Appendix E1

WSMP 2040 Meeting Presentations

Board of Directors Workshops

		Operations, Engineering, Legal and Institutional Criteria
Γ	Objec	ives
	• Pr	ovide adequate capacity, flexibility and reliability to respond to the problems and allenges. (See Section $2.1)$
	Scree	ning Criteria - Exclusionary Criteria
	Ox1	The program components and Composite Program must be technically feasible. must be possible to develop and operate the program components and Composite Programs based on accepted, state-of-the-art engineering considerations.
	Ox2	Existing facilities and program components must not be located in an area of, or constitute, unmitigable geologic, hydrologic or toxic/hazardous materials hazards
	Ox3	The program components and Composite Program must be logistically (i.e. legall and institutionally) feasible (i.e. must be available or capable of being made available). The Composite Program must meet all existing and anticipated water rights permit and license conditions and all dam and reservoir operating permit conditions, including releases for instream uses and downstream users.
	Ox4	The Composite Program must ensure that the District can handle the Drought Planning Sequence including a Maximum Drought Management Program.
	Scree	ning Criteria - Evaluating Criteria
	01	The program components and Composite Program should minimize the risk of disruptions in service by maximizing the institutional reliability of service.
6	O2	The program components and Composite Program should minimize the risk of disruptions in service by maximizing the technical reliability of service.
	O3	The program components and Composite Program should maximize the system's operational flexibility to respond to change (including changes in water demands)
	04	The program components and Composite Program should maximize the system's implementation flexibility to respond to change (including incremental implementation or phasing of components as demands and needs change).
	O5	The program components and Composite Program should minimize logistical (i.e legal and institutional) problems.
	O6	The Composite Program should minimize rationing due to drought.

4/24/2007

WSMP 2040 BOD Workshop #1 April 24, 2007

WSMP 2040 BOD Workshop #1 April 24, 2007

7

4/24/2007

					D-1		Exh	nibit 1-2								
					Pfi	mary	Com	posite	rogram	15						
	ÇOMPONENTS	DMP	CONSE (SAV	RVATION INGS) ¹	RE	CLAMATI SAVINGS)	р N	6	ROUNDWATE	R	RESERVOIR	SUPPL	EMENTAL			Composito
PRIMA COMPOS PROGRA	ay ITTE MS	Maximum Deficiency ²	II (I8MGD)	IV (35 MGD)	A1 (8MGD)	A2 (21 MGD)	A6 (8MGD)	Agricultural Exchange	River Substitution	Direct to Aqueducts	Raise Pardee +150 TAF	Delta	Folsom South Connection	Aqueduct Security	LMRMP	Program Screening Designation
I	Demand-Side Management	35%		•		•	•							•	•	x
п	Groundwater	25%	٠		•			٠	•	٠				٠	٠	Α'
щ	Delta Supply	25%	۲		•							•		•	٠	В'
IV	Groundwater and Folsom South Connection	25%	•		۲				٠	٠			•	•	٠	с
v	Raise Pardee	25%	•		•						٠			۲	٠	F
VI	Groundwater Only (Least Cost)	25%						•	•	•				•	٠	J
Notes: 1 Savings i Conserva 2 Drought during dr 3 During th	ndicated are in addition t tion and reclamation sav Management Programs () oughts, A DMP would b e screening of alternative	o savings fi ings are not DMP) are s implement compositu	rom exist t necessar short-term tted in add	ing and a rily additi a rationin; dition to s as, the alt	dopted c ve due t g impose some lev ernative:	onserval o overlap ed on cus el of con s were id	tion and pping. stomers iservatio	reclamation on I by these let	t programs.		5.	ĸ	ey Orin Prin	mponents mary Con	included	in ograms

Water Supply Management Program 2040

WSMP 2020 Preferred Program

(Adopted 1993)

Aqueduct Security

An approximate 10-mile section of the Moklelumne Aqueducts through the Sacramento-San Joaquin Delta would be secured against prolonged outages resulting from earthquake-induced failures.

LMRMP

The Lower Mokelumne River Management Plan specifies flow regimes, reservoir operations, and hatchery operations that would enhance benefits to fishery resources in the Mokelumne River while maximizing flexibility in managing a variable water supply, uncertain future demands, and uncertain linkages between fish populations and fishery management activities.

Groundwater Storage/Conjunctive Use

Water would be stored in an underground basin when excess surface water supplies were available and could be withdrawn during drier years when surface supplies were below normal.

Conservation and Reclamation

These two demand-side components would reduce the District's projected 2020 demand for water from 277 MGD to 229 MGD, a reduction of 48 MGD.

	WSMP 2020 Planning Objectives (Adopted 1993)
Opera	tions, Engineering, Legal and Institutional Provide adequate capacity, flexibility, and reliability to respond to the problems and challenges.
Econo	mic Minimize total direct costs to District customers
Public	Health, Public Safety & Sociocultural Maintain the high quality of the District's water supply. This includes taking steps to ensure tha the District's potable water will meet all existing and anticipated drinking water standards; and that the District's non-potable water is of a quality suitable to its use.
	Maintain outdoor recreation opportunities.
	Minimize risks to public health and safety.

B	Policy 3.05
EBMUD ONSIDERATIONS FOR EXTENSION (EYOND THE ULTIMATE SERVICE BC	DF WATER SUPERSEDES 13 FEB 01 DUNDARY
T IS THE POLICY OF THE EAST BAY MUNICIPAL UT	TILITY DISTRICT THAT:
The District will not extend water to areas outside the pro District, if such extension would result in:	esent Ultimate Service Boundary (USB) of the
. A reduction in the quantity of water available to Distr levels of demand; or	ict customers to satisfy existing or projected
 A reduction in the quality of water available to the Di sources; or 	strict customers from the District's present water
An increase in costs of service for District customers	š.
The USB defines the territory within which the District hat District customers" as used in this policy shall mean (i) (Ind (ii) future customers, located within the present USE	es planned to provide water service. The phrase existing water service customers of the District 8, but not now receiving water service.

B	Policy 7.05	
EBMUD	EFFECTIVE 22 SEP 98	
ENVIRONMENTAL RESPONSIBILITY	SUPERSEDES 13 SEP 94	2
Provide reliable, high-quality drinking water and wastewater maintenance and construction activities that avoid, minimize effects to the maximum extent feasible.	service with operational, or mitigate adverse environmental	· .

Water Supply	Management Prog	workshop Schedule
Workshop #2	June 26, 2007	Demand Study Progress Interim 2040 Demand Drought Planning Sequence
Workshop #3	July 24, 2007	Range of Components
Workshop #4	September 25, 2007	Conservation, Recycling, Rationing
Workshop #5	November 27, 2007	Economic Modeling & Risk Assessment
Workshop #6	February 26, 2008	2040/2060 Demand Projections Component Screening & Evaluation
Workshop #7	April 22, 2008	Portfolio Screening & Evaluation
Workshop #8	June 24, 2008	Identify Preferred Portfolio
Workshop #9	November 25, 2008	Adopt WSMP & Certify EIR

iter Supply Ma	inagement Pro	gram 2040 Public Outreach Upda
WS	SMP 2040 CLC	Community Liaison Committee
First Name	Last Name	Organization
Barbara	Becnel	Richmond Neighborhood House
Charles	Brydon	W.A.T.E.R
Eleanor	Loynd	May Valley Neighborhood Assn, El Sobrante
Stuart	Flashman	Private Attorney
Merlin	Edwards	African American Chamber of Commerce
OB	Badger	Former Mayor of San Leandro
David	Nesmith	CA Environmental Water Caucus
Kris	Hunt	Contra Costa Taxpayers' Association
Laura	Harnish	Environmental Defense
Bob	Glover	Home Builders Association of N. CA.
Howard	Kerr	Oro Loma Sanitary District
John	Gioia	Contra Costa County Board of Supervisors
Henry	Gardner	Association of Bay Area Governments
Tomi	Van de Brooke	Water Task Force, Contra Costa Council
Bruce	Kern	Economic Development Alliance for Business
Betty	Graham	Dept of Health Services, SF District
Walt	Gill	Chevron Refinery
Julia	Liou	Asian Health Services
N AT L H H	Hannoman	LIC Berkeley, Water and Economics

Giobai Giniate Giang							
	Altered historic hydrology (DWR method)	Future climate time series (Governor's report method)					
Temperature	Increase	Increase					
Total Annual Precipitation	Inconclusive	Inconclusive					
Annual reservoir inflow	Inconclusive	Inconclusive					
Stream Flow Timing	Earlier	Earlier					
Drought Persistence	Preserve historic sequence of wet and dry years	More frequent droughts, higher potential for "mega- drought"					
Water Demand / Allocations	Static - based on historic	Dynamic - can change with climate change					

Water Supply Management Program 2040 WSMP 2040 Planning Objective	S
Operations, Engineering, Legal & Institutional Provide water supply reliability. Preserve current water right entitlements. Promote District involvement in regional, sustainable solutions.	
Economic Minimize cost to District customers. Minimize drought impact to District customers. Public Health, Safety & Community Ensure the high quality of the District's water supply. Minimize adverse sociocultural impacts (including environmental justice). Minimize risks to public health & safety. Maximize security of infrastructure & water supply. Environmental Preserve & protect the environment for future generations.	
Preserve & protect biological resources. Contribute to reduction in carbon footprint. Promote recreational opportunities.	4

Water Supply Management Program 20	040		
nd Use Methodology Provi	ides Most V	alue to	Distri
	Land Use Method	Population Method	Socio- economic Method
Uses spatial data	✓		
Based on General Plans	✓		
Accounts for non-residential consumption	✓		~
Assumptions undergone CEQA	✓		
Allows for disaggregation of data	✓		
Transparent methodology	✓	~	
Data is readily available		~	
Commonly used		1	

WSMP 2040 BOD Workshop #2 June 26, 2007

		unugen	nem Fi	ogram	2040					
					Der	nan	d St	tudy	/ St	atu
								_		
	2007									2008
Task	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	
Start		1 m					11			
Preliminary Demand Estimate										
Existing LU Layer										
Existing LUDS										
Future LU Layers										
Analysis of Existing LUDS										
Future LUDS										
Model Support										
2040 Demands										
2060 Demands										

WSMP 2040 BOD Workshop #2 June 26, 2007

WSMP 2040 BOD Workshop #2 June 26, 2007

CO Wat	er Supply	Management	Program	2040
--------	-----------	------------	---------	------

Comparison of Drought Planning Approaches

Agency	Basis for Drought Planning Sequence	Drought Management Triggers
EBMUD	1976-1978 (simulated 1978 = average of 76/77)	Prepare Drought Management Plan when storage is projected to be less than 500 TAF.
SCVWD	1987-1992 drought extended to a 10-year duration	Groundwater end-of-the-year carryover storage less than 350,000 af
SFPUC	1986-92 drought	No exact triggers.
CCWD	Variety of drought years and scenarios considered	No exact triggers.
Alameda CWD	IRMP model based on the period of record (1922- 1992).	No triggers given.
MWD	1990-1992 drought Single dry year scenario is based on 1977	No specific triggers.
San Diego CWA	1990-1992 drought	No triggers given.
LA DPW	1959-61 drought	No triggers given.

²⁷

WSMP 2040 BOD Workshop #2 June 26, 2007

B Water Supply Management Program 2040	
WSMP 2040 Planning Objective	€\$
Operations, Engineering, Legal & Institutional	
Provide water supply reliability.	
Preserve current water right entitlements.	
Promote District involvement in regional, sustainable solutions.	
Economic	
Minimize cost to District customers.	
Minimize drought impact to District customers.	
Public Health, Safety & Community	
Ensure the high quality of the District's water supply.	
Minimize adverse sociocultural impacts (including environmental justice).	
Minimize risks to public health & safety.	
Maximize security of infrastructure & water supply.	
Environmental	
Preserve & protect the environment for future generations.	
Preserve & protect biological resources.	
Contribute to reduction in carbon footprint.	33
Promote recreational opportunities.	55

WSMP 2040 BOD Workshop #3 July 24, 2007

7/24/2007

WSMP 2040 BOD Workshop #3 July 24, 2007

Water Supply Management Program 2040				
 Statewide (CALFED) 1. Raise Shasta Reservoir 2. Temperance Flat 3. SITES Reservoir 4. Expanded Los Vagueros 	Central Valley 1. Groundwater Banking/Exchange (San Joaquin Basin) 2. Groundwater Banking/Exchange (Sacramento Basin)	 Local (East Bay) 1. Kellogg Reservoir 2. Buckhorn Canyon Reservoir 3. Cull Canyon Reservoir 4. Curry Canyon Reservoir 5. Bollinger Canyon 		
 Upcountry Pardee Camanche Lower Bear Middle Bar Inter-Regional Conjunctive Use Project Water Transfers 	 Duck Creek Reservoir Water Transfers 	 Bayside GW - Phase 2 Regional Desalination Low Energy Application for Desalination (LEAD) at C&H Sugar Off-Shore Desalination Water Transfers with Bay Area Agencies 		

SP				
MUD	Water Supply Management Pr	ogram 2040		
	Evaluated & E	xclude	d in Freeport Analy	sia
			a	0.0
<u></u>	reary raview conducted to ve			
	Isory review conducted to ve			
1.	Alamo Creek Reservoir	22.	Tassajera Reservoir	
2.	Bailey Road Reservoir	23.	Tice Valley Reservoir	
3.	Bolinas Reservoir	24.	Enlarge Upper San Leandro Reservoir	
4.	Enlarge Briones Reservoir	25.	Enlarge San Pablo reservoir	
5.	Upper Buckhorn Reservoir	26.	Bixler Groundwater Storage	
5.	Canada del Cierbo Reservoir	27.	Mokelumne River Salt Springs	
7.	Enlarge Chabot Reservoir	28.	Watershed Cloud Seeding	
3.	Clay Station Reservoir	29.	Mokelumne River Devil's Nose Supply	
Э.	Kaiser Reservoir	30.	Tanker Transport of Canadian Water	
10.	Upper Kaiser Reservoir		Supplies	
11.	Kirker Reservoir	31.	North Fork Stanislaus River Supply	
12.	Enlarge Lafayette Reservoir	32.	South Bay Aqueduct Intertie	
13.	Mitchell Canyon Reservoir	33.	Tuolumne Hetch Hetchy Intertie	
14.	Montezuma Hills reservoir	34.	Yuba River Water by Barge	
15.	Morningside Reservoir	35.	Cosumnes River Source	
16.	Nichols Reservoir	36.	Iceberg Source	
17.	Pinole Reservoir	37.	Auburn Dam	
18.	Railroad Flat Reservoir			
19.	Rodeo Reservoir			
20.	San Leandro Reservoir			~
14	Sidney Flat Reservoir			- 2

