

Long-Term Infrastructure Investment Workshop

Board of Directors

November 26, 2019

Agenda

	Duration (minutes)
Introduction	5
Capital Improvement Program	20
Sustainability and Resiliency	15
Water Loss Control Strategy	30
Break	10
Resource Considerations	15
Yard Development	10
Wastewater	15
Board Input & Discussion	15

Workshop Purpose

- Review Water Capital Improvement Program (CIP) accomplishments, highlights, and priorities
- Highlight sustainability and resilience activities
- · Describe water loss control strategy
- Discuss resource considerations
- Review Wastewater CIP accomplishments and MWWTP Master Plan

Strategic Plan Goal Long-Term Infrastructure Investment

We maintain and improve the District's infrastructure in a cost-effective manner to ensure sustainable delivery of reliable, high quality service now and in the future, addressing economic, environmental, and social concerns.

Long Term Infrastructure Investment Strategies and Drivers

Capital Improvement Program Historic and Projected Spending

Capital Improvement Program FY15-19 Accomplishments – Water Treatment Plants

Orinda WTP Maintenance and Reliability Improvements Project

USL and Sobrante WTPs Ozone Improvements

Capital Improvement Program FY15-19 Accomplishments – Open-Cut Reservoirs

- South Reservoir, Castro Valley (Ward 7)
- Summit Reservoir, Berkeley (Ward 4)
- San Pablo Clearwell, Kensington (Ward 4)

Capital Improvement Program FY15-19 Accomplishments - Steel Reservoirs

Reservoir	City	Ward
Mendocino	Hercules	1
Birch	Rodeo	
Potrero	Richmond	
Larkey	Walnut Creek	
Acorn No. 1	Blackhawk	2
Bacon	Lafayette	
Rheem	Lafayette	
Round Hill	Alamo	
Muir	Danville	
Pearl	Richmond	3
Sherwick	Oakland	
University	Oakland	
Stonewall	Oakland	4
Berkeley View No. 2	Oakland	
Eden	Castro Valley	
Arcadian	Castro Valley	
Cull Creek	Castro Valley	7
Faria No. 1 & 2	San Ramon	

Capital Improvement Program FY15-19 Accomplishments – Pumping Plants

Pumping Plant	City	Ward	
Moyers	Richmond	d	
oad 24 No. 1 San Pablo		1	
Road 24 No. 2	Richmond		
Schapiro	San Pablo		
Diablo Vista	Lafayette		
Diablo	Danville	2	
Laguna	Orinda	1	
Gwin	Oakland		
Skyline	Oakland		
Country Club Oakland		3	
Maloney	El Sobrante		
Greenridge	El Sobrante		
Shasta	Berkeley		
Woods	Berkeley	4	
Berryman North	El Cerrito	4	
University No. 1	Berkeley		
Bayfair	Oakland		
Peralta	Oakland	6	
Мау	Oakland		
Fire Trail	Castro Valley	- 7	
Jensen	Castro Valley		

Capital Improvement Program FY15-19 Accomplishments - Large Diameter Pipeline

MacArthur-Davenport (Wards 4 and 6)

Grand Avenue (Ward 4)

Capital Improvement Program FY15-19 Accomplishments – Pipeline Rebuild

Pipeline **REBUILD**

Renew. Reinvest. Ready.

Accomplishments

- Added 2 new pipeline crews and support staff
- Increased replacement from 10 to 15 mi/year
- · Completed pilot program

FY20-24 Capital Improvement Program Budget by Asset Class

Total FY20-24 Cash Flow = \$1.69B

FY20-24 Capital Improvement Program Water Treatment Plants

- Treatment Studies
 - o Pretreatment
 - \circ Fouling
- Chemical Safety Study
- Condition Assessments
- Complete WTP road map

FY20-24 Capital Improvement Program Orinda Water Treatment Plant

FY20-24 Capital Improvement Program Raw Water System

- Chemical Improvements
- Aqueduct Relining

FY20-24 Capital Improvement Program Open-Cut Reservoirs

- Replacement Plans
- Demolition
- Outage Plans

FY20-24 Capital Improvement Program Steel Reservoirs

- Rehabilitate or replace 3 reservoirs per year
- Continue to meet or exceed established KPI

