression as through-going faults. These structures may transfer dextral slip northward to the Quaternary-active West Napa fault (Figure Map). Closest approach of these lineament zones to Chabot Dam is 17 km.

The Russell Peak, Dillon Point-McEwan Road and Larkey lineament zones are defined by alignments of geomorphic features such as truncated bedding, saddles, linear drainages, linear troughs, springs and vegetation alignments that are commonly associated with active faults. The lineaments locally coincide with parts of previously mapped faults. For example, the Dillon Point lineament coincides with a north-

WLA Project 1650

7

striking section of the Southhampton fault along the western margin of Southhampton Bay. Also, the lineaments are locally associated with background seismicity. In particular, the southern end of the Dillon Point-McEwan Road lineament is spatially associated with the Briones swarm of small earthquakes, described previously.

Las Trampas Anticline

The northern termination of the Calaveras fault coincides with the southern end of the NW-trending, northeast-vergent Las Trampas anticline (Ham, 1952). Unruh and Kelson (2002) interpreted the Las Trampas anticline to be a fault-propagation fold underlain by a blind, southwest-dipping thrust fault. The anticline and inferred underlying thrust fault terminate to the northwest against the Lafayette and Reliez Valley faults (Figure 1). The Las Trampas anticline and blind thrust fault, therefore, appears to transfer slip from the northern end to the Calaveras fault to strike-slip faults of the Contra Costa shear zone in the interior of the East Bay hills (Unruh and Kelson, 2002).

Seismic Potential of the Contra Costa Shear Zone

To date, detailed paleoseismic studies have not been performed to assess late Quaternary activity and structural linkage of faults and lineaments in the Contra Costa shear zone. Specifically, no data exist to determine whether or not the faults have displaced stratigraphic units 35,000 years in age or younger, which is the criterion for an Active Seismic Source established by the California Division of Safety of Dams (Fraser, 2001). Based on the strong geomorphic expression of these features, their probable association with seismicity, and the fact that they have attributes consistent with activity in the current tectonic regime, we conclude that they are "Conditionally Active", per DSOD criteria (Fraser, 2001; Table 1). For the purposes of this study, we conservatively consider earthquake scenarios involving ruptures of multiple fault segments within this zone.

The Cull Canyon, Lafayette and Reliez Valley faults are the most proximal elements of the Contra Costa shear zone to Chabot Dam (Figure 1). Given the present uncertainty about the activity and seismic potential of these structures, we conservatively assume that all three faults may rupture together in a single event. Using a 25 km rupture length and 15 km rupture width, empirical relations between rupture area and earthquake magnitude in Wells and Coppersmith (1995) provide a median magnitude of **M** 6.6 for combined rupture of the Cull Canyon, Lafayette and Reliez Valley faults (Table 1).

Individual lineaments of the Contra Costa shear zone in the northern East Bay hills range from about 1.2 to 8.0 km in length, and thus are unlikely to be sources of significant earthquakes unless multiple segments rupture in a single event. WLA (2003) characterized these structures for a probabilistic source model, and found that the maximum length for a combined rupture of the Larkey lineament, Lafayette fault and Dillon Point-McEwan Road lineament is 23 km. For this scenario, we assume that the discontinuous lineaments are the surface expression of a continuous vertical shear zone in the subsurface with a rupture width of 15 km. From empirical relations in between magnitude and rupture area in Wells and Coppersmith (1994), we estimate M 6 1/2 as the maximum earthquake for the Contra Costa shear zone in the northern East Bay hills.

Other potential seismic sources in the East Bay hills include blind thrust faults that may underlie large, map-scale folds like the Las Trampas anticline. Based on its mapped length and apparent structural continuity, Unruh and Kelson (2002) inferred that the Las Trampas anticline is underlain by a 12-km-long

WLA Project 1650

8

blind thrust fault. If it is assumed that an earthquake on the fault will have a minimum 1:1 rupture aspect ratio, then the blind Las Trampas thrust fault may be capable of generating a M 6.2 earthquake (per empirical relations in Wells and Coppersmith, 1994). In general, the Contra Costa shear zone lineaments in the northern East Bay hills bound narrow (1- to 3-km-wide) blocks that are internally deformed by reverse faulting and northeast- and southwest-vergent folding (Unruh and Kelson, 2002). Given the relatively small dimensions of these blocks, we conclude that blind thrust faults associated with them are unlikely to be sources of M 6 (or larger) earthquakes; however, these structures may be sources of smaller "background" earthquakes.