7/24/2007

7/24/2007

WSMP 2040 BOD Workshop #3 July 24, 2007

Water Supply Management Program 2040 Conservation Ranges 2008 & beyond (Preliminary)*				
Level of Conservation	Total District- driven 2009-2040	Total Conserved by 2020 **	Total Conserved by 2040**	
Natural Savings Only	0MGD	29 MGD	36 MGD	
Low District Investment (avg. 0.25 MGD per year)	7-9 MGD	31-33 MGD	43-45 MGD	
Medium District Investment (avg. 0.5 MGD per year)	14-18 MGD	33-37 MGD	50-54 MGD	
High District Investment (avg. 0. 65 MGD/year)	18-24 MGD	34-40 MGD	54-60 MGD	
Maximum Conservation - implementing all measures under consideration	22-30 MGD	35-43 MGD	59-65 MGD	

** Assumes 22.5 MGD conservation by 2008, natural savings of 6.5 MGD 2009-2020 and 7.0 MGD $202_{92}^{\circ}2040$

WSMP 2040 BOD Workshop #3 July 24, 2007

Water Supply Management Program 2040 Climate Change Approach – Other Agencies		
Contra Costa WD	Maintain conservative drought planning sequence. No specific climate change approach.	
Santa Clara Valley WD	Maintain conservative drought planning sequence. No specific climate change approach.	
SFPUC	Sensitivity analyses for climate change impacts on the Hetc Hetchy system were conducted. Specific details pending.	
CVP Operations (USBR)	Comprehensive sensitivity analysis underway, based on a result portfolio using 22 GCM/emissions scenarios.	
SWP Operations (DWR)	Sensitivity analysis based on results of DWR's perturbation or historic hydrology.	
Metropolitan Water District	Adaptive management approach that includes voluntary water transfers to improve supply reliability, increasing storage capacity. 59	

8 wa	ater Supply Management Program 2040	
EBMUD	WSMP 2040 Planning Objective	96
		63
Operat	ions, Engineering, Legal & Institutional	
1.	Provide water supply reliability.	
2.	Utilize current water right entitlements.	
3.	Promote District involvement in regional solutions.	
Econor	mic	
1.	Minimize cost to District customers.	
2.	Minimize drought impact to District customers.	
3.	Maximize positive impact to local economy.	
Public	Health, Safety & Community	
1.	Ensure the high quality of the District's water supply.	
2.	Minimize adverse sociocultural impacts (including environmental jus	stice).
3.	Minimize risks to public health & safety.	
4.	Maximize security of infrastructure & water supply.	
Enviror	nmental	
1.	Preserve & protect the environment for future generations.	
2.	Preserve & protect biological resources.	
3.	Minimize carbon footprint.	3
4.	Promote recreational opportunities.	

	ater Supply Management Program 2040
	WSMP 2040 Planning Objectives
0	
Opera	tions, Engineering, Legal & Institutional
1.	Provide water supply reliability.
2.	Utilize current water right entitlements.
3.	Promote District involvement in regional solutions.
Econo	mic
1.	Minimize cost to District customers.
2.	Minimize drought impact to District customers.
3.	Maximize positive impact to local economy.
Public	Health, Safety & Community
1.	Ensure the high quality of the District's water supply.
2.	Minimize adverse sociocultural impacts (including environmental justice).
3.	Minimize risks to public health & safety.
4.	Maximize security of infrastructure & water supply.
Enviro	onmental
1.	Preserve & protect the environment for future generations.
2.	Preserve & protect biological resources.
3	Minimize carbon footprint.
4.	Promote recreational opportunities.

		ter Supply Management Program 2040	
		WSMP 2040 Planning Objecti	ves
-			
C	perat	ions, Engineering, Legal & Institutional	
	1.	Provide water supply reliability.	
	2.	Utilize current water right entitlements.	
	3.	Promote District involvement in regional solutions.	
E	conor	nic	
	1.	Minimize cost to District customers.	
	2.	Minimize drought impact to District customers.	
	3.	Maximize positive impact to local economy.	
Р	ublic l	Health, Safety & Community	
	1.	Ensure the high quality of the District's water supply.	
	2.	Minimize adverse sociocultural impacts (including environmental	justice).
	3.	Minimize risks to public health & safety.	
	4.	Maximize security of infrastructure & water supply.	
E	inviror	Imental	
	1.	Preserve & protect the environment for future generations.	
	2.	Preserve & protect biological resources.	
	3.	Minimize carbon footprint.	18
	4.	Promote recreational opportunities.	

WSMP 2040 BOD Workshop #4 September 25, 2007

WSMP 2040 BOD Workshop #4 September 25, 2007

Stage	April Projection of Storage on September 30	Reduction Goal	Voluntary Mandatory
	500 TAF or more	None	
Moderate	500-450 TAF	0 to 15%	Voluntary
Severe	450-300	15 TO 25%	Mandatory
Critical	Less than 300 TAF	25%	Mandatory
	TAF – T	Thousand Acre-Fe	eet

Water Supply Management Program 2040 Planned Rationing for Other Agencies		
Zone 7 Water Agency	0%	
Metropolitan Water District of So. Cal.	0%	
Marin Municipal Water District	20%	
San Francisco PUC	Considering 20%	
Contra Costa Water District	No Goal	
Alameda County Water District	No Goal	
Santa Clara Valley Water District	No Policy	

WSMP 2040 BOD Workshop #4 September 25, 2007

Centralized T	reatment Projects
ConocoPhillips	Up to 4 mgd
East Bay Shore: Phase 1B (Alameda) Phase 2 (Future Expansion)	0.5 - 1.7 mgd 0.1 - 0.5 mgd
Franklin Canyon	0.2 - 0.3 mgd
North Richmond - Surrounding Area	0.2 - 1.7 mgd
Point Richmond	0.1 mgd
RARE Water Project: Phase 2 Future Expansion	0.5 mgd 1.0 mgd
Reliez Valley Recycled Water Project	0.1 - 0.2 mgd
San Leandro (Oakland/Alameda)	0.1 - 1.3 mgd
San Ramon Valley (Phases 2 through 6)	2.0 - 2.2 mgd

Diablo Country Club	0.2 mgd
Moraga Country Club	01 0.2 mgd
Mountain View & St. Mary's Cemetery	0.1 - 0.2 mgd
Rolling Hills Cemetery	0.1 - 0.2 mgd
Rossmoor Country Club	0.1 - 0.2 mgd
Total Potential Annual Yiel	ld: Up to 1,100 afy (1 mgd)

Bauge Water Supply Management Program 2040	Water Projects
Lafayette Reservoir Raw Water Project	Up to 0.05 mgd
Lake Chabot Raw Water Expansion Project	0.1 - 0.2 mgd
Total Potential Annual Yield:	Up to 300 afy (0.3 mgd)

Butter Supply Management Program 2040 Partnership with Upcountry/S	Sacramento Agencies
Partner Agency	Potential Yield (annual, mgd or acre-ft/yr)
Amador Water Agency	1 mgd (1,100 acre-ft/yr)
Jackson Valley Irrigation Districts & Amador County Wastewater Agencies	0.2 - 0.3 mgd (200 - 300 acre-ft/yr)
Jackson Valley Irrigation Districts & Amador Water Agency/ future Joint Lake Camanche WWTP	1 mgd (1,100 acre-ft/yr)
Woodbridge Irrigation District	To Be Determined
Sacramento Regional County Sanitation District & Sacramento County Water Agency	Up to 11.6 mgd (13,000 acre-ft/yr)
TOTAL	Up to 17 mgd ₆₄ (19,000 acre-ft/yr)

WSMP 2040 BOD Workshop #4 September 25, 2007

4

	ter Supply Management Program 2040	
	Planning Object	ctives
Operati	ons, Engineering, Legal & Institutional	
1.	Provide water supply reliability.	
2.	Utilize current water right entitlements.	
3.	Promote District involvement in regional solutions.	
Econor	nic	
1.	Minimize cost to District customers.	
2.	Minimize drought impact to District customers.	
3.	Maximize positive impact to local economy.	
Public H	Health, Safety & Community	
1.	Ensure the high quality of the District's water supply.	
2.	Minimize adverse sociocultural impacts (including environme	ntal justice).
3.	Minimize risks to public health & safety.	. ,
4.	Maximize security of infrastructure & water supply.	
Inviror	mental	
1.	Preserve & protect the environment for future generations.	
2.	Preserve & protect biological resources.	
3.	Minimize carbon footprint.	9
4.	Promote recreational opportunities.	

Step 1: Screen Conservation Measur					
Conservation Measure (examples)	Evaluation Criteria				
Conservation measure (examples)	Operations	Economic	Public Health	Environ- mental	
Clothes washer rebate	Н	М	М	М	
Residential surveys I	Н	L	Н	н	
Weather-based controllers	М	М	М	н	
Automated Metering Systems I	Н	н	Н	Н	
Automated Metering Systems II	Н	М	Н	М	
Pipeline leak repair	L	L	М	М	
Commercial dishwasher rebate	Н	L	М	Н	
Graywater	L	L	L	L/M	

Water Supply Management Program 2040 Evaluation Process Step 2: Cluster Measures by Conservation Level					
	Conservation Level				
Conservation Measure (examples)	A	В	С	D	E
Plumbing code	X	х	х	х	x
Clothes washer rebate		х	х	х	x
Residential surveys I			x	х	x
Weather-based controllers			x	х	x
Automated Metering Systems I			x	х	x
Automated Metering Systems II				х	x
Pipeline leak repair				х	x
Commercial dishwasher rebate					x
Graywater					

Step 3: Test Conservat	Evalua <i>ion Le</i> r	atic <i>vels</i>	n P <i>in P</i>	roc ortf	ess olios
Conservation Measure (examples)	Conservation Level				
	A	В	C	D	E
Plumbing code	X	х	х	х	х
Clothes washer rebate		х	х	х	х
Residential surveys I			х	х	х
Weather-based controllers			х	х	х
Automated Metering Systems I			x	х	х
Automated Metering Systems II			1.5	Х	х
Pipeline leak repair				х	х
Commercial dishwasher rebate					X
Graywater					

Need for Supplemental Water Suppli Need for Supplemental Water Suppli in 2040 During D				
Maximum rationing	Gross Annual Average Customer Demand (MGD)	Need for Water over 3 years (TAF) ^b	Average Annual Need for Water (MGD)	
25%	298ª	150	45	
15%	298	216	64	
10%	298	248	73	
0%	298	306	91	

30

20

BMUD	Supp	lemental Supply
 Statewide Sites Reservoir Temperance Flat Reservoir Expanded Los Vaqueros Reservoir Semitropic Groundwater Bank 	 Central Valley Bixler/Delta Diversion Duck Creek Sacramento Basin Groundwater Banking/Exchange San Joaquin Basin Groundwater Banking/Exchange 	Local (East Bay) Bayside GW – Phase 2 Bollinger Canyon Buckhorn Canyon Cull Canyon Curry Canyon Fog Capture Kellogg Canyon Low Energy Application for Desalination (LEAD) at C&H Sugar
 Upcountry Camanche Inter-Regional Con Lower Bear Middle Bar 	njunctive Use Project	 Off-Shore Desalination Regional Desalination Water Bags

MUD	Agenda
 A. Updates 1. Action Items from BOD Workshop #5 2. Water Transfers 3. Final Demand Projection 4. Need-for-Water calculation 	45 min
 Component Screening & Evaluation: Supplemental Supply 	30 min
C. Component Screening & Evaluation: Recycled & Raw Water	30 min
Component Coreoning & Evoluction	30 min

B Water Supply	Manageme	ent Progra	am 2040				
De	eman	d Pro	oiect	ions:	Fina	l Res	sults
			J				
	2005	2010	2015	2020	2025	2030	2040
System Input	2000	2010	2010	2020	2020	2000	2010
(normalized -							
unadjusted)	232	246	261	275	286	299	300
Baseline							
Conservation*	-18.0	-22.5	-22.5	-22.5	-22.5	-22.5	-22.
Baseline Recycled							
Water*	-6.0	-9.3	-9.3	-9.3	-9.3	-9.3	-9.3
System Input							
(adjusted)	208	214	229	243	254	267	274
*WSMP 2040 assumption	e: conservation	and recycle	d water				
Preliminary 2040 Demand	ds: 258 mad	r anu recycle	u water				

	Need for Su	pplemental \ in 20	Nater Suppli 40 During D
Jses Final De	mand Projection of 2	74 MGD	
Maximum rationing	Gross Annual Average Customer Demand (MGD)	Average Annual Need for Water (MGD)	Need for Water over 3 years (TAF) ^b
25%	306ª	57	194
15%	306	77	259
10%	306	87	294
0%	306	107	359

2/13/2008

2/13/2008

B Wa	ter Supply Managemen	t Program 204	vel A - I	E Com	parisoı
Level	Description	# of Measures ¹	2040 Water Savings (MGD)	% Market Saturation	Average Incremental Dry Year Unit Cost (\$/AF) 2
Α	Natural savings	11	19	10-50%	NA
В	Natural savings + 10	39	29	10-65%	\$500
с	Current program equivalent	51	37	15-75%	\$3,600
D	Current program equivalent + 2	53	39	20-80%	\$6,300
Е	Maximum voluntary	58	41	25-95%	\$11,300

² Preliminary number based on need for water in 3 of 10 years.