FY20-24 Capital Improvement Program Pumping Plants

- Rehabilitate or replace 3 pumping plants per year
- Continue to meet or exceed established KPI

FY20-24 Capital Improvement Program Large Diameter Pipelines

- Capacity Studies
- Outage Plans

Treatment & Transmission Construction Sequencing

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

FY20-24 Capital Improvement Program Pipeline Rebuild

Where Are We Headed

- 17.5 mi/year \rightarrow 25 mi/year by FY25
- New materials
- Implementing recommendations
- · Continue to innovate

Sustainability & Resilience

Sustainability & Resilience

Sustainability practices manage resources and impacts equitably across generations

Resilience is the ability to prepare and plan for, absorb, recover from, and adapt to adverse events ²⁴

Sustainability & Resilience Envision Rating System

- Planning and design tool
- Industry-wide sustainability metrics for infrastructure
- Focus on Triple Bottom Line

Sustainability & Resilience

- · Three example projects
 - 1. Pipeline Rebuild
 - 2. Orinda WTP Disinfection Improvements Project
 - 3. Central Reservoir Replacement Project

Pipeline Rebuild Sustainability

- Move to a sustainable replacement rate
- Select materials to reduce installation time & impacts to customers
- Lining as alternative to trenching

Pipeline Rebuild Resilience

- HayWired Model
- 5,500 pipeline breaks (main & aftershocks)
- Customer outages
 - 6 weeks average
 - Up to 6 months

Significant number of breaks in the western service area

Pipeline Rebuild Resilience

- Long-term goal: Complete replacement
- Short term goal: Maximize resilience with every pipeline project
- · Resilient grid
 - Tolerate damage and still be mostly functional
 - Strategic hardening
 - Valve configuration

Pipeline Rebuild Resilience: Strategic Hardening

Pipeline Rebuild Resilience: Strategic Hardening

Pipeline Rebuild Resilience: Valve Configuration

Pipeline Rebuild Resilience: Valve Configuration

Pipeline Rebuild Resilience: Critical Customers

High-reliability pipeline High-risk pipeline

Existing Treatment Process at Orinda WTP

Orinda WTP Disinfection Improvements Project

Treatment Process at Orinda WTP after Orinda Disinfection Improvements

Orinda WTP Resilience: Intense Atmospheric Rivers

Source: NASA Earth Observatory	Location	Amount
	Sierra Nevada Mountains (Measured at Kirkwood Ski Resort)	133- inches (Snow)
	Oakland	3.36 inches
500 km Total Rainfall (mm)		
o 45 90 135 180		37

Orinda WTP Resilience: Drought

Orinda WTP Resilience: Water Quality

Orinda WTP Resilience: Water Quality

Orinda WTP Disinfection Improvements Project is one project that increases our resilience to upsets in raw water quality

Central Reservoir Replacement Project

Central Reservoir Resilience

Raise reservoir to significantly improve operational flexibility

Central Reservoir Resilience

Central Reservoir Resilience

Sustainability & Resilience Summary

- Sustainability and resilience is part of every project
- Financial, social and environmental considered
- Continuous attention to areas of improvement

Water Loss Control Strategy

Apparent Losses

Real Losses

Meter inaccuracy

 Leaks on mains and services

Water Loss Control Strategy Goals

- \cdot Reduce water loss
- · Reduce main breaks

Data-Driven Decisions

- New methods are being developed and tested at the District
- · Analyze data to
 - Prioritize spending
 - Lead to new strategies

Data

Strategies

California Senate Bill 555

What does SB 555 require?

- 1. Annual water audits
- 2. Validated water audits
- 3. Post audits online
- 4. Establish water loss standards

(C) The technical qualifications regained of a person to engage in validation, as devotibed in subparagraph (8).

(D) The certification requirements for a person selected by an orbit retail water supplier to provide validation of to one water fees solid report.