Franklin and Southhampton faults

The Franklin and Southhampton faults in the northern East Bay Hills form the boundaries of the northwest-trending "Franklin High" structural block (Crane, 1995). The Franklin fault is the southwestern structural margin of this block, and it juxtaposes older rocks on the northeast (Cretaceous and Eocene marine strata) against Miocene strata of the Monterey and San Pablo Groups to the southwest. Crane (1995) shows the Franklin fault to be a northeast-dipping thrust or reverse fault. The Southhampton fault is the northeastern structural boundary of the "Franklin High", and is mapped by Crane (1988; 1995) as a southwest-dipping thrust fault. The closest approach of these structures to Chabot Dam is 20 km (Table 1).

Previous work by Geomatrix Consultants (2001) has documented evidence for late Quaternary activity of the Franklin and Southhampton faults, and characterized them as potential sources of M 6 3/4 earthquakes. In an alternative interpretation, Unruh and Kelson (2002) proposed that the Franklin and Southhampton faults were pre-existing, northwest-striking Tertiary structures that locally have been deformed by late Cenozoic strike-slip displacement on branches of the Contra Costa shear zone. In particular, Unruh and Kelson (2002) observed that north-striking reaches of the Southhampton fault coincide with lineaments of the Contra Costa shear zone, and concluded that the Southhampton fault locally has been deformed and/or reactivated by late Cenozoic dextral shearing.

Both of these interpretations are based on geologic observations, and thus have an empirical basis for Both interpretations assume that active seismic sources capable of generating significant validity. earthquakes are present in the northern East Bay hills. We favor the Unruh and Kelson (2002) interpretation for several reasons:

- There are significant differences in the mapping of the Franklin and Southhampton faults among various workers (Crane, 1988; Graymer et al., 1994), which we interpret to indicate that the fault traces are not consistently well defined along their entire length. Consequently, we infer that the likelihood of the Franklin and Southhampton faults rupturing along their entire map length, which is necessary to generate a M 6 3/4 earthquake, is very low.
- The fault traces are comprised of alternating short NNW-SSE- and NW-SE-striking reaches. This pattern is unusual for active strike-slip faults that typically break in relatively collinear, 20+ km rupture segments. This pattern can be simply explained, however, by activity of the Contra Costa shear zone lineaments.

WLA Project 1650

9

• The average strike of the Franklin and Southhampton faults is NW-SE, more toward the west than the NNW-striking Northern Calaveras and Concord-Green Valley faults. In contrast, faults and lineaments of the Contra Costa shear zone also strike NN, subparallel to the Northern Calaveras fault. We interpret this difference in strike azimuth as evidence that the Contra Costa shear zone is more favorably oriented for activity in the modern tectonic setting.

Given these observations, we believe that a magnitude of M 6 1/2 for the northern part of the Contra Costa shear zone adequately encompasses the potential hazard to Chabot Dam from an earthquake on the Franklin and Southhampton faults, if the Geomatrix (2001) tectonic model is more correct than the Unruh and Kelson (2002) model.

Mt. Diablo Thrust Fault

The Mt. Diablo thrust fault is interpreted to be a blind fault that underlies Mt. Diablo anticline, a 25-kmlong, west-northwest-trending fold north of Livermore Valley (Unruh and Sawyer, 1997). Mt. Diablo anticline and thrust fault are interpreted to transfer dextral slip from the Greenville fault, which forms the eastern structural margin of Livermore Valley south of Mt. Diablo, to the Concord-Green Valley fault north of Mt. Diablo. Activity of the blind Mt. Diablo thrust fault is indirectly inferred from geomorphic evidence for late Quaternary uplift and folding of Mt. Diablo anticline (Unruh and Sawyer, 1997). WGCEP (2003) formally adopted the model for uplift of Mt. Diablo above a potentially seismogenic fault, and included the blind Mt. Diablo thrust fault in its source model for large earthquakes in the San Francisco Bay region.