42

L	evel A: Natural \$	Savin
11 Conservation Measures ¹	2040 Water Savings (MGD)	\$/AF ²
Toilet standards	11.0	NA
Urinal standards	0.54	NA
Showerhead standards	0.56	NA
Clotheswasher standards	7.1	NA
TOTAL	19.2	NA

² Plumbing code requirement, therefore cost is not applicable.

44

 MF surveys MF surveys with automated metering Smart irrigation controller rebates Commercial surveys with automated metering Irrigation Water Budgets Irrigation water budgets w/automated metering Retrofit on resale toilet ordinance (SF) I* Retrofit on resale toilet ordinance (MF) I* Rets clotheswasher rebates I* Comm. clotheswasher rebates I & II* MF submetering Retrofit on resale toilet ordinance I & II* MF submeter incentive Res. clotheswasher rebates I & II* MF submeter incentive Retrofit on resale toilet ordinance I & II* MF submeter incentive Res. clotheswasher rebates I & II* MF submeter incentive Res. clotheswasher rebates I & II* 	Water Supply Management Program 2040	atural Savings + 10 .evel A + 28 New Measures
 Dental Vacuum Pumps Plan review for new CII Water Brooms 	 MF surveys MF surveys with automated metering Smart irrigation controller rebates Commercial surveys with automated metering Irrigation Water Budgets Irrigation water budgets w/automated metering Retrofit on resale toilet ordinance (SF) I* Retrofit on resale toilet ordinance (MF) I* MF submeter incentive Res. clotheswasher rebates I* Comm. clotheswasher rebates I & II* Dental Vacuum Pumps Water Brooms 	 New development requirements: Automated metering High efficiency toilets High efficiency washers High efficiency faucets, showerheads MF submetering Smart irrigation controllers Hot water on demand Landscape and irrigation standards New commercial urinals Commercial plan review High efficiency dishwashers Plan review for new CII
 Artificial turf sports fields Public Education 45 	 Artificial turf sports fields Public Education 	45

Le	vel B: Natu	ıral Savings + 10
39 Conservation Measures ¹	2040 Water Savings (MGD)	Avg. Incremental Dry- Year Unit Cost (\$/AF) ²
Level A (Natural Savings)	19	
Level B	10	
TOTAL	29	\$500

Water Supply Manageme	ent Program 2040 Current P Le	r ogram Equivale vel B + 12 New Measu	e nt res
 SF Surveys SF Surveys w/automated CII Surveys Commercial/Institutional/Ir equipment rebates Condo Surveys Condo Surveys w/automatical 	Hetering Hetering Hetering Hetering Hetering Hetering Hetering * Mu	High efficiency toilet rebates I & rrigation Water Surveys SF garbage disposal incentive eak Detection & Repair Reduc Artificial Turf SF Residential Itiple levels of Market Penetration	ction I
51 Conservation Measures ¹	2040 Water Savings (MGD)	Avg. Incremental Dry- Year Unit Cost (\$/AF) ²	
Level B (39 measures)	29		
Level C	8		
TOTAL	37	\$3,600	
¹ Estimated range of multiple measu	ures/products across all	customer sectors	47

	evel D: Cur Lev	r ent Progra i el C + 2 New Me	m + 2 easures
Required Plumbing	Ior Future Gray	water Use in SF F	residen
Financial Incentives	/Rebates for Irrig	gation Upgrades Avg. Incremental	1
Financial Incentives 53 Conservation Measures1	/Rebates for Irrig 2040 Water Savings (MGD)	Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	
Financial Incentives 53 Conservation Measures1 Level C (51 measures)	/Rebates for Irrig 2040 Water Savings (MGD) 37	gation Upgrades Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	
Financial Incentives 53 Conservation Measures1 Level C (51 measures) Level D	/Rebates for Irrig	ation Upgrades Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	-

11

Water Supply Management Program 2040 Current System Performance								
Factor/Case Examined	Impact on System Storage	Impacts on Rationing	Impacts on Flood Releases					
Increased Customer Demand (3.6%)	5% average decrease in effective system storage	 Up to 44 AF increase in rationing No change in rationing frequency 	None					
Shift in Springtime Runoff	Approx. 5% decrease in effective system storage	Up to 71 AF increase No change in rationing frequency	Small (1 to 6%) increase in total releases Decrease (12 to 15%) in spring release					
Decrease in Precip & Runoff (10 to 20%)	12 to 24% decrease in effective system storage	Up to 198 AF increase in rationing Significant increases in rationing frequency	Large (27 to 52%) decrease in total release Similar decrease in spring release					
			18					

Stage	April Projection of Storage on September 30	Reduction Goal	Voluntary/ Mandatory
	500 TAF or more	None	
Moderate	500-450 TAF	0 to 15%	Voluntary
Severe	450-300	15 to 25%	Mandatory
Critical	Less than 300 TAF	25%	Mandatory
	TAF – ⁻	Thousand Acre-Fe	eet

Water Supply Management Program 2040						
Zone 7 Water Agency	0%					
Metropolitan Water District of So. Cal.	0%					
Marin Municipal Water District	10% / 25%					
San Francisco PUC	10 - 20%					
Contra Costa Water District	15%					
Alameda County Water District	10%					
Santa Clara Valley Water District	No Policy					

Table 2 - Supplemental Supply Projects Preliminary Dry Year Yield Unit Cost Estimates ^a									
Project ID	Project Name	Online Yr	Operation	Dry Year Yield (MGD)	EBMUD Capital Cost (Mil, \$)	EBMUD O&M (\$/MG) ^c	Total Energy Use KWh/MG ^d	EBMUD Unit Cost (\$/AF, Dry Yield)	
SUP-25	Northern California Permanent Water Transfer ^b	2010	Permanent	4.5-44.6	\$20.0-\$200.0	\$649	5,217	\$630	
SUP-11	Buckhorn Canyon Reservoir	2015	Storage	42.0	\$243.9	\$451	3,667	\$710	
SUP-24	Enlarged Pardee Reservoir	2020	Storage	51.2	\$340.3	\$324	2,021	\$730	
SUP-22	Enlarge Lower Bear Reservoir	2015	Storage	2.2	\$12.1	\$418	3,038	\$840	
SUP-09	Bayside Phase 2 Groundwater Project	2013	Conjunctive Use	9.0	\$35.4	\$853	4,719	\$890	
SUP-21	Inter-Regional Conjunctive Use Project (IR-CUP)/San Joaquin (SJ) Groundwater Banking	2014	Conjunctive Use	17.4	\$121.1	\$1,051	7,919	\$1,200	
SUP-18	Regional Desalination Project	2012	Dry Year	20.0	\$72.4	\$3,912	11,000	\$1,900	
SUP-07	Groundwater Banking/Exchange (Sacramento Basin) ¹	2014	Conjunctive Use	4.2	\$50.1	\$1,326	8,895	\$1,900	
SUP-16	LEAD at C&H Sugar	2012	Baseload	15	\$23.4	\$1 945	0	\$2.600	

f. For groundwater banking projects (IR-CUP/SJ Groundwater Banking, Groundwater Banking/Exchange in Sacramento Basin and the Bayside Phase 2 Groundwater Project), it is estimated that approximately 10% of the water will be lost to migration and delivery system losses. These losses are reflected in this table.

Water Supply Management Program 2040 Recycled Water Projects Dry Year Unit Cost Estimates										
Project ID	Table 3 – Recycled Water Projects	Online Year	Expected Operation	Dry Year Yield (MGD)	EBMUD Capital Cost (Mil. \$)	EBMUD Variable O&M (d) (\$/MG)	Variable Energy Use (KWh/MG)	EBMUE Dry Yea Unit Cost (e (\$/AF)		
REC-01A	ConocoPhillips RWP Phase 2 (a)	2015	Baseload	0.90	\$2.9	\$-	3,751	\$40		
REC-07	RARE Future Expansion (b)	2015	Baseload	1.00	S-	\$1,221	5,606	\$1,30		
REC-06	RARE Phase 2	2012	Baseload	0.50	\$-	\$1,276	5,606	\$1,40		
REC-10	SRVRWP Phase 2	2010	Baseload	0.75	\$5.0	\$849	4,265	\$1,60		
REC-12	SRVRWP Phase 4	2016	Baseload	0.37	\$2.5	\$849	4,265	\$1,60		
REC-01	ConocoPhillips RWP Phase 1	2012	Baseload	2.80	\$39.8	\$-	3,751	\$1,70		
REC-16	Lake Chabot Raw Water Expansion Project	2010	Baseload	0.36	\$4.7	\$468	1,051	\$1,80		
REC-11	SRVRWP Phase 3	2013	Baseload	0.58	\$5.5	\$849	4,265	\$1,90		
REC-04	Franklin Canyon Recycled Water Project	2023	Baseload	0.30	\$4.0	\$712	4,265	\$2,10		
REC-05	North Richmond Water Reclamation Plant Expansion	2018	Baseload	1.70	\$15.4	\$1,186	5,607	\$2,20		
REC-03	East Bayshore Phase 2 (c)	2014	Baseload	0.60	\$9.4	\$987	2,679	\$2,6		
REC-13	SRVRWP Phase 5	2018	Baseload	0.30	\$5.4	\$849	4,265	\$2,7		
REC-14	SRVRWP Phase 6	2020	Baseload	0.20	\$4.0	\$849	4,265	\$2,90		
REC-02	East Bayshore Phase 1B	2012	Baseload	1.20	\$28.0	\$987	2,679	\$3,4		
REC-08	Reliez Valley Recycled Water Project	2015	Baseload	0.19	\$3.1	\$2,807	4,639	\$4,70		
REC-09	San Leandro Water Reclamation Facility Expansion Project: Phase 3	2015	Baseload	0.56	\$16.3	\$1,474	2,509	\$5,30		
REC-15	Satellite Recycled Water Treatment Plant Projects (Retrofits)	2014	Baseload	0.72	\$42.5	\$574	1,724	\$6,10		

Conservation Dry Year Unit Cost Estimates										
Table 4 - Conservation Programs Preliminary Dry Year Yield Unit Cost Estimates										
Project ID	Project Name	Online Year	Expected Operation	Total Dry Year Yield ^(a) (MGD)	EBMUD Capital Cost (^{b)} (Mil. \$)	EBMUD Variable O&M ^(c) (\$/MG)	EBMUD Average Incrementa Dry Year Cost ^(d) (\$/AF)			
CON-02	Natural Savings + 10 (B)	Spans planning period	Baseload	29	\$31.4	92	\$800			
CON-03	Current Program	Spans planning period	Baseload	37	\$225.4	432	\$6 200			
CON-04	Current Program Equivalent + 2 (D)	Spans planning period	Baseload	39	\$319.4	474	\$13.400			
CON-05	Maximum Voluntary Program (E)	Spans planning period	Baseload	41	\$426.0	693	\$19,700			
Notes: a. Total dry b. 2010 pre c. Gross va d. Roundeo	-year yield by 2040. Yields r sent value capital cost. riable O&M costs. No credit to nearest \$100.	amp up over the planning perio for avoided wastewater treatme	d. Includes 19.2 ent costs or avoid	MGD yield fr	om plumbing water deliver	g code. y in non-dry y	/ears.			

	Agenaa
 Project Update Workplan CLC Meeting Summary: 4/7/08 	30 min
 Workplan CLC Meeting Summary: 4/7/08 Portfolio Screening & Evaluation Building WSMP 2040 Portfolios Modeling Results Portfolio Evaluation & Recommendations 	90 min

WSMP 2040 BOD Workshop #8 April 22, 2008

WSMP 2040 BOD Workshop #8 April 22, 2008

 Good drought management project is one with high capital cost & low O&M.