SB 555 Rulemaking Period

- · Water loss standard adopted July 2020
- Interim and final targets
- District comments

Calculating Real Losses

Capital Improvement Program

CIP Budget for Water Loss Control

- · Meter replacement
- Leak detection
- Pressure management
- · Water loss control master plan

Apparent Losses Large Meters

- Large meters for customers and water treatment plants
- More accurate water loss auditing
- Annual testing of flow meters

Apparent Losses Meter Replacement & Testing

- Meter testing provides the basis for future replacement rates
- Increased meter replacement in FY20-24

Apparent Losses Advanced Metering Infrastructure (AMI)

- AMI pilot includes 13,000 accounts
- Purpose: Provide AMI data to quantify water and energy savings
- \$1.25M in grant funding for two studies

Apparent Losses **Next Steps for AMI**

- One year AMI pilot
- Quantify water and energy savings
- Evaluate the business case for a District-wide AMI project

Real Losses

Real Losses

Strategies to Address Real Losses

- Active leak detection
- Pressure management
- · Speed & quality of repairs
- Infrastructure management

No. of Main Breaks & Service Failures

Active Leak Detection Automated Acoustic Leak Detection

- Finds leaks before they surface
- Reduces water loss
- Protects the environment and property
- Found over 200 leaks
- · Quick payback

Active Leak Detection Satellite Leak Detection

- Uses satellite imagery
- Quickly survey distribution system
- Not affected by pipe diameter
- District was the first utility in North America to use the technology
- Not a substitute for acoustic leak detection but it is a complementary method

Active Leak Detection Manual Acoustic Leak Detection

- Manual acoustic leak detection used as last step
- State-of-the-art leak detection equipment
- Staff is experienced at pinpointing leaks before leaks surface

Total No. of Leaks on Mains & Services

Total No. of Leaks on Mains & Services

70

Pressure Management Pressure Stabilization and Reduction

- · Concept
 - Reduce pressure
 - Minimize pressure swings
- Benefits
 - Extends the life of pipelines
 - Reduces leakage
 - Reduces main breaks
 - Improves customer service

Dwight Regulator & FCS Pegasus+

Pressure Management Pressure Stabilization and Reduction

Pressure Management Pressure Transients

- Monitors
 pressure swings
 to identify
 sources
- Over 100 units installed
- Avoids main breaks with little cost

Pressure Monitor

Water Loss Control Next Steps

- Prepare Water Loss Control Master Plan
- Contract for award at February 11 Board meeting
- Complete master plan September 2020

Speed and Quality of Repairs Overview

- \cdot Response time
 - Points of interest within 2 hours
 - Respond to main breaks within 1 hour
 - Timely completion of repairs
- Training
- · Equipment and tools

Speed and Quality of Repairs Main Break Response

Main break response KPI

- P5: Repair 90% within 1 day
- P4: Repair 90% within 7 days
- Decline in P4 & P5 response time

Speed and Quality of Repairs Pipeline Training Academy

Classroom Training

Field training

Speed and Quality of Repairs Mobile Computing Tools

Speed and Quality of Repairs Tools & Equipment

Infrastructure Management Pipeline Rebuild Program

Infrastructure Management Pipeline Rebuild: Progress and Plan

Infrastructure Management Pipeline Rebuild: Maximize Efficiency/Performance

- Maintain focus on efficiencies
- Implement lessons learned
- Metrics

Infrastructure Management Pipeline Rebuild: Select the Right Pipes

- Maximize replacement of bad pipe
- Prioritize high Likelihood of Failure (LOF) pipe
- Consider Consequence of Failure in finalizing project

Infrastructure Management Pipeline Rebuild: Select Pipeline Materials

Long-Term Pipeline Replacement Program

- Design
- Construction
- Maintenance

1

Infrastructure Management Pipeline Rebuild: Designing for Resiliency

- Seismic design
- Collaboration with Cornell University
- Testing at UC Boulder

Infrastructure Management Corrosion Control – Metallic Water Mains

- Impressed Current Cathodic Protection
 - Over 100 Systems in Service Area
 - Protect Steel Mains (Transmission)

Infrastructure Management Corrosion Control – Metallic Water Mains

- Impressed Current Cathodic Protection
 - Over 100 Systems in Service Area
 - Protect Steel Mains (Transmission)
- Galvanic Cathodic Protection
 - Over 3,000 Test Stations
 - Protect Steel Mains (Distribution)