For site-source distance to Chabot Dam, we measure the closest approach of the dam to the western limb of the anticline overlying the Mt. Diablo thrust fault near the town of Danville in eastern San Ramon Valley, based on the assumption that the fold limb directly overlies the fault at depth. Chabot Dam is 25 km from western edge of the fold; we adopt this as the site-source distance from the dam to the Mt. Diablo thrust fault (Table 1). This is a conservative estimate of site-source distance because the straightline distance between the dam and fault tip through the crust is slightly longer than the horizontal distance along the earth's surface.

We use the dimensions and geometry of Mt. Diablo anticline to infer the dimensions of the underlying blind thrust fault. We conservatively assume that the rupture length is the same as the maximum mapped length of the fold axis (i.e., 25 km). Based on a geologic cross-section of the fold and thrust fault in Unruh (2001), we assume that a rupture will extend from the base of the brittle crust (about 17 km depth) up-dip to a depth of approximately 8 km, which corresponds to a rupture width of about 20 km, resulting in a potential rupture area of 500 km². From empirical relationships between earthquake magnitude and rupture area in Wells and Coppersmith (1995) for all earthquakes, we estimate a median magnitude of **M** 6 3/4 for the Mt. Diablo thrust fault. For comparison, WGCEP (1999) adopted a maximum magnitude of **M** 6.7 for the Mt. Diablo thrust fault.

Summary

The Hayward fault, which is capable of generating a magnitude M 7 1/4 earthquake at a site-source distance of 500 m, is the most significant seismic source for evaluation of deterministic ground motions at

WLA Project 1650

10

Chabot Dam. Proximal faults in the East Bay hills, including the combined Cull Canyon-Lafayette-Reliez Valley faults and the Northern Calaveras fault, may produce smaller maximum earthquakes at greater distances. Regional sources capable of producing larger earthquakes than the Hayward fault include the San Andreas and San Gregorio-Seal Cove faults (Table 1), but both these structures are located at significantly greater distances from Chabot Dam. It is possible that the long duration of strong shaking from a **M** 8 earthquake on the San Andreas fault at a site-source distance of 30 km (Table 1) could be significant for the stability of Chabot Dam.

Closing

We appreciate the opportunity to assist URS in characterizing the geologic and seismotectonic setting of Chabot Dam. Please feel free to call me (925-256-6070) or send email (unruh@lettis.com) if you have any questions or comments about this report.

Sincerely, WILLIAM LETTIS & ASSOCIATES, INC.

Jeffrey R. Unruh, Ph.D., R.G. Principal Geologist

WLA Project 1650

11

References Cited

- Argus, D.F., and Gordon, R.G., 1991, Current Sierra Nevada-North America motion from Very Long baseline interferometry: implications for the kinematics of the western United States: Geology, v. 19, p. 1085-1088.
- Argus, D.F., and Gordon, R.G., 2001, Present tectonic motion across the Coast Ranges and San Andreas fault system in central California: Geological Society of America Bulletin, v. 113, p. 1580-1592.
- Aydin, A., 1982, The East Bay hills, a compressional domain resulting from interaction between the Calaveras and Hayward-Rodgers Creek faults, <u>in</u> Hart, E.W., Hirschfeld, S.E., and Schulz, S.S., ed.s, Proceedings, Conference on Earthquake Hazards in the Eastern San Francisco Bay Area: California Division of Mines and Geology Special Publication 62, p. 11-21.
- Crane, R., 1988, Geologic maps of the Las Trampas Ridge, Walnut Creek, and Briones Valley 7.5-minute quadrangles: unpublished maps available from H&L Hendry, Concord, CA; scale 1:24,000.
- Crane, R., 1995, Geology of the Mt. Diablo region and East Bay hills, <u>in</u> Sangines, E.M., Andersen, D.W., and Buising, A.V., eds., Recent Geologic Studies in the San Francisco Bay Area: Society of Economic Paleontologists and Mineralogists, Pacific Section Volume 76, p. 87-114.
- DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1994, Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions: Geophysical Research Letters, v. 21, no. 20, p. 2191-2194.
- Dibblee, T.W., Jr., 1980, Preliminary geologic map of the Las Trampas Ridge quadrangle, Alameda and Contra Costa Counties, California: U.S. Geological Survey Open-file Report, scale 1:24,000.
- Ellsworth, W.L., Olson, J.A., Shijo, L.N., and Marks, S.M., 1982, Seismicity and active faults in the eastern San Francisco Bay region: California Division of Mines and Geology Special Publication 62, p. 83-91.
- Ellsworth, W.L., 2003, Magnitude and area data for strike slip earthquakes: United States Geological Survey Open-File Report 03-214, Appendix D,13 p.
- Fraser, W.A., 2001, Fault Activity Guidelines: Division of Safety of Dams, California Department of Water Resources, 11 p.
- Geomatrix Consultants, 2001, Development of BART seismic retrofit ground-motion criteria: Appendix submitted to BART for Seismic Retrofit Project: unpublished report.
- Graymer, R.W., Jones, D.L., and Brabb, E.E., 1994, Preliminary geologic map emphasizing bedrock formations in Contra Costa County, California: United States Geological Survey Open-File Report 94-622, 1:75,000 scale.