 		WSM	P 2040	Portfolio	s - Preli	minary M	odeling Re	sults (Round	d 2)		_
		Average A Over 3-Yes	anual Volume of W ar Drought Planning	ster (MGD) Sequence		4	Cost of Wa	Cost ⁱ er Shortage	14.		
Meximum Rationing Percent	Rationing	Conservation	Recycled	Supplemental Supply	Total System	Retioning Frequency (No. of years in a 10-year period)	(Cost to (Avg. Annual Cost SMV/r ²	Max Annual Cost SMYY	Total Portfolio Cost (Cost to District) \$WWYr	Totel Capital Costs SM	
0%	0.0	29.3	5.0	61.5	95.9	0.0	0.0	0.0	16.9	450	
0%	0.0	29.3	5.0	61.5	95.9	0.0	0.0	0.0	16.8	440	Γ
10%	13.7	37.3	0.0	47.2	98.1	1.4	15.3	183	17.7	540	
10%	19.5	39.4	5.0	45.6	109.6	1.8	15.2	182	26.9	670	
10%	19.5	37.3	5.0	48.0	109.8	1.8	15.2	183	23.9	570	
15%	29.4	37.3	5.0	42.0	113.7	1.9	28.0	289	15.9	500	
15%	29.6	39.4	11.0	29.0	109.0	1.8	24.0	288	24.3	610	
15%	29.5	37.3	5.0	39.0	110.9	1.8	24.7	289	16.0	440	
15%	29.6	40.9	11.0	25.5	107.1	1.8	24.3	288	29.2	750	
15%	20.5	37.3	5.0	36.1	98.9	1.4	22.2	289	19.3	590	
25%	52.0	29.3	0.0	28.6	109.9	2.0	78.9	1,131	7.2	130	
10%	19.5	37.3	11.0	41.3	109.1	1.8	14.8	182	24.2	610	Γ
20%	41.1	39.4	11.0	17,1	108.6	1.8	41.2	482	22.1	580	Γ
25%	52.0	37.3	11.0	9.0	109.3	2.0	73.1	1.120	17.2	450	F

E	Water Supply Management Program 2040 Primary Portfolio Evaluation											-	
Portfalio Namber	Porticio	Portoio Theme	Operative Minimize the vulnerability & risk of disruptions (i.e., reliability).	Maximize the system's operational feedbillay.	g, Logai & Institut - Minimize Institutional & legal complexities & barriers.	ionel • Maximize partnenihps & regional solutions.	Minimize the financial cost to the District of meeting customer demands for given level of system reliability.	omic - Minimize customer water shortege costs.	Public Heal Comm • Minimize potential adverse impacts to the public health of public health of public health of Maximize used of water from the best source.	th, Safety & nunity - Minimize long- term adverse community impacts - Minimize adverse social effects. - Minimize conflicts with existing & planned facilities, utilities & transportation facilities.	Minimize adverse impacts on the impacts on the construction of defacts on environmentally senable resources.	Minimize short term & long term greenhouse gas emissions from construction. • Maximize energy efficiency associated with operations & maintenance. • Maximize contributions to AB 32 goals.	Portolo
4	A	Groundwater	L	н	L	Н	L	Н	М	М	H	М	A
5	В	Diversified	Н	М	L	Н	М	Н	L	М	М	L	8
6	C	Reliability	H+	H+	М	L	Н	L	М	L	L	М	C
10	D	Lower Carbon Footprint	L	Н	М	М	М	М	H+	М	М	Н	D
12	E	Recycling & Transfer	L H = High Response	H to Evaluation Criteria	L L=Low Respons	H te to Evaluation Crite	L	Н	М	М	Н	М	E

EBMUD Water	Supply Management	nt Program 2040 St Summary of Compo	onents
Cost Ranking	Component	Project Name	Dry Year Unit Cost (\$/AF)
1	Supplemental Supply	Northern California Water Transfers	\$630
2	Supplemental Supply	Buckhorn Canyon Reservoir	\$710
3	Supplemental Supply	Enlarge Pardee Reservoir	\$730
4	Supplemental Supply	Enlarge Lower Bear Reservoir	\$840
5	Supplemental Supply	Bayside Phase 2 Groundwater Project	\$890
6	Supplemental Supply	IRCUP/San Joaquin Banking/Exchange	\$1,210
7	Recycling	Recycling Level 2 (5 MGD)	\$1,580
8	Supplemental Supply	Groundwater Banking/Exchange (Sacramento Basin)	\$1,940
9	Supplemental Supply	Regional Desalination	\$1,940
10	Recycling	Recycling Level 3 (11 MGD)	\$3,010 ¹
11	Conservation	Conservation Level C	\$3,200
10	Concention	Concentration Level D	¢12.4002

Cost Summary of Portfolios					
Portfolio	Total Cost (NPV)	Rate Increase (%)			
A	\$543 M	12.7			
В	\$524 M	12.8			
С	\$449 M	11.7			
D	\$510 M	13.2			
E	\$598 M	12.3			

Water Supply Management Program 2040 CLC Feedback for Portfolio A - Groundwater PRO + Widest range of benefits, would promote regional cooperation (SF) + Least environmental impacts (JL) & encourage efficiency in Ag sector (LH) + Provides a safety net (HK), diverse supply increases likelihood of success (WG) CON - Must overcome public objections to Bayside PH 2 (HK) - Costly, high dependence on complicated transfers, difficult to implement (WG, SF) **First Choice** Third Choice Second Choice Laura Harnish **Charles Brydon** Merlin Edwards Stuart Flashman Betty Graham Howard Kerr David Nesmith Walt Gill Julia Liou Michael Hanemann Eleanor Loynd 17

BMUD Water	Supply Manager	nent Program 2040 Rationing Le	evel - Frequen	су
Observ occurs 3	ation: At a ´ 0% more fre	15% rationing goal equently than at a	, mandatory rationi 10% rationing goal	ng
	Rationing Goal	Years of Voluntary Rationing During the Planning Period	Years of Mandatory Rationing During the Planning Period	
	10%	2.6	1.5	
	15%	2.8	2.0	
	Planning Perio	od = 2010-2040		31

EBMUD Wate	er Supply Manage	ement Program 2040	Rationing L	evel
Obse occurs	ervation: At a 80% more f	a 20% rationing go requently than at a	al, mandatory ratio 10% rationing go	oning al.
	Rationing Goal	Years of Voluntary Rationing During the Planning Period	Years of Mandatory Rationing During the Planning Period	
	10%	2.6	1.5	
	15%	2.8	2.0	
	20%	2.5	2.7	
	Planning Period	d = 2010-2040		32

	Conse	ervation Leve
Conservation Level	C (37 MGD)	D (39 MGD)
Measures	 Surveys Toilet rebates Leak detection Irrigation incentives 	 Required plumbing for future graywater use in residential Extensive incentives/rebates for irrigation upgrades
# Measures	51	53
Total Cost (NPV)*	\$284 M	\$404 M
Rate Increase from Level C to D (%)		2.8

	Bennub Water Supply Management Program 2040					
		Agenda				
1.	Workshop Purpose					
2.	 WSMP 2040 Update Workplan and Schedule Final Demand Projection Preferred Portfolio WSMP 2040 Plan Status NOP Scoping Comments WSMP Program EIR Status 					
3.	Update on Existing & Ongoing District Programs					
4.	Next Steps		2			

	PLANNING & I	NGINEERING / SCIENCE	ECONOMICS	CEQA/ ENVIRONMENTAL PERMITTING	PUBLIC	BOD WORKSHOP
2007 3 4 5 6 7 7 8 9 10 11 11 12 2008	PLANNING & I NTF+3.1.67 PRO DEVELOP WISHE Sala Reinors DEVELOP WISHE Sala Reinors DEVELOP WISHE DEVELOP WISHE THE NEED DEVELOP WISHE THE NEED DEVELOP WISHE DEVELOP WISHE	NORMEERING / SCIENCE	ECONOMICS	CEDA/ ENVIRCIMENTAL PROMITING	PUBLIC OUTREACH CAMBRINE CAMBRINE CAMBRINE METTING MAY 1 AUL 10 BEP 11 GEP 11	BOD WORKSHOP Ages B., RWF Ages B., RWF Marked Conservation Ages Age Ages Age
1 2 3 4 5 6 7		PANLINES & SCREEN PORTPOSO Create Previnces of PortPolice & Test Preliminary PortPolice with WEAP. Test Preliminary PortPolice Constraints Constrai	Water Stockage Plank Assessment Analyzes Rationing Convertige Analyzes Develop & Asply Bineming Criteria	EIR APPROACH a OUTLINE • NUMScong • Alternatives Anternatives Anternatives • Environmental Setting	MAR 11 APR 7 MAY 19 JUN 16 St 17 Store June	Foreining 15, 2005 Section 20, 2007 Se
8 9 10 11 12		T W5MP		Atternatives Analysis Growth Inducement Climate Change Impacts & Mitigation Cumulative Impacts Team Review		⁴⁰ Supervisor 23, 2000 Wister (Jose - etch (MOATE)
2009 1 2 3	PREPARE	FINAL WSMP		PUBLIC DRAFT PERR PUBLIC REVIEW FINAL	MAL 🗆	11 March 24, 2009 William 204 - FER UPCATE 5

NCHR 2040 BBE			nagement Fr	ogram 2040			
WSMP 2040 PRE	FERREL	TPORIFOLM				2010	
Rationing 10%	20	2010	2015		200	2000	
Conservation	10	1		CHICAGO IN CALL	(DECEMBER)	[CATURE)	100000
Level D (S3 Measures)	39		DOW 6	(13 M0D)	21 MOD	21 mab	33 MOD
Recycled & Raw Water		-			-	_	
Project 3 Project 4 Project 5 Project 5 Project 7 Project 7 Project 10 Project 10 Project 11 Project 11 Project 13 Project 14 Project 15	11				10.5 MGD	TO IF MGD	EVISIT CONSERVATION, RECYCLING & DESAL # RECYCLING & DESAL # PHOLOGY AND/OR COLT / FUNDING
Supplemental Supply		10 MGD	J	_	4 MGD	-	
Northern California Water	up to 14	*			*	1	
			[9MGD]				
		_	in the second se		-		
Bayside Phase 2 GW Project				1			
					4.2 MGD		1
Secremento Basin GW				. .	1	1	
Benking	4142					- 24	
						20 MGD	1
Regional Desalination	un in 20			THE ST	· · · · ·	1	1
				No		ALLO	OMPONENTS TO BE SIZED TO
				1 😴			MEET NFW
				1	AND/OR	IF NPV	INCREASES SIGNIFICANTLY
					1 10		CHANGE)
Enlarge Pantee Reservoir	apta 51.2				×	AU	WILL BE PREPARED
	mm 22			1		i	
Raise Lower Bear Reservoir						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Water Supply Management Program 2040

Select NOP Scoping Comments (Cont'd)

Groundwater Considerations

- ID effects upon Sac. Water Forum Agreements on basin recharge & recovery
- Discuss degradation of groundwater from ASR components
- Feasibility/water yield conclusions for Bayside Phase 2 are premature
- Include ESJ Integrated Conjunctive Use Program as components

Biological Impacts

- Impacts on endangered species from transfers
- Loss of forest habitat from Lower Bear component
- Impacts to aquatic resources from reservoir expansion

17

E	EBMUL	Water Sup	ply Man	ageme	nt Prog	gram 20	040						
			Oper	ations. Engineerin	ng. Legal & Institu	tional	Ecor	omic	Public Heal	th, Safety &	Enviror	mental	Т
Portolio Number	Perfutio	Partibio Theme	Minimize the ultranshilly & risk of designers (.e., reliability)	Maximize the system's operational flexibility.	Minimita Institutional & legal complexities & barriers.	Maximite partnenships & regional solutions.	Minimize the financial coat to the District of meeting customer demands for given level of system reliability.	Minimize customer water shortage costs.	Minimize potential adverse impocts to the public health of District customers. Maximize use of water from the best available source.	Minimize long- term advesse community impacts Minimize adverse social social soc	Minimize adverse impacts on the environment. Minimize construction & operation effects on environmentally resources.	Minimize short lenn 6 long berri greenhouse pas enisations from construction. Maximize energy sticklercy missicciated with operations 8 maintenance. Maximize contributions to AB 32 goals.	
4		Groundwater	L	н	L	н	L	н	м	м	Ð	м	T
8		Diversified	н	м	L	н	м	н	L	м	м	L	T
1	a	Reliability	H+	H+	м	L	н	L	м	L	L	м	T
8	D	Lower Carbon Footprint	L	Н	м	м	м	м	H+	м	м	Ξ	T
		Denucling & Transfer		н	1	н	1	н	м	м	Ð	м	T

		PLANNING & ENGINE	ERING / SCIENCE	ECONOMICS	ENVIRONMENTAL PERMITTING	PUBLIC	BOD WORKSHOP
3 4	NTP=3.1.07	PROJECT K EVALUATE WATER PLANNING OBJECTIVES	REVIEW BACKGROUND DOCUMENTS			COMMUNITY LIAISON COMMITTEE MEETINGS	⁵ April 24, 2007 WSMP 2045 Clipschure &
5	THE	NEED	THE SOLUTION	WATER SUPPLY MODEL w/Economic Component		MAY 1	Protiminary Message
	DEMAND BTUDY UPDATE	NEED-FOR-WATER	DEFINE COMPONENTS	Lifecycle Cost			S June 26, 2007 Demand Shoty Program
7 8	Anatyze Existing Demands Anatyze Future Land Uses Develop Exture Land	Population Growth Vater Competition Vater Conservation Vater Recycling	Conservation Rationing Conservation Recycled Water Supplemental Supplemental	Preschilty Redundancy Diversity Relability Env. Justice Flood Control Envirol		 JUL 10	Professionary 2010 Contrasts Designed a Plantonia Englanteria Bully 24, 2007 Range of Companients Water Trainefurs Globald Climate Chanses
	Use Unit Demand	Drought Planning	EVALUATE & SCREEN COMPONENTS	Change Conta	1	SEP 11	
10		Relability	• Operations, Engineering, Legal & Institutional 🗸	SCREENING & EVALUATION			Begebenster 25, 2007 Conservation, Respective Water, Rathoring Screening Criteria
11	DEMAND P	ROJECTIONS	• Economic V	Develop Unit Costs Sir each Component		Deres	- Water Burgety Model
12	* Develop Demand Pro	ections to 2040	Found Health, Safety & Community	for Screening & Evaluation		Dec 3	- Supplemental Supply
800			- Child minus	Input into WEAP			
	Extend Demand Proje	ctions to 2060 🖌		Assess Cost of			
			EVALUATE & SCREEN PORTFOLIOS	Risk Assessment			Falsenary 13, 2008 Horn 2008 Gammand
2			Test Preliminary Portfolios using WEAP:	Analyze Rationing			Property of a
з			- Ficle of Component as Part of Total Portfolio - Cost Effectiveness	Develop & Apply	EIR APPROACH	MAR 11	7 Marite 26, 2000
			Operations Apply Evaluation Criteria	Screening Orteria		APR 7	Component Surveying & Evaluation Part 2
			Operations, Engineering, Legal & Institutional Economic	1	Alternatives	1.000	* April 22, 2008
5			Public Health & Safety and Community		Analysis	MAY 18	& Evaluation
6			* Select Preferred Portfolio 🖌		ADMIN PEIR PREP	JUN 16	* June 24, 2008
7					• Environmental	Workshope)	Internity Professed Professional Implementation
	-				Setting		
•	DEMAND PROJECTION				Alternatives Analysis		
9	MEVISIONS	DRAFTWS	MP +		· Growth Inducement		Till Suptember 23, 2008 WSMP (Sep) + PER
10					Climate Change		LIPONTES
		+			• Impacts & Mitigation		
.01					Cumulative Impacts		
12		INTERNAL RE	view e		Team Review		
1009							
					(NUM IS ON ATT)	JAN .	
1	0				PUBLIC DRAFT	-	5100
2					PUBLIC REVIEW		March 24, 2000 WEMP 3540 - PER
		+			-		UPDATE E
3	3	PREPARE FINAL	WSMP +		FINAL		
4		L .			EIR		1-9 May 2000
	E Constant of the	EINAL WSN	10		-		& CERTIFY EIR