Infrastructure Management Corrosion Control – Metallic Water Mains

- Impressed Current Cathodic Protection
 - Over 100 Systems in Service Area
 - Protect Steel Mains (Transmission)
- Galvanic Cathodic Protection
 - Over 3,000 Test Stations
 - Protect Steel Mains (Distribution)
- Metallic Main Break Anode Installs
 - Over 400 Cast Iron Main Breaks
 - Protects Steel and Cast Iron Mains

Infrastructure Management Corrosion Control – Copper Services

Infrastructure Management Moving Forward

- Common goal
- Reduce main breaks, minimize water loss
- Replace the right pipe

Resource Considerations

Infrastructure Staffing (FY18-21)

Infrastructure

Field and Operations Staff	38
Engineering Design/Support	19
Total	57

FM&O

Heavy Transport Operator	11
Heavy Equipment Operator	2
Truck Driver II	1
LT Positions	6
TOTAL	20

- Additional staffing or funding to support
 - Pipeline Rebuild
 - Pipeline Maintenance
 - Other infrastructure construction support
- Additional staffing or funding to reduce FM&O costs

Equipment Additions (FY18-21)

Function	Quantity	Cost
Maintenance	5	\$198,000
Operations	1	\$30,000
Pipeline Rebuild	35	\$3,800,000
FM&O	22	\$4,109,000
Total	63	\$8,137,000

What is FM&O?

- Includes equipment and personnel
- FM&O services
 - Paving and concrete
 - Dump trucks
 - Backhoes
 - Vacuum excavation
 - Sweeping/Grinding
 - Traffic control
 - Welding
 - Saw cutting

Use of FM&O Resources

- Peak workloads
- Specific/specialized service
- Employee absences (e.g., injuries, fatigue, vacations)
- \cdot Joint paving projects with cities
- Backlog reduction (e.g., paving delays due to inclement weather)

Dump Trucks

Backhoe Services

EBMUD

Applications in Process

- Water Service Applications
 3-5 new applications submitted online per day
 Push for ADU and smaller infill projects
- Online Water Service
 Application
 - Improves timeliness
 - Better communication
- Resource Balance
 - Maintain infrastructure
 - Meet customer commitments

- Complete pilot studies
- Implement tracking software
- Provide recommendations in FY22/23 budget

Yard Development

Yard Developments

- More storage & office space needed for growth of Pipeline Rebuild
- Choosing strategic locations to reduce drive time

Existing & Proposed Oakport

- Warehouse Storage
- Outdoor Storage
- Warehouse Offices
- Weld Shop
- + Pipeline Training Academy
- + New Service Yard

will increase space to accommodate Pipeline Rebuild

Oakport Redevelopment

Willow Street Yard Development

Willow Street Yard Development

- 1.8 acre site with 22' tall concrete perimeter wall
- Relocate Central Yard to rehabilitate and repurpose site
- Working with West Oakland Indicators Project

Design and Construction Management and Inspection
Capital Improvement Program Historic and Projected Spending

109

Capital Improvement Program Projected spending by asset class

Capital Improvement Program Design, CM & Inspection Resources

- Pipeline Infrastructure addressed in FY20/21 budget
- Need to address other asset classes
- Driven by necessary sequencing of treatment plant and raw water facility projects
- Develop overall plan for consideration in conjunction with major project construction but no later than FY22/23 budget

Water System Infrastructure Summary

- Executing plan to renew infrastructure
- Promoting sustainability and resilience
- · Reducing water loss
- Continuing to address resource considerations

Wastewater Infrastructure Overview

Integrated MWWTP Master Plan Development

Wastewater Accomplishments in FY19

3rd Street Interceptor Rehab Phase 2 Pump Station Q Dual Flow Project (for Consent Decree)

North Richmond Equalization Tank Rehabilitation

Primary Sedimentation Tanks Rehab Phase 5

Aerated Grit Tank Conveyors Replacement Phase 1

Digester Upgrades Phase 3

FY20–24 Wastewater CIP

Previous Focus Plans

New Drivers

More Stringent Regulations

The Master Plan will integrate...