Graymer, R.W., Jones, D.L., and Brabb, E.E., 1996, Preliminary geologic map emphasizing bedrock formations in Alameda County, California: United States Geological Survey Open-File Report 96-252, 1:75,000 scale.

Graymer, R.W., 2000, Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa and San Francisco counties, California: United States Geological Survey Miscellaneous Field Investigations Map MF-2342, I:50,000 scale.

WLA Project 1650

12

- Ham, C.K., 1952, Geology of Las Trampas Ridge, Berkeley Hills, California: California Division of Mines Special Report 22, 26 p. plus maps.
- Kelson, K.I., 2001, Geologic characterization of the Calaveras fault as a potential seismic source, San Francisco Bay area, California, in Ferriz, H. and Anderson, R., Engineering Geology Practice in Northern California": California Geological Survey Bulletin 210, p. 179-192.
- Lettis, W.R., 2001, Late Holocene behavior and seismogenic potential of the Hayward-Rodgers Creek fault system in the San Francisco Bay area, California, in Ferriz, H. and Anderson, R., Engineering Geology Practice in Northern California": California Geological Survey Bulletin 210, p. 167-177.
- Oppenheimer, D.H., and Macgregor-Scott, N., 1992, The seismotectonics of the eastern San Francisco Bay region, in Borchardt, G., Hirschfeld, S.E., Lienkaemper, J.J., McClellen, P., Williams, P.L., and Wong, I.G., eds., Proceedings of the Second Conference on Earthquake Hazards in the Eastern San Francisco Bay Area: California Division of Mines and Geology Special Publication 113, p. 11-16.
- Thrust Fault Subgroup, 1999, Thrust faults as seismic sources in the San Francisco Bay Area: report submitted to the Working Group on Northern California Earthquake Probabilities.
- Unruh, J.R., 2001, Characterization of Blind Thrust Faults in the San Francisco Bay Area, in Ferriz, H. and Anderson, R., Engineering Geology Practice in Northern California": California Geological Survey Bulletin 210, p. 211-227.
- Unruh, J.R., and Kelson, K.I., 2002, Critical evaluation of the northern termination of the Calaveras fault, eastern San Francisco Bay area, California: Final Technical Report submitted to the U.S. Geological Survey, National Earthquake Hazards Reduction Program, Award 00-HQ-GR-0082.
- Unruh, J.R., and Sawyer, T.L., 1997, Assessment of Blind Seismogenic Sources, Livermore Valley, Eastern San Francisco Bay Region: Final Technical Report submitted to the U.S. Geological Survey, National Earthquake Hazards Reduction Program, Award 1434-95-G-2611.
- Wakabayashi, J., Smith, D.L., and Hamilton, D.H., 1992, The Miller Creek fault and related structures: Neogene kinematics of a potentially active thrust system in the East Bay hills, California, in Borchardt, G., Chief Editor, Proceedings of the Second Conference on Earthquake Hazards in the Eastern San Francisco Bay Area: California Division of Mines and Geology Special Publication 113. p. 345-354.
- Wakabayashi, J., and Sawyer, T.L., 1998a, Paleoseismic investigation of the Miller Creek fault, eastern San Francisco Bay area, California: Final Technical Report, U.S. Geological Survey National Earthquake Hazards Reduction Program Fiscal Year 1997, Award No. 1434-HQ-97-GR-03141.