BANNO Water Supply Management Prog	gram 2040 Next Steps
Publish Draft PEIR	January 7, 2009
Public Comment Period	January 8 - February 23, 2009
CLC Meeting #9	January 2009
Board Workshop #11	March 24, 2009
Circulate Final PEIR	May 4 - 13, 2009
Adopt WSMP 2040 & Certify Final PEIR	May 28, 2009
	29

COMPONENTS																
PORTFOLIO	PORTFOLIO THEMES / EMPHASIS	PORTFOLIO DESCRIPTION	Rati	oning	Conse	rvation	Recy Wa	/cled			s	uppleme	ental Suppl	y.		
			10%	15%	Current Program Equivalent (C)	Current Program Equivalent +2 (D)	Recycled Water Level 2	Recycled Water Level 3	Northern California Water Transfers	Bayside Groundwater Project Phase 2	Sacramento Basin Groundwater Banking/Exchange *	Regional Desalination	Enlarge Pardee Reservoir	Enlarge Lower Bear Reservoir	IRCUPISan Joaquin Groundwater Banking/Exchange ^b	Buckhorn Canyon Reservoir
			22 MGD	32 MGD	UP TO 37 MGD	UP TO 39 MGD	UP TO 6 MGD	UP TO 11 MGD	UP TO 4.5-28.5 MGD	UP TO 9 MGD	UP TO 4.2 MGD	UP TO 20 MGD	UP TO 61.2 MGD	UP TO 2.2 MGD	UP TO 17.4 MGD	UPTO 42 MG
Preferred	Portfolio	Maximum Flexibility	•			•		•	•	•	•	•	•	•	•	
A	Groundwater/ Conjunctive Use & Water Transfers	Groundwater storage / recharge in multiple locations	•			•	•		•	•	•				•	
В	Regional Partnerships	All partnership projects & conservation	•		•		•		•		•	•		•	•	
С	Local System Reliance	West of delta surface storage		•	•		٠									•
D	Lower Carbon Footprint	Pardee Reservoir enlargement & conservation		•	•		•						•			
Е	Recycled Water & Water Transfers	Highest recycled water level	•		•			•	•	•	•					

9

10

WSMP 2040 Board Workshop Revisions to the PEIR

				ЕВМО
Pardee Enlargement Option (assuming new embankment downstream of existing)	Normal Pool Elevation (Ft MSL)	Miles of River Impacted (upstream of Existing Pool)*	Storage Volume Increase (TAF)*	Option would most likely be considered if:
New Pardee / Impounds to Existing Pool	568	0	33	New embankment called for
New Pardee / Impounds to appx 600' below Hwy 49 (Middle Bar Bridge road deck elev.)	590	1.0	92	No impacts to key whitewater features and BLM take out called for
New Pardee / Impounds to Hwy 49 Bridge	595	1.2	104	Minimal impacts to BLM takeout, no impacts upstream of Hwy 49 called for
New Pardee / Impounds slightly less than 1000' past Hwy. 49 Bridge	600	1.4	126	Maximizing partnership benefits, no impacts to the Electra features called for

* Based on preliminary review, additional field and engineering work need to verify.

Reference: Pardee Reservoir Enlargement Project, Preliminary Design Report, Volume 1 - Summary Technical Report, June 1998. 12

WSMP 2040 Board Workshop Revisions to the PEIR

ELV Par	ticipation		B
Prelimina	iry Analysis	s by starr	EBMOD
DELIVERY OPTION	Existing Raise (Option 1)	Existing Raise (Option 2)	Future Raise
DELIVERY POINT	BOYD RD INTERTIE	CCWD-EBMUD INTERTIE AT MOK AQ #2	CCWD-EBMUD INTERTIE AT MOK AQ #2
LOCATION	Walnut Creek	Brentwood	Brentwood
ELV WATER TYPE	Treated	Raw	Raw
MAX DELIVERY RATE	8 mgd	45 mgd	45 mgd
3-YR VOL DELIVERED	18-21 TAF	29 TAF	100 TAF
POTENTIAL OPERATIONS CONSTRAINTS	Unknown operational constraints	Unknown operational constraints	Requires major modifications to EBMUD's operations plan
RESTRICTIONS	• Limited ability to transmit water through distribution system during winter months	 Impacts availability and timing of spare aqueduct capacity due to other water supply components 	 Impacts availability and timing of spare aqueduct capacity due to other water supply components
ADDITIONAL IMPROVEMENTS REQUIRED	Minor distribution system piping and WQ management improvements	 Isolation of Mok Aqueducts required. (If no isolation, decreases total delivery by 8 TAF) Additional treatment required 	Isolation of Mok Aqueducts required.Additional treatment required
COMMENTS	 Independent of raw water supplies Water quality variation No cost information 	 Freeport (CVP) delivery limited to Mok Aq No. 1 & 2 Delivery in years 2&3 only Water quality variation No cost information 	Freeport (CVP) delivery allowed in any of the Mokelumne Aqueducts Delivery in years 2&3 only Water quality variation EBMUD would cover bulk of construction costs
			34

40

F	Ra	nking	of	the	Fir	nal	п г 5		es:			ЕВМІ	MUD	
			Open	ations, Engineerin	ıg, Legel & İnstitut	Sonel	Ecor	iomic	Public Heal Com	th, Safety & nunity	Enviror	imental	Т	
Poettolio Mumber	Portodio	Portolo Theme	Minimize the vulnerability & risk of daruptions (i.e., reliability):	Maximize the system's operational flexibility.	Minimize institutional & logal complexities & barriers.	• Maximice pertnenshipe & regional solutions.	Minimize the financial cost to the District of meeting customer demands for given level of system reliability.	Minimize customer water shortage costs.	Minimize potential adverse impacts to the public health of District customers. Maximize use of water from the best source.	Minimize long- terra adverse community impacts Minimize adverse social effects. Minimize conflicts with existing & planned facilities, utilities & transportation facilities.	Minimize adverse impacts on the environment. Minimize construction & operation effects on environmentally sensitive resources.	Minimize short term & long term greenhouse ges emissions from construction. Maximize energy efficiency associated with operations & maintenance. Maximize contributions to AB 32 goals.		
4	A	Groundwater	L	H	L	Н	L	H	м	М	н	М	Ι	
5	в	Diversified	н	М	L	Н	м	Н	L	м	М	L		
6	c	Reliability	H+	H+	М	L	Н	L	М	L	L	М		
10	D	Lower Carbon Footprint	L	Н	М	М	М	М	H+	М	М	H	Ι	
12	E	Recycling & Transfer	L	н	L	н	L	Н	м	м	н	М	T	

Desired Preferred Portfolio Features

- A robust plan: needed in light of future uncertainty (e.g., global climate change)
- Multiple, parallel project components
- A diverse and flexible strategy
- Environmentally sound

3

Background: WSMP 2040 -Revised PEIR Timeline

Preparation (NOP) issued meetings held in Jackson, San and Oakland, CA
meetings held in Jackson, San and Oakland, CA eleases Draft Revised PEIR for public
eleases Draft Revised PEIR for public
t
vised PEIR comment meetings held in San Andreas, and Oakland, CA
vised PEIR comment period closed
orkshop
ļ

В

Response to Board Questions Sept. 27, 2011 WSMP 2040 Board Workshop

Board Request	Staff Follow-up
Update the Demand Slide to include FY 11 Demand	Provided to EBMUD Board as part of this workshop
Can local economic trends be added to EBMUD's "historic water demand over time" slide	No direct correlation was identified due to a number of factors in play at once (supply availability, drought occurrence, economic downturn, weather, etc)
Include data for the FY11 water year on the slide showing river hydrology	Provided to EBMUD Board as part of this workshop
Gather weight/load limitation information for Middle Bar Bridge	Two Axle = 14 Tons; Three Axle = 15 Tons; Four Axle = 16 Tons
Provide a listing of new facilities as needed for EBMUD participation in an ELV project	Provided to the EBMUD Board as part of this workshop
Schedule a Board field trip to the Expand Los Vaqueros construction site	Field trips to the ELV construction site were held on November 18 and December 10, 2011
Determine if a vote was held in the EBMUD service area in the 1960s regarding the potential to combine service areas with CCWD	No such vote took place. Actions during the 1960's were part of a state-wide effort to determine Special District boundaries
Hold a rate structure workshop	Rate discussions take place separately from WSMP 2040

WSMP 2040 Board Workshop Revisions to the PEIR

ЕВМИД

8

Expand Los Vaqueros: New EBMUD Facilities Required

Option	Improvement	Purpose
Receive treated water from Los Vaqueros via Boyd Road Interties	11,000 LF of 24" dia. pipe Instrumentation and controls 12 mgd pump station	Facilitate distribution of treated water
Receive treated water from Los Vaqueros via new intertie at Geary Rd/Buena Vista Rd (Walnut Creek)	7,000 LF of 24" dia. pipe 12 mgd pumping plant Instrumentation and controls	To allow for possible continuous summer and winter operations. Facilitate distribution of treated water
Receive raw water from Los Vaqueros	Check valve(s)/replacement or retrofit (two 60" dia) Mokelumne Aqueducts Interconnection Possible treatment plant upgrades	Check valves to isolate non- Pardee water from inline filtration plants Intertie/connection to improve aqueduct conveyance capacity

ЕВМИО

Draft Revised PEIR Comments: Generated at Public Meetings

Meeting Location & Date	# of Attendees	# of Speakers	Prevailing Comment(s)
Jackson, CA Jan. 11, 2012	14	4 (1 Elected, 2 NGOs, 1 Citizen)	Appreciative of revisions/support for staff recommendations
San Andreas, CA Jan. 12, 2012	12	8 (1 Elected, 1 NGO, 6 Citizens)	Appreciative of revisions/support for staff recommendations
Oakland, CA Jan. 17, 2012	4	3 (3 NGOs)	Appreciative of revisions/support for staff recommendations
TOTAL	30	15	Appreciative/Supportive
			18

Revisions to WSMP 2040 Final Plan

	Primary Revisions
1	Discussion of the CEQA effort following the legal challenge; Insertion of Expand Los Vaqueros (ELV) component and removal of Enlarge Pardee component from the WSMP 2040 Portfolio
2	Insertion of ELV and removal of Enlarge Pardee Reservoir component from the WSMP 2040 Portfolio
3	Discussion of recent water conservation legislation (SBx7-7)
5	Discussion of the CEQA effort following the legal challenge
6	Insertion of the ELV component and removal of the Enlarge Pardee Reservoir component from the WSMP 2040 portfolio
4, 7, 8, & 9	No significant revisions

22

WSMP 2040 Board Workshop Revisions to the PEIR

Appendix E2

WSMP 2040 Meeting Presentations

Community Liaison Committee (CLC) Meetings

5/1/2007

							Exh	ibit 1-2								
					Pri	mary	Com	posite I	Program	IS						
														_	_	
ÇOMPONENTS	DMP	IMP CONSERVATION RECLAMATION (SAVINGS) ¹		GROUNDWATER RESI			RESERVOIR	ESERVOIR SUPPLEMENTAL SUPPLY				Composite				
PRIMA COMPOS PROGRA	RY STTE IMS	Maximum Deficiency ²	II (18MGD)	IV (35 MGD)	A1 (8MGD)	A2 (21 MGD)	A6 (8MGD)	Agricultural Exchange	River Substitution	Direct to Aqueducts	Raise Pardee +150 TAF	Delta	Folsom South Connection	Aqueduct Security	LMRMP	Program Screening Designation
I	Demand-Side Management	35%		•		•	•							•	•	x
п	Groundwater	25%	•		•			•	•	•				•	٠	A'
ш	Delta Supply	25%	۲	· ·	•				-			•		٠	٠	B'
IV	Groundwater and Folsom South Connection	25%	•		•				٠	٠			•	•	٠	С
v	Raise Pardee	25%	•		•						•			•	٠	F
ŅІ	Groundwater Only (Least Cost)	25%	,					•	٠	٠				٠	٠	J
otes: Savings i Conserva Drought during dr During th	ndicated are in addition tion and reclamation sav Management Programs (oughts. A DMP would b the screening of alternativ	to savings fi ings are not DMP) are s e implemen re compositu	om exist necessar hort-term ted in add	ing and a rily additi a rationing dition to s as, the alto	dopted o ve due t g impose some lev ernative:	onservat o overlag ed on cus el of con s were id	tion and pping. stomers aservatio	reclamation on by these let	programs.		s.	ĸ	ey Orir Prir	nponents nary Com	included i	n ograms

Water Supply Management Program 2040

WSMP 2020 Preferred Program

(Adopted 1993)

Aqueduct Security

An approximate 10-mile section of the Moklelumne Aqueducts through the Sacramento-San Joaquin Delta would be secured against prolonged outages resulting from earthquake-induced failures.

LMRMP

The Lower Mokelumne River Management Plan specifies flow regimes, reservoir operations, and hatchery operations that would enhance benefits to fishery resources in the Mokelumne River while maximizing flexibility in managing a variable water supply, uncertain future demands, and uncertain linkages between fish populations and fishery management activities.

Groundwater Storage/Conjunctive Use

Water would be stored in an underground basin when excess surface water supplies were available and could be withdrawn during drier years when surface supplies were below normal.

Conservation and Reclamation

These two demand-side components would reduce the District's projected 2020 demand for water from 277 MGD to 229 MGD, a reduction of 48 MGD.

