Irrigating Landscapes with Recycled Water

Nelda Matheny

HortScience | Bartlett Consulting

A (very) brief science lesson

What are salts?

 Ionic compounds that result from the neutralization reaction of an acid and a base.

How total salts are measured

- Electrical conductivity
 Ec_e, Ec_w
 - dS/m, μS/m
 - mmhos/cm, µmhos/cm

 Total Dissolved Solids TDS mg/l, ppm

Plants require salts...but not too much!

- Nutrients required for plant growth and function
- Too much salt may damage sensitive plants and degrade soils

Salts can accumulate in plants and soil

Specific ions are very important!

Salt concentration varies with soil moisture

Water in the soil solution

As soil dries, the salts become more concentrated.

Water deficit may look like salt damage

Water deficit may look like salt damage

Recycled Water Quality Categories

Parameter	Category 1	Category 2	Category 3	Category 4
EC _w dS/m	<1.0	1.0-1.3	1.3-2.5	>2.5
TDS mg/I	<640	640-830	830-1,600	>1,600
Boron mg/I	<0.5	0.5-1.0	1.0-2.0	>2.0
Chloride mg/I	<120	120-200	200-350	>350
Sodium mg/I	<70	70-150	150-200	>200

EBMUD Water Quality

Parameter	EBMUD Drinking Water	EBRWP Recycled Water ^a	SRVRWP ^b
EC _w dS/m	0.16	1.93	1.33
TDS mg/I	91	860	691
Boron mg/I	<0.1	0.2	0.6
Chloride mg/I	8	355	170
Sodium mg/I	4-30	234	145

^aAverage Nov., Dec. 2017, Oakland & Emeryville

^bSan Ramon Valley Recycled Water Program, joint project of DSRSD and EBMUD (San Ramon, Danville, Blackhawk); average 2017

EBMUD Water Quality

Parameter	EBMUD Drinking Water	EBRWP Recycled Water ^a	SRVRWP ^b
EC _w dS/m	0.16	1.93	1.33
TDS mg/I	91	860	691
Boron mg/I	<0.1	0.2	0.6
Chloride mg/I	8	355	170
Sodium mg/I	4-30	234	145

Managing landscapes irrigated with RW

Plant Salt Tolerance

• Low • Moderate • High

Site Conditions

• Soil texture

 Problems more likely on clayey than sandy soil.

• Soil salinity, pH

• Problems more likely if start with saline, high pH soil.

• Drainage

• Can't manage salts if site doesn't drain.

Site Conditions

Water + heat + salt stress

• Degree of symptoms worse when plant heat and water stressed.

Irrigation

- Delivery system
- Is foliage wetted?
- How much and how often water applied

Designing landscapes for RW

- Select plants with appropriate salt tolerance
- Evaluate soil characteristics and modify if needed
- Identify and solve drainage problems

Select salt tolerant plants

Trees

- Canary Island pine
- Ornamental pear
- Coast live oak
- Brisbane box
- Shrubs
 - Coleonema
 - Ceanothus
 - Rockrose
 - Euonymus

- Ground covers
 - Rosemary
 - Indian hawthorn
 - Lantana
 - Manzanita
- Turf
 - Tall fescue
 - Perennial ryegrass
 - Coarse-leaf zoysia
 - Bermuda

Irrigation Equipment

Meet health and safety regulations - *Title 22, California Code of Regulations (CCR)*

- control crossconnections
- use purple pipe and include signage
- protect public areas from overspray, runoff, and ponding

Irrigation Equipment

Select appropriate equipment

- self-flushing valves resistant to chlorine
- low-trajectory spray nozzles
- large orifice, turbulent flow drip emitters with micro disc filtration

Photo: Rainbird

In-line dripper filter

Photo: Netafim

Introducing RW into existing landscape

- What is the water quality?
- Conduct site/plant assessment
- Fix existing problems
- Establish soil salinity threshold
- Adjust maintenance practices

Fix pre-existing problems

Ensure drainage

Repair equipment Irrigation audit

Convert spray to avoid wetting foliage

Determine threshold soil salinity

Landscape Salt Tolerance	Estimated Threshold (EC _e)	Test soi
Low	2 mmhos/cm	in spring and fall to
Moderate	4 mmhos/cm	assess salinity
High	6 mmhos/cm	

Managing salt in landscapes

Gypsum may help if SAR>6 or increases more than 2 units

Managing salt in landscapes

No drainage, no leaching

Managing landscapes with RW

	Maintain soil		
	moisture		
P	oor tree	Good	
f	ew roots	many	
	dry soil	moist	

Managing landscapes with RW

- Decrease/adjust fertilizer
 - slow release
 - low salt index
 - acid-forming
 - foliar application for micronutrient deficiency
- Enhance soil biological activity
 - Conserve and replenish soil organics
 - Mulch soil surface

Recycled water in landscapes

- Design for success
- Retrofit landscapes
- Monitor plants and soils
- Adaptive management strategy

Introduction

- Water, soil and plant primer
- Evaluating site conditions for use of recycled water
- Modifying existing landscape for irrigation with recycled water
- Designing new landscape that will be irrigated with recycled water
- Designing and modifying irrigation systems to deliver recycled water
- Water management