- Wakabayashi, J., and Sawyer, T.L., 1998b, Holocene (?) oblique slip along the Miller Creek fault, eastern San Francisco Bay Area, California: EOS, v. 79, no. 45, p.F613.
- Wells, D.L., and Coppersmith, K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement: Bulletin of the Seismological Society of America, v. 84, p. 974-1002.

WLA Project 1650

13

- William Lettis & Associates, Inc., 2003, Seismic source characterization of the northern East Bay hills, Contra Costa and Solano Counties, California: report prepared for Bechtel Enterprises CA LNG LLC, San Francisco, California.
- Working Group on California Earthquake Probabilities, 1999, Earthquake Probabilities in the San Francisco Bay Region: 2000 to 2030-A Summary of Findings: Unites States Geological Survey Open File Report 99-517, Online Version 1.0.
- Working Group on California Earthquake Probabilities, 2003, Earthquake Probabilities in the San Francisco Bay Region: 2002-2031: Unites States Geological Survey Open-File Report 03-214.

WLA Project 1650

14

Final April 13, 2004

1650 Chabot Dam

Table 1:	
Earthquak	
e Sources,	
Chabot Dan	

Fault or Seismic Source	San Andreas Fault	San Gregorio-Seal Cove Fault	Hayward-Rodgers Creek Fault	Miller Creek Fault	Northern Calaveras Fault	Contra Costa Shear Zone	• Cull Canyon-Lafayette-Reliez Valley faults	• Lineament zones, northern East Bay hills	Greenville Fault	Concord-Green Valley Fault	Mt. Diablo Thrust Fault
Maximum Magnitude	Mw 8	Mw 7 1/2	Mw 7 1/4	Mw 6 1/4	Mw 7		Mw 6 1/2	Mw 6 1/2	Mw 7	Mw 6 3/4	Mw 6 3⁄4
Closest Approach	30 km	41 km	0.5 km	4 km	13 km		6 km	17 km	33 km	24 km	15 km
Activity (per Fraser, 2001)	Active: large historic earthquake	Active: Holocene surface rupture	Active: historic earthquake	Active: Holocene surface rupture	Active: Holocene surface rupture	Conditionally Active	Late Quaternary activity suggested by strong geomorphic expression; individual lineament zones associated with clusters of small earthquakes		Active; historic earthquake	Active: Holocene surface rupture; active creep	Active: Holocene growth of Mt. Diablo anticline above fault

Appendix I 3-D GIS Model - Existing Boring Data

URS

Memorandum

Date: March 31, 2004

To: Atta Yiadom East Bay Municipal Utility District From: Lelio Mejia, Ted Feldsher

Subject: 3-D GIS Model – Existing Boring Data Task B Technical Memorandum Dynamic Stability of Chabot Dam

Purpose

In accordance with the scope of work for Task B, we have incorporated the available subsurface geotechnical data for Chabot Dam into a 3-D GIS model. This memorandum summarizes the model features and presents graphical views of the data. In addition to the graphical views of the model, we are submitting, under separate cover, the electronic data in the form of shape files. The goal of the GIS modeling effort is to help assess the distribution and geometry of soil conditions important to the seismic stability analysis of the dam. Once additional data are available from the upcoming phase of investigations, they will be entered into the model and updated shape files will be submitted.

A geologic map of the dam foundation and our understanding of the site geology, also developed under Task B, are presented in a separate memorandum.

GIS Model Topographic Data

The topographic representation of the dam's current ground surface, excluding the upstream slope area under the reservoir, is based on District Drawing No. 6948-G-1.03.1, titled "As Built Topography," dated December 7, 1982. Since data for this drawing were not available in electronic format, we digitized selected contours for input to the model. For the upstream slope area beneath the reservoir, we digitized contours from District Drawing No. 1487-R-1, dated March 10, 1967. Thus, the GIS model includes bathymetric survey data for the dam's upstream slope and reservoir bottom.