EBMUD	. * *	EFFECTIVE	27 JUN 06
	BLITY TO SERVE	SUPERSEDES	28 SEP 04
Ensure that duri	ng times of water shortage, available wa ers.	ater supplies are appropriately a	llocated

R	* (* 1. j 1.	Policy	4.13
EBMUD		EFFECTIVE	25 JUL 0
RATE SETT	ING GUIDELINES FOR WATER RATES	SUPERSEDES	25 JUN 9
A water rate struct efficient use of war reliable, adequate	sture that provides adequate revenues through affordable rates, ater, and reflects the cost to serve customers will enhance the D a water supply to its customers over the long term.	encourages conservat District's ability to provid	ion and le a safe,

WSMP 2040 CLC Meeting #1 May 1, 2007

B	Policy 6.01
EBMUD	EFFECTIVE 27 SEP 0
BAY/DELTA PROTECTION	SUPERSEDES 08 JUL 0
estuary and their tributaries, including ecosystel optimized water management; support balancer support the development of science based wate the quality of drinking water supplies, consistent	m enhancements, water quality improvement and i implementation of the CALFED Bay-Delta Program, er quality standards that place a high priority on protecting with the District's statutory obligations and

B	Policy 8.01
EBMUD	EFFECTIVE 14 NOV 0
NON-POTABLE WATER	SUPERSEDES 28 SEP 04
T IS THE POLICY OF EAST BAY MUNICIPAL UTILIT Require that customers of the East Bay Municipal Utility ecycled water, for non-domestic purposes when it is of scost, not detrimental to public health and not injurious to adisfying these conditions is made available to the custs may constitute a waste and unreasonable use of water v california Constitution and is prohibited.	Y DISTRICT TO: District ("EBMUD") use non-potable water, including adequate quality and quantity, available at reasonable plant life, fish and wildlife. When nonpotable water omer, the use of potable water for nondomestic purposes within the meaning of Section 2 of Article X of the

WSMP 2040 CLC Meeting #1 May 1, 2007

WSMP 2040 CLC Meeting #1 May 1, 2007

B Wat	er Supply Management Program 2040 WSMP 2040 Planning Objectives
Operatio	ns, Engineering, Legal & Institutional
Prov	<i>v</i> ide water supply reliability.
Pres	serve current water right entitlements.
Prov	mote District involvement in regional, sustainable solutions.
Econom	i c
Min	mize cost to District customers.
Min	mize drought impact to District customers.
Public H	ealth, Safety & Community
Prot	ect the high quality of the District's water supply.
Min	mize adverse sociocultural impacts (including environmental justice).
Min	mize risks to public health & safety.
Max	imize security of infrastructure & water supply.
Environr	nental
Pres	serve & protect the environment for future generations.
Pres	serve & protect biological resources.
Con	tribute to reduction in carbon footprint.
Prov	<i>v</i> ide appropriate recreational opportunities.

Water Supply Management Program 2040 Workshop Schedu Board Guidance & Ing				
Watabaa #1	April 24, 2007	WSNP 2040 Objectives		
Workshop #2	June 26, 2007	Demand Study Progress Preliminary 2040 Demand Drought Planning Sequence		
Workshop #3	July 24, 2007	Range of Components		
Workshop #4	September 25, 2007	Conservation, Recycling, Rationing		
Workshop #5	November 27, 2007	Economic Modeling & Risk Assessment Global Climate Change Implications		
Workshop #6	February 26, 2008	2040/2060 Demand Projections Screening Criteria Component Screening & Evaluation		
Workshop #7	April 22, 2008	Portfolio Screening & Evaluation		
Workshop #8	June 24, 2008	Identify Preferred Portfolio		

Water Supply Management Program 2040 WSMP 2040 Planning Objective	es
Operations, Engineering, Legal & Institutional Provide water supply reliability. Preserve current water right entitlements.	
Promote District involvement in regional, sustainable solutions. Economic Minimize cost to District customers. Minimize drought impact to District customers.	
Public Health, Safety & Community Ensure the high quality of the District's water supply. Minimize adverse sociocultural impacts (including environmental justice Minimize risks to public health & safety. Maximize security of infrastructure & water supply.).
Environmental Preserve & protect the environment for future generations. Preserve & protect biological resources. Contribute to reduction in carbon footprint. Promote recreational opportunities.	4

7/10/2007

Water Supply Management Program 2040 Land Use Methodology Provides Most Value to District Socio-Population Land Use Method economic Method Method Uses spatial data ✓ **Based on General Plans** ✓ Accounts for non-residential ✓ consumption ~ Assumptions undergone CEQA ✓ Allows for disaggregation of data ✓ Transparent methodology √ ~ Data is readily available ✓ ✓ Commonly used 9

Water Sup	ply Ma	anager	nent Pr	ogram 2	Der	nan	d St	udy	v Sta	atu
	2007									2008
Task	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	
Start										
Preliminary Demand Estimate										
Existing LU Layer										
Existing LUDS										
Future LU Layers										
Analysis of Existing LUDS										
Future LUDS										
Model Support										
2040 Demands										
2060 Demands					-					
					1					

A	n n n n n of Duounkt Die	
Co	mparison of Drought Pla	anning Approacnes
Agency	Basis for Drought Planning Sequence	Drought Management Triggers
EBMUD	1976-1978 (simulated 1978 = average of 76/77)	Prepare Drought Management Plan when storage is projected to be less than 500 TAF
SCVWD	1987-1992 drought extended to a 10-year duration	Groundwater end-of-the-year carryover storage less than 350,000 af
SFPUC	1986-92 drought	No exact triggers.
CCWD	Variety of drought years and scenarios considered	No exact triggers.
Alameda CWD	IRMP model based on the period of record (1922- 1992).	No triggers given.
MWD	1990-1992 drought Single dry year scenario is based on 1977	No specific triggers.
San Diego CWA	1990-1992 drought	No triggers given.
LA DWP	1959-61 drought	No triggers given.

BMUD Water Supply Management Program 2040	
WSMP 2040 Planning Objective	es
Operations, Engineering, Legal & Institutional	
Provide water supply reliability.	
Preserve current water right entitlements.	
Promote District involvement in regional, sustainable solutions.	
Economic	
Minimize cost to District customers.	
Minimize drought impact to District customers.	
Public Health, Safety & Community	
Ensure the high quality of the District's water supply.	
Minimize adverse sociocultural impacts (including environmental justice). Minimize risks to public health & safety.	
Maximize security of infrastructure & water supply.	
Environmental	
Preserve & protect the environment for future generations.	
Preserve & protect biological resources.	
Contribute to reduction in carbon footprint.	32
Promote recreational opportunities.	02

Water Supply Management Program 2040	
WSMD 2040 Planning Objective	26
	73
Operations, Engineering, Legal & Institutional	
Provide water supply reliability.	
Preserve current water right entitlements.	
\checkmark Promote District involvement in regional, sustainable solutions. \checkmark	
Economic	
Minimize cost to District customers.	
Minimize drought impact to District customers.	
Public Health, Safety & Community	
Ensure the high quality of the District's water supply.	
Minimize adverse sociocultural impacts (including environmental justice)	
Minimize risks to public health & safety	
Maximize security of infrastructure & water supply.	
Environmental	
Dreserve & protect the environment for future generations	
Preserve & protect the environment for future generations.	
Contribute to reduction in particul featurint	
Contribute to reduction in carbon footprint.	33
Promote recreational opportunities.	

007 WTP=3.1.07 3 DEVELOP WSMP 2040 PURPOSE 6 DEWAND FUED 2000 PURPOSE 7 Demands Pommads Cemand Fue 1000 PURPOSE 8 Dewelop Future Land Use Unit Gemand Factors Image: Cemand Factors	PROJECT K EVALUATE WATER PLANNING OBJECTIVES POPULATER ANALYSIS Population growth Vater consensition Water consensition Water consensition	REVIEW BACKGROUND DOCUMENTS Conservation Rationing	DEVELOP PRELIMINARY 2040 DEMAND SOLUTION • Recycled Water • Supplemental supplemental	ECONOMIC MODEL • Lifecycle Cost • Flexibility • Redundancy • Diversity	ENVIRONMENTAL SETTING * Identify Prefiminary	COMMUNITY LIAISON COMMITTEE MEETINGS	April 24, 2007 WSMR 2049 Objective Preliminary Messag June 26, 2017
1 DEMAND PROJ 2 Develop Demand Projection 4 Extend Demand Projection 5 Extend Demand Demand Projection 5 Extend Demand Demand Demand Deman	JECTIONS MECTIONS Bone to 2040 ons to 2060 DRAFT WSM	EVALUATE & S EXALANTRY EXALANTRY Excitationary Evaluationary Evaluation Evaluatio	CREEN COMPONENTS skuatori Criteria spectrali Safety exceptional - Public Health + Safety implementation and Legal and Legal meterical sectors	Error Lang Find Control Find Control Energy Costs	Environmental Isoues Develop Significant Prepare NOP Prepare Exist- ing Conditions Prepare Exist- Prepare Exist- Ing Conditions Prepare Exist- Prepare Exist- Ing Conditions Prepare Exist- Prepare Exist- Pre	UUL 10	Here and the second sec
	INTERNAL REV				PREPARE FINAL EIR	TBD: FOCUS GROUP OPINION SURVEY	November 25, 200

WSMP 2040 CLC Meeting #3 September 11, 2007

WSMP 2040 CLC Meeting #3 September 11, 2007

9/11/2007

WSMP 2040 CLC Meeting #3 September 11, 2007

Water Supply Management Program 2040 Supplemental Supply				
 Statewide (CALFED) 1. Raise Shasta Reservoir 2. Temperance Flat 3. SITES Reservoir 4. Expanded Los Vaqueros Upcountry 1. Pardee 2. Camanche 3. Lower Bear 4. Middle Bar 5. Inter-Regional Conjunctive Use Project 	 Central Valley 1. Groundwater Banking/Exchange (San Joaquin Basin) 2. Groundwater Banking/Exchange (Sacramento Basin) 3. Duck Creek Reservoir 4. Water Transfers 	 Local (East Bay) Kellogg Reservoir Buckhorn Canyon Reservoir Cull Canyon Reservoir Curry Canyon Reservoir Bollinger Canyon Reservoir Bollinger Canyon Reservoir Bayside GW - Phase 2 Regional Desalination Low Energy Application for Desalination (LEAD) at C&H Sugar Off-Shore Desalination Water Transfers with Bay Area Agencies 		

6. Water Transfers

WSMP 2040 CLC Meeting #3 September 11, 2007

WSMP 2040 CLC Meeting #3 September 11, 2007

WSMP 2040 CLC Meeting #3 September 11, 2007

Water Supply Management Program 2040 Climate Change Approach – Other Agencies				
Contra Costa WD	Maintain conservative drought planning sequence. No specific climate change approach.			
Santa Clara Valley WD	Maintain conservative drought planning sequence. Is preparing climate change approach.			
SFPUC	Sensitivity analyses for climate change impacts on the Hetch Hetchy system were conducted. Specific details pending.			
CVP Operations (USBR)	Comprehensive sensitivity analysis underway, based on a result portfolio using 22 GCM/emissions scenarios.			
SWP Operations (DWR)	Sensitivity analysis based on results of DWR's perturbation on historic hydrology.			
Metropolitan Water District	Adaptive management approach that includes voluntary water transfers to improve supply reliability, increasing storage capacity.			

12/3/2007

	ater Supply Management Program 2040
	WSMP 2040 Planning Objectives
Operat	ions. Engineering. Legal & Institutional
1.	Provide water supply reliability.
2.	Utilize current water right entitlements.
3.	Promote District involvement in regional sustainable solutions.
Econor	nic
1.	Minimize cost to District customers.
2.	Minimize drought impact to District customers.
3.	Maximize positive impact to local economy.
Public	Health, Safety & Community
1.	Ensure the high quality of the District's water supply.
2.	Minimize adverse sociocultural impacts (including environmental justice).
3.	Minimize risks to public health & safety.
4.	Maximize security of infrastructure & water supply.
Enviro	nmental
1.	Preserve & protect the environment for future generations.
2.	Preserve & protect biological resources.
3.	Minimize carbon footprint. 5
4.	Promote recreational opportunities.

SR w	they Sumply Management Browner 2040	
EBMUD	tter Supply Management Program 2040	
	WSMP 2040 Planning Object	ives
Operat	ions. Engineering. Legal & Institutional	
1.	Provide water supply reliability.	
2.	Utilize current water right entitlements.	
3.	Promote District involvement in regional solutions.	
Econor	nic	
1.	Minimize cost to District customers.	
2.	Minimize drought impact to District customers.	
3.	Maximize positive impact to local economy.	
Public	Health, Safety & Community	
1.	Ensure the high quality of the District's water supply.	
2.	Minimize adverse sociocultural impacts (including environmenta	l justice).
3.	Minimize risks to public health & safety.	
4.	Maximize security of infrastructure & water supply.	
Enviror	nmental	
1.	Preserve & protect the environment for future generations.	
2.	Preserve & protect biological resources.	
3.	Minimize carbon footprint.	6
4.	Promote recreational opportunities.	

WSMP 2040 CLC Meeting #4 December 3, 2007

8 wa	ater Supply Management Program 2040
EBMOD	WSMP 2040 Planning Objectives
Operat	ions, Engineering, Legal & Institutional
1 .	Provide water supply reliability.
2.	Utilize current water right entitlements.
3.	Promote District involvement in regional solutions.
Econor	nic
1.	Minimize cost to District customers.
2.	Minimize drought impact to District customers.
3.	Maximize positive impact to local economy.
Public	Health, Safety & Community
1.	Ensure the high quality of the District's water supply.
2.	Minimize adverse sociocultural impacts (including environmental justice).
3.	Minimize risks to public health & safety.
4.	Maximize security of infrastructure & water supply.
Enviror	nmental
1.	Preserve & protect the environment for future generations.
2.	Preserve & protect biological resources.
3.	Minimize carbon footprint. 11
4.	Promote recreational opportunities.