The Master Plan will integrate...

Teamed Approach

Teamed Approach

Guiding Principles

Guiding Principles

Maintain fair rates through costeffective & no-regrets infrastructure investments

2 Provide reliable wastewater treatment to meet increasingly stringent water quality & environmental regulations

FINANCIAL S TECHNICAL

Reduce visual, noise, & odor impacts to neighbors

3 Maximize sustainability

4 Develop a roadmap for critical infrastructure investments to meet future needs & strengthen resiliency

In-House Work to Define Drivers & Future Needs

Aging Infrastructure

Systematic Condition Assessment

Seismic Evaluation

New Regulations

Active Engagement in Regulatory Development

> Summary Report of Future Regulations

Climate Change

Climate Change Monitoring Impact & Adaptation Plan

Market Assessment for R2 Waste & Potential Use of Excess Biogas

Collaborate with Recycled Water Team for Future Needs

Capacity

Flows & Loads Projections

Existing Treatment Performance & Capacity Evaluation

Condition Assessment: Overview

Completed Work

Years' Worth of Infrastructure

950+ Assets >\$10k Evaluated

Documented Photo In Database O&M History Desired improvements Anecdotal info Covered in CIP: yes/no

Condition Assessment: Major Findings

Condition Distribution by Replacement Value

Business As Usual Preliminary Infrastructure Renewal Forecast

Condition Assessment: Major Findings

KEY TAKEAWAYS

- Renewal forecast shows big spending milestones for maintaining business as usual...
- 2 ... yet does not take into account extra investments to address the new drivers.
 - Spending decisions must be strategic and consider the long term to make "no regrets" infrastructure investments.

Major Seismic Code Changes

UBC: Uniform Building Code (last edition 1997)

Major Changes

2005: Reviewed changes in seismic criteria

2008 National Seismic Hazard

Maps Update

Current Seismic Evaluation

Preliminary Structural Evaluation of Highest-Risk Facilities

KEY TAKEAWAYS

- Life safety is the #1 priority.
- 2 Current focus includes
 - Geotechnical investigation
 - Structural evaluations
 - Retrofit cost estimates

Wastewater Population Projections

MWWTP Influent Flows

MWWTP Influent Flows

Future MWWTP Influent Flows with Consent Decree

Future MWWTP Influent Flows with Consent Decree

KEY TAKEAWAYS

1 There will still be a distinct wet weather season with peaks.

2 Consent Decree is expected to significantly reduce wet weather flows.

Climate Change & Its Impacts

Increase in Inflow & Infiltration

Atmospheric Rivers & Flooding

Infil Gusher 70 FT

Resource Recovery Market Assessment

Low-Strength R2

Growth: Brines (salty wastes)

High-Strength R2

Growth: Food Waste

Food Waste Resource Recovery

Food Waste Resource Recovery

KEY TAKEAWAYS

- 1 Food Waste R2 has many benefits, but comes at a cost and with challenges.
- 2 Master Plan will evaluate the balance of pros and cons to align with the Guiding Principles and other District goals.

R2 must be financially independent (not subsidized by ratepayers).

Maintaining energy self-sufficiency is critical for MWWTP operations.

MWWTP as a Resource Recovery Center

MWWTP as a Resource Recovery Center

KEY TAKEAWAYS

- 1 Leveraging the MWWTP as a resource recovery center will remain a long-term goal.
- 2 Master Plan will balance resource recovery goals with other competing factors.

Roadmap

KEY TAKEAWAYS

1 Non-linear

- 2 Phased based on triggers
- **3** Adaptable for uncertainties

4 Informs CIP & site use

Next Steps

NEXT STEPS

1

3

- Provide ongoing updates to Board.
- 2 Engage with regulators at appropriate time.
 - Stay in communication with community & neighbors,
 - e.g. West Oakland Liaison meeting.

Next Infrastructure Workshop

Power Supply & Demand

Life Cycle Cost

Community Impact

Workshop Summary

- District is on track with infrastructure rehabilitation and replacement
- Data collected and pilots will inform future budgets including staffing resource needs
- Main Wastewater Treatment Plant Master Plan findings presented next year in a workshop and tour

Director Comments