Additional drawings available from the District show contours of the site reportedly surveyed prior to the original construction of the dam. These include Drawing No. 1497-R-1, dated 1934 and Drawing R-168 dated 1886. The 1934 drawing reproduces the pre-dam contours on the current site datum used by the District (NGVD). Although the 1934 drawing does not include horizontal coordinate data, it shows the spillway structure. The same spillway structure is also shown on District Drawing 6948-G-1.05, which includes horizontal coordinate data. Electronically overlaying these several drawings allowed us to approximately locate the pre-dam contours relative to the existing contours. The results are incorporated into the GIS model.

GIS Model Geotechnical Data

The available geotechnical data was discussed in our Data Review Memorandum (Task A). As noted therein, the previous subsurface field investigations at Chabot Dam included a total of at least 67 borings. As part of our review of the data, we entered each available boring log and lab test result into a geotechnical database using the software "gINT" (gINT Software © 1985-2004). This database includes drilling and sampling types, material descriptions and lithologies, blow counts, and laboratory

C:\PRJCTS\EBMUD\Chabot Dam\Task B - Geologic Mapping\Memorandum\Task B Tech Memo.doc 4/1/04

URS

data such as gradations, Atterberg limits, dry densities, and shear strength test results. The gINT database was exported into an Excel spreadsheet format, and was imported into the GIS program ARCView-ARCGIS. The borings included in the GIS database are shown in plan view in Figure 1, which also shows the digitized 10-foot contours of the existing ground surface and of the pre-dam surface below.

GIS Model Outputs

To date we have used the GIS model to develop an understanding of the 3-D geometry of the dam, and of the spatial distribution within the dam and foundation of: a) previous borings and SPT sampling, b) sandy and gravelly soils, and c) foundation soil thickness. This information is being used to develop the program of field explorations to be undertaken in Task C.

Locations of SPT Sampling: Figure 2 shows the locations where SPT blow counts were previously taken. There are a significant number of SPT blow counts available within the downstream shell of the dam and the downstream hydraulic fill. Fewer SPT blow counts are available beneath the crest of the dam and in the upstream shell. As discussed in our Task A memorandum, the available SPT blow counts lack correction for the gravel content of the dam and foundation materials and for hammer efficiency, and therefore, need to be supplemented.

Locations of Sandy and Gravelly Soils: Figure 3 shows the locations of sandy and gravelly soils within the dam and foundation. The locations of samples classified as clean sand or gravel, silty sand or gravel, and clayey sand or gravel are highlighted individually using a different color for each group. Consistent with our understanding of the dam's construction history, the predominantly granular soil zones appear to be mostly concentrated in the hydraulic fill zone near the downstream toe of the dam. A future refinement to the database will include an assessment of the distribution of materials with a potential for liquefaction or potential for development of excess pore pressures and strength loss.

Thickness of Foundation Soils: The distribution of foundation soil thickness has been inferred from the GIS model by comparing the logged elevation of bedrock in previous borings with the pre-dam topography. Many of the available borings were drilled to bedrock, and provide reliable rock depth information. However, most of the logs do not reliably identify the presence of foundation soil beneath the embankment fill. Figure 4 shows the inferred distribution of native soils in the dam foundation, based on a comparison between the logged bedrock depths and the 1886 contours of the pre-dam topography. As shown, the bedrock depths are substantially below the pre-dam surface in many cases. For example, at boring WI-13, the depth of alluvium/colluvium appears to be about 37 feet. Although the actual depths of soil excavated prior to dam construction are unknown, the available construction information suggests that little excavation other than near-surface stripping was done beyond the limits of the central core trench. In a few locations, the logged bedrock elevations or in the original topography. At those locations, the thickness of foundation soils was assumed to be very small and is not shown.

Closure

Once the GIS database is updated with the information from the new field explorations, it will be used to further our understanding of the embankment and foundation conditions including the distribution of soils susceptible to liquefaction or strength loss, and to develop models for evaluating the seismic stability of the dam.

Boring Locations in GIS Model Figure	 Boring Locations Current ground surface contours (ft) Pre-dam ground surface contours (ft) 	egend
--------------------------------------	--	-------