B wa	ater Supply Management Program 2040
EBMUD	WSMP 2040 Planning Objectives
Operat	ions, Engineering, Legal & Institutional
1.	Provide water supply reliability.
2.	Utilize current water right entitlements.
3.	Promote District involvement in regional solutions.
Econor	mic
1.	Minimize cost to District customers.
2.	Minimize drought impact to District customers.
3.	Maximize positive impact to local economy.
Public	Health, Safety & Community
1.	Ensure the high quality of the District's water supply.
2.	Minimize adverse sociocultural impacts (including environmental justice)
3.	Minimize risks to public health & safety.
4.	Maximize security of infrastructure & water supply.
Enviro	nmental
1.	Preserve & protect the environment for future generations.
2.	Preserve & protect biological resources.
3.	Minimize carbon footprint.
4	Promote recreational opportunities.

Water Supply Management Program 2040				
	WSMP 2040 Planning Objecti	ves		
Operat	ions, Engineering, Legal & Institutional			
1.	Provide water supply reliability.			
2.	Utilize current water right entitlements.			
3.	Promote District involvement in regional solutions.			
Econor	nic			
1.	Minimize cost to District customers.			
2.	Minimize drought impact to District customers.			
3.	Maximize positive impact to local economy.			
Public	Health, Safety & Community			
1.	Ensure the high quality of the District's water supply.			
2.	Minimize adverse sociocultural impacts (including environmental	justice).		
3.	Minimize risks to public health & safety.			
4.	Maximize security of infrastructure & water supply.			
Enviror	nmental			
1.	Preserve & protect the environment for future generations.			
2.	Preserve & protect biological resources.			
3.	Minimize carbon footprint.	21		
4.	Promote recreational opportunities.			

WSMP 2040 CLC Meeting #4 December 3, 2007

Water Supply Management Program 2040 Need for Supplemental Water Supplies in 2040 During DPS

Maximum rationing	Gross Annual Average Customer Demand (MGD)	Need for Water over 3 years (TAF) ^b	Average Annual Need for Water (MGD)
25%	298ª	150	45
15%	298	216	64
10%	298	248	73
0%	298	306	91

a. Includes 258 MGD + 40MGD for ongoing recycling, conservation & natural replacement

43

b. Estimated values

Step 1: Screen Conservation Measure				
• · · · · · · · · · · · · · · · · · · ·	E	valuatior	n Criteria	3
Conservation Measure (examples)	Operations	Economic	Public Health	Environ- mental
Clothes washer rebate	Н	М	М	М
Residential surveys I	Н	L	Н	Н
Weather-based controllers	М	М	М	Н
Automated Metering Systems I	Н	Н	Н	Н
Automated Metering Systems II	Н	М	Н	М
Pipeline leak repair	L	L	М	М
Commercial dishwasher rebate	Н	L	М	Н
Graywater	L	L	L	L/M

Evaluation Proces Step 2: Cluster Measures by Conservation Leve				ess eve	
		Conservation Level			
Conservation Measure (examples)	A	В	С	D	E
Plumbing code	x	х	х	х	x
Clothes washer rebate		x	х	х	x
Residential surveys I			х	х	x
Weather-based controllers			x	х	x
Automated Metering Systems I			x	х	x
Automated Metering Systems II				x	x
Pipeline leak repair				x	x
Commercial dishwasher rebate					x
Graywater					

Evaluation Proces Step 3: Test Conservation Levels in Portfoli					ess olio:
		onse	rvatio	n Lev	vel
Conservation Measure (examples)		В	C	D	E
Plumbing code	x	х	х	х	х
Clothes washer rebate		х	х	х	х
Residential surveys I			х	х	х
Weather-based controllers			х	х	х
Automated Metering Systems I			x	х	х
Automated Metering Systems II			1.5	Х	х
Pipeline leak repair				х	х
Commercial dishwasher rebate					X.
Graywater					

Stage	April Projection of Storage on September 30	Reduction Goal	Voluntary Mandatory
	500 TAF or more	None	
Moderate	500-450 TAF	0 to 15%	Voluntary
Severe	450-300	15 TO 25%	Mandatory
Critical	Less than 300 TAF	25%	Mandatory
	TAF – T	Thousand Acre-Fe	eet

Water Supply Management Program 2040 Planned Rationing for Other Agencie		
Zone 7 Water Agency	0%	
Metropolitan Water District of So. Cal.	0%	
Marin Municipal Water District	20%	
San Francisco PUC	Considering 20%	
Contra Costa Water District	No Goal	
Alameda County Water District	No Goal	
Santa Clara Valley Water District	No Policy	

	Nater
--	-------

Supply Management Program 2040

Centralized Treatment Projects

ConocoPhillips	Up to 4 mgd
East Bay Shore: Phase 1B (Alameda) Phase 2 (Future Expansion)	0.5 - 1.7 mgd 0.1 - 0.5 mgd
Franklin Canyon	0.2 - 0.3 mgd
North Richmond - Surrounding Area	0.2 - 1.7 mgd
Point Richmond	0.1 mgd
RARE Water Project: Phase 2 Future Expansion	0.5 mgd 1.0 mgd
Reliez Valley Recycled Water Project	0.1 - 0.2 mgd
San Leandro (Oakland/Alameda)	0.1 - 1.3 mgd
San Ramon Valley (Phases 2 through 6)	2.0 - 2.2 mgd

Total Potential Annual Yield: Up to 15,200 afy (13.5 mgd) 77

Diablo Country Club	0.2 mgd
Moraga Country Club	01 0.2 mgd
Mountain View & St. Mary's Cemetery	0.1 - 0.2 mgd
Rolling Hills Cemetery	0.1 - 0.2 mgd
Rossmoor Country Club	0.1 - 0.2 mgd
Total Potential Annual Yie	ld: Up to 1,100 afy (1 mgd)

	aw water Projects
Lafayette Reservoir Raw Water Project	Up to 0.05 mgd
Lake Chabot Raw Water Expansion Proje	ect 0.1 - 0.2 mgd
Total Potential Annual	Yield: Up to 300 afy (0.3 mgd)
Total Potential Annual	Yield: Up to 300 afy (0.3 mgd)

Water Supply Management Program 2040 Partnership with Upcountry/Sacramento Agenci				
Partner Agency	Potential Yield (annual, mgd or acre-ft/yr)			
Amador Water Agency	1 mgd (1,100 acre-ft/yr)			
Jackson Valley Irrigation Districts & Amador County Wastewater Agencies	0.2 - 0.3 mgd (200 - 300 acre-ft/yr)			
Jackson Valley Irrigation Districts & Amador Water Agency/ future Joint Lake Camanche WWTP	1 mgd (1,100 acre-ft/yr)			
Woodbridge Irrigation District	To Be Determined			
Sacramento Regional County Sanitation District & Sacramento County Water Agency	Up to 11.6 mgd (13,000 acre-ft/yr)			
TOTAL	Up to 17 mgd 83 (19,000 acre-ft/yr)			

	Supp	lemental Supply
Statewide Sites Reservoir Temperance Flat Reservoir Expanded Los Vaqueros Reservoir Semitropic Groundwater Bank 	 Central Valley Bixler/Delta Diversion Duck Creek Sacramento Basin Groundwater Banking/Exchange San Joaquin Basin Groundwater Banking/Exchange 	Local (East Bay) Bayside GW - Phase 2 Bollinger Canyon Buckhorn Canyon Cull Canyon Curry Canyon Fog Capture Kellogg Canyon Low Energy Application for Desalination (LEAD) at Contemportation (LEAD) at Contemportation (LEAD)
Upcountry Camanche Inter-Regional Com Lower Bear Middle Bar	njunctive Use Project	 Off-Shore Desalination Regional Desalination Water Bags

	Supp	lemental Supply
Statewide Sites Reservoir Temperance Flat Reservoir Expanded Los Vaqueros Reservoir Semitropic Groundwater Bank	 Central Valley Bixler/Delta Diversion Duck Creek Sacramento Basin Groundwater Banking/Exchange San Joaquin Basin Groundwater Banking/Exchange 	 Local (East Bay) Bayside GW - Phase 2 Bollinger Canyon Buckhorn Canyon Cull Canyon Curry Canyon Fog Capture Kellogg Canyon Low Energy Application for Desalination (LEAD) at C&H Sugar Off-Shore Desalination Regional Desalination Water Bags
Camanche Inter-Regional Cor Lower Bear	ountry amanche er-Regional Conjunctive Use Project wer Bear ddle Ber	

water ouppry management Program 2040		Agenda
1.	Welcome and Introductions	
2.	WSMP 2040 Progress	–
3.	Updates a. Water Transfers b. Final Demand Projection c. Need for Water Results Q&A	30 min
4.	Component Screening & Evaluation: a. Supplemental Supply - Q&A b. Recycled & Raw Water - Q&A c. Conservation - Q&A	20 min 20 min 20 min
5.	Other Comments or Questions	
6.	Public Comment	
7.	Next Meeting Dates	

De	eman	d Pro	ject i	ions:	Fina	I Res	sults
	2005	2010	2015	2020	2025	2030	2040
System Input (normalized -	000	0.40	004	075	000	000	
unadjusted)	232	246	261	275	286	299	306
Baseline Conservation*	-18.0	-22.5	-22.5	-22.5	-22.5	-22.5	-22.5
Baseline Recycled	-6.0	-9.3	-9.3	-9.3	-9.3	-9.3	-9.3
	0.0	0.0	0.0	0.0	0.0	0.0	0.0
System Input (adjusted)	208	214	229	243	254	267	274

19

Build Water Supply Management Program 2040

Need for Supplemental Water Supplies in 2040 during Drought Planning Sequence

Uses Final Demand Projection of 274 MGD

Maximum rationing	Gross Annual Average Customer Demand (MGD)	Average Annual Need for Water (MGD)	Need for Water over 3 years (TAF) ^b
25%	306ª	57	194
15%	306	77	259
10%	306	87	294
0%	306	107	359

a. Includes 274 MGD + 31 MGD for ongoing recycling and conservation

b. Estimated values

Water Supply Management Program 2040 Conservation Level A - E Comparison					
Level	Description	# of Measures ¹	2040 Water Savings (MGD)	% Market Saturation	Average Incremental Dry Year Unit Cost (\$/AF) ²
Α	Natural savings	11	19	10-50%	NA
В	Natural savings + 10	39	29	10-65%	\$500
С	Current program equivalent	51	37	15-75%	\$3,600
D	Current program equivalent + 2	53	39	20-80%	\$6,300
Е	Maximum voluntary program	58	41	25-95%	\$11,300

² Preliminary number based on need for water in 3 of 10 years.

30

Level A: Natural Saving				
11 Conservation Measures ¹	2040 Water Savings (MGD)	\$/AF ²		
Toilet standards	11.0	NA		
Urinal standards	0.54	NA		
Showerhead standards	0.56	NA		
Clotheswasher standards	7.1	NA		
TOTAL	19.2	NA		

² Plumbing code requirement, therefore cost is not applicable.

Water Supply Management Program 204 Level B: N	o atural Savings + 10 Level A + 28 New Measures
 MF surveys MF surveys with automated metering Smart irrigation controller rebates Commercial surveys with automated metering Irrigation Water Budgets Irrigation water budgets w/automated metering Retrofit on resale toilet ordinance (SF) I* Retrofit on resale toilet ordinance (MF) I* MF submeter incentive Res. clotheswasher rebates I* Comm. clotheswasher rebates I & II* Dental Vacuum Pumps Water Brooms 	 New development requirements: Automated metering High efficiency toilets High efficiency washers High efficiency faucets, showerheads MF submetering Smart irrigation controllers Hot water on demand Landscape and irrigation standards New commercial urinals Commercial plan review High efficiency dishwashers Plan review for new Cll
 Artificial turf sports fields Public Education <i>* Multiple levels of mark * Multiple levels of mark</i> 	33 ket penetration

Level B: Natural Savings + 1				
39 Conservation Measures ¹	2040 Water Savings (MGD)	Avg. Incremental Dry- Year Unit Cost (\$/AF) ²		
Level A (Natural Savings)	19			
Level B	10			
TOTAL	29	\$500		

Water Supply Manageme	ent Program 2040 Current Pi Le	rogram Equivale vel B + 12 New Measu	e nt res
 SF Surveys SF Surveys w/automated i CII Surveys Commercial/Institutional/In equipment rebates Condo Surveys Condo Surveys w/automated 	Hetering Hetering	ligh efficiency toilet rebates I & rigation Water Surveys F garbage disposal incentive eak Detection & Repair Reduc utificial Turf SF Residential Itiple levels of Market Penetratio	ction II
51 Conservation Measures ¹	2040 Water Savings (MGD)	Avg. Incremental Dry- Year Unit Cost (\$/AF) ²	
Level B (39 measures)	29		
Level C	8		
TOTAL	37	\$3,600	
¹ Estimated range of multiple measu	ires/products across all i	customer sectors	35

De Water Supply Managemen Le	evel D: Curi Lev	r ent Progra i el C + 2 New Me	m + 2 easures
Required Plumbing	for Future Gray	water Use in SF F	Residen
Financial Incentives	/Rebates for Irrig	Avg. Incremental]
Financial Incentives 53 Conservation Measures ¹	/Rebates for Irrig 2040 Water Savings (MGD)	Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	
Financial Incentives 53 Conservation Measures1 Level C (51 measures)	/Rebates for Irrig 2040 Water Savings (MGD) 37	Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	
Financial Incentives 53 Conservation Measures1 Level C (51 measures) Level D	Rebates for Irrig	Avg. Incremental Dry-Year Unit Cost (\$/AF) ²	-

B Water Supply Management Program 2040		
	Agenda	
 Project Update Workplan & Schedule Summary of Previous Workshops Climate Change Sensitivity Analysis Results Rationing Component Cost of Water Shortage 	40 min	
 Component Screening Part 2, with Componen Costs 	t 40 min	
3. Portfolio Building	40 min	
	2	

Factor/Case Examined	Impact on System Storage	Impacts on Rationing	Impacts on Flood Releases
Increased Customer Demand (3.6%)	5% average decrease in effective system storage	 Up to 16 TAF increase in single year of rationing No change in 	None
		rationing frequency	
Shift in Springtime Runoff	Approx. 5% decrease in effective system storage	 Up to 21 TAF increase in a single year of rationing No change in rationing frequency 	 Small (1 to 6%) increase in total releases Decrease (12 to 15%) in spring release
Decrease in Precip & Runoff (10 to 20%)	12 to 24% decrease in effective system storage	Up to 60 TAF increase in a single year of rationing Significant increases in rationing frequency	 Large (27 to 52%) decrease in total release Similar decrease in spring release

Stage	April Projection of Storage on September 30	Reduction Goal	Voluntary/ Manda <u>tor</u> y
	500 TAF or more	None	
Moderate	500-450 TAF	0 to 15%	Voluntary
Severe	450-300	15 to 25%	Mandatory
Critical	Less than 300 TAF	25%	Mandatory
	TAF – ⁻	Thousand Acre-Fo	eet

Planned Rationing for Other Agenci	
Zone 7 Water Agency	0%
Metropolitan Water District of So. Cal.	0%
Marin Municipal Water District	10% / 25%
San Francisco PUC	10 - 20%
Contra Costa Water District	15%
Alameda County Water District	10%
Santa Clara Valley Water District	No Policy

Water Supply Management Program 2040 Supplemental Supply Projects

Dry Year	Unit	Cost	Estimates	5
----------	------	------	-----------	---

ID	Project Name	Online Yr	Operation	Dry Year Yield (MGD)	EBMUD Capital Cost (Mil. \$)	EBMUD O&M (\$/MG)°	Total Energy Use KWh/MG ^d	EBMUD Unit Cost (\$/AF, Dry Yield)°
SUP-25	Northern California Permanent Water Transfer ^b	2010	Permanent	4.5-44.6	\$20.0-\$200.0	\$649	5,217	\$630
SUP-11	Buckhorn Canyon Reservoir	2020	Storage	42.0	\$243.9	\$451	3,667	\$710
SUP-24	Enlarged Pardee Reservoir	2020	Storage	51.2	\$340.3	\$324	2,021	\$730
SUP-22	Enlarge Lower Bear Reservoir	2015	Storage	2.2	\$12.1	\$418	3,038	\$840
SUP-09	Bayside Phase 2 Groundwater Project	2013	Conjunctive Use	9.0	\$35.4	\$853	4,719	\$890
SUP-21	Inter-Regional Conjunctive Use Project (IR-CUP)/San Joaquin (SJ) Groundwater Banking	2014	Conjunctive Use	17.4	\$121.1	\$1,051	7,919	\$1,200
SUP-18	Regional Desalination Project	2012	Dry Year	20.0	\$72.4	\$3,912	11,000	\$1,900
SUP-07	Groundwater Banking/Exchange (Sacramento Basin) ^f	2014	Conjunctive Use	4.2	\$50.1	\$1,326	8,895	\$1,900
SUP-16	LEAD at C&H Sugar	2012	Baseload	1.5	\$23.4	\$1,945	0	\$2,600
SUP-16 Notes: a. Final dry- b. Northern guarantee c c. O&M cost O&M costs. d. Approxim	Sarinering Exchange (Sacramento Basin) LEAD at C&H Sugar year yield unit costs will be derived froi California Permanent Water Transfer C how prices may change in the future, ts for adjusted for dry year and recharg late costs of pumping water through Fr	2012 n WEAP mo osts were b e year operation	Baseload bdeling. These va ased on recent tra ations depending e and Mokelumne	1.5 lues will be diff insfers occurrin on the project. aqueducts are	\$23.4 ferent than those sing in the State of C O&M costs for idle e incorporated into t	\$1,945 hown here for alifornia. Not e years are as this table for c	0 comparative purpose e that past water pri sumed to be 10% o omparative purpose	ses. ces f opi

1. For groundwater banking projects (IR-CUP/SJ Groundwater Banking, Groundwater Banking/Exchange in Sacramento Basin and the Bayside Phase 2 Groundwater Project), it is estimated that approximately 10% of the water will be lost to migration and delivery system losses. These losses are reflected in this table.

EBMUD	Table 3 - Recycled Water Projects	R		led bry Ye	Wat	er P t Cost	rojec Estima	ts tes
Project ID	Project Name	Online Year	Expected Operation	Dry Year Yield (MGD)	EBMUD Capital Cost (Mil. \$)	EBMUD Variable O&M (d) (\$/MG)	Variable Energy Use (KWh/MG)	EBMUD Dry Yea Unit Cost (e (\$/AF)
REC-01A	ConocoPhillips RWP Phase 2 (a)	2015	Baseload	0.90	\$2.9	\$-	3,751	\$40
REC-07	RARE Future Expansion (b)	2015	Baseload	1.00	S-	\$1,221	5,606	\$1,30
REC-06	RARE Phase 2	2012	Baseload	0.50	S-	\$1,276	5,606	\$1,40
REC-10	SRVRWP Phase 2	2010	Baseload	0.75	\$5.0	\$849	4,265	\$1,60
REC-12	SRVRWP Phase 4	2016	Baseload	0.37	\$2.5	\$849	4,265	\$1,60
REC-01	ConocoPhillips RWP Phase 1	2012	Baseload	2.80	\$39.8	\$-	3,751	\$1,70
REC-16	Lake Chabot Raw Water Expansion Project	2010	Baseload	0.36	\$4.7	\$468	1.051	\$1,8
REC-11	SRVRWP Phase 3	2013	Baseload	0.58	\$5.5	\$849	4,265	\$1.9
REC-04	Franklin Canvon Recycled Water Project	2023	Baseload	0.30	\$4.0	\$712	4.265	\$2.1
REC-05	North Richmond Water Reclamation Plant Expansion	2018	Baseload	1.70	\$15.4	\$1,186	5.607	\$2.2
REC-03	East Bayshore Phase 2 (c)	2014	Baseload	0.60	\$9.4	\$987	2.679	\$2.6
REC-13	SRVRWP Phase 5	2018	Baseload	0.30	\$5.4	\$849	4,265	\$2.7
REC-14	SRVRWP Phase 6	2020	Baseload	0.20	\$4.0	\$849	4,265	\$2,9
REC-02	East Bayshore Phase 1B	2012	Baseload	1.20	\$28.0	\$987	2,679	\$3,4
REC-08	Reliez Valley Recycled Water Project	2015	Baseload	0.19	\$3.1	\$2,807	4,639	\$4.7
REC-09	San Leandro Water Reclamation Facility Expansion Project: Phase 3	2015	Baseload	0.56	\$16.3	\$1,474	2,509	\$5,3
REC-15	Satellite Recycled Water Treatment Plant Projects (Retrofits)	2014	Baseload	0.72	\$42.5	\$574	1,724	\$6,10

			Dr	y Year	Cons Unit Co	serva	tion mates
	Table 4 - Cons	ervation Programs Prelimi	nary Dry Year	Yield Unit	Cost Estin	nates	
Project ID	Project Name	Online Year	Expected	Total Dry Year Yield ^(a) (MGD)	EBMUD Capital Cost (^{b)} (Mil, \$)	EBMUD Variable O&M ^(c) (\$/MG)	EBMUD Average Incrementa Dry Year Cost ^(d) (\$/AF)
CONLO2	Natural Savings + 10	Spans planning period	Baseload	29	\$31.4	92	\$800
CON-03	Current Program	Spans planning period	Baseload	37	\$225.4	432	\$6.200
CON-04	Current Program Equivalent + 2 (D)	Spans planning period	Baseload	39	\$319.4	474	\$13,400
CON-05	Maximum Voluntary Program (E)	Spans planning period	Baseload	41	\$426.0	693	\$19,700
Notes: a. Total dry b. 2010 pre c. Gross va d. Rounded	-year yield by 2040. Yields r sent value capital cost. riable O&M costs. No credit to nearest \$100.	amp up over the planning perio for avoided wastewater treatme	d. Includes 19.2 ent costs or avoid	MGD yield fr	om plumbing water deliver	i code. y in non-dry y	/ears.

		er Supply Man	a	ge	me	nt	Pro	gra	m	204	10														
									P	0	rt	f	bl	io		۲ŀ	le	n	16) (C	ha	ar	t	
Portfolio Number	Portfolio Themes	Porticie Description	Components	0%	Rat)	15% (29 mp	25%e) (50 mgd)	ketural Savinge + 10 (B)	Current Program Equivalent (C)	Current Program Equivalent + 2 (D)	4admun Voluetary Program (E) ²	Recycling Level 1	Recyclin 2 Jana T Sulphoat	Secycling Level 3	accurdeable Benking/Exchange Stearamento Rusin)#	Vorthern California Water Transfera	Taryolde Photoe 2 Groundwater Proprict	Buddhorn Canyon Rejervoli	END at ORI Sugar	Supply used in the	RCuP/San Xeogun Darking*	örkerge Lower Bear Reserveitr	Erlarge Pardee Reservoir	Porticilo Yield (MGD) envation + Recyclemental	BACENSI In Annual Naved for Wahter (MGD) Under Bre Chosen Rationing Level
				NPW ¹ 107 MGD	NFW ² 87 MGD	NFW ² 78 MGZ	NFW ¹ 57 MGD	29 MGD	37 MGD	39 MGD	41 MGD	0 MGD	5 MGD	11 MGD	4.2 MGD	4.5-44.6 MGD	9 MGD	42 MGD	1.5 MGD	20 MGD	17.4 MGD	2.2.MGD	51.2 MGD	[Corr	Averag
1	Low Customer Impact	Balance of low rationing, low cost, high water quality.		٠				29					\$			20						2.2	\$1.2	107.4	107
2	Flexibility for Future Extended Drought or Climate Change	Keep rationing/conservation & transfers available as short-term response.		•				29					5							20		2.2	51.2	107.4	107
э	Upcountry Surface Storage Emphasis	Portfolio 2 with increased rationing & conservation & no recycling or desal.	I		•				37			0											51.2	85.2	87
4	Groundwater Storage	Portfolio 3, but replace surface storage with groundwater, & increase conservation, recycling. & transfers,	İ		•					39			5		4.2	15	2				17.4			89.6	87
6	Regional Partnerships	All partnership projects & conservation.			•				37				5		42	4.5				20	17.4	2.2		90.3	87
6	Emergency Reliability - A	West of delta surface storage.				٠			37				5					42						84.0	77
7	Emergency Reliability - B	West of delta production - desal, recycle, conservation.	I			٠				39				н			9			20				79.0	π
8	Diversified / Implementable	Balanced levels of conservation & recycling, non-Mokelumne sources - transfers, desal, in audite	I			٠			37				5			10	9			20				\$1.0	77
	Conservation & Recycling Emphasis	High conservation & recycling with LEAD. Transfers & Bayside to satisfy need for water.	I			٠					41			н		15	9		1.5					77.5	. 77
10	Low Carbon Fostprint	Pardee plus conservation.				٠			37				5										51.2	93.2	77
11	Low Capital Cost / Low Structural	25% rationing, conservation, & transfers.					٠	29				0				30								59.0	67
12	Coleman Alternative 1			_	•				37					п	4.2	IJ	9		1.5		F			89.7	87
13	Katz Alternative 1		lŀ	_		П	•			39				11		8	9		-					67.0	67
14	Katz Alternative 2		ľ			Ľ			37		-			11			9							57.0	67

	Agenda
1. Project Update - Workplan & WSMP 2040 Progress - Next Meeting Dates	15 min
 2. WSMP 2040 Portfolios Building WSMP 2040 Portfolios Modeling Results: Key Observations & Findings Portfolio Screening & Evaluation Five Primary Portfolio Alternatives 	60 min
 CLC Portfolio Feedback and Comments Public Comment 	45 min 20 min

			WSM	P 2040	Portfolio	s - Preli	minary M	odeling Re	sults (Roun	d 2)		
Т			Average A Over 3-Ye	nnual Volume of W ar Drought Planning	ster (MGD) Sequence				Cost ¹			Г
legun	Meximum						Rationing	Cost of Wa (Cost to	ter Shortage Customer)			
Portibilo N	Rationing Percent	Rationing	Conservation	Recycled	Supplemental Supply	Total System	Frequency - (No. of years in a 10-year period)	Avg. Annual Cost SM/Yr ²	Mex Annuel Cost \$M/Yr	Total Portfolio Cost (Cost to District) \$MYr	Total Capital Costa SM	
1	0%	0.0	29.3	5.0	61.5	95.9	0.0	0.0	0.0	16.9	450	
2	0%	0.0	29.3	5.0	61.5	95.9	0.0	0.0	0.0	16.8	440	
3	10%	13.7	37.3	0.0	47.2	98.1	1.4	15.3	183	17.7	540	
4	10%	19.5	39.4	5.0	45.6	109.6	1.8	15.2	182	26.9	670	
5	10%	19.5	37.3	5.0	48.0	109.8	1.8	15.2	183	23.9	570	
	15%	29.4	37.3	5.0	42.0	113.7	1.9	28.0	289	15.9	500	
5	15%	29.6	39.4	11.0	29.0	109.0	1.8	24.0	288	24.3	610	
6	15%	29.5	37.3	5.0	39.0	110.9	1.8	24.7	289	16.0	440	
Ú.	15%	29.6	40.9	11.0	25.5	107.1	1.8	24.3	288	29.2	750	Ĩ
)	15%	20.5	37.3	5.0	36.1	98.9	1.4	22.2	289	19.3	590	
	25%	52.0	29.3	0.0	28.6	109.9	2.0	78.9	1,131	7.2	130	
0	10%	19.5	37.3	11.0	41.3	109.1	1.8	14.8	182	24.2	610	ſ
	20%	41.1	39.4	11.0	17.1	108.6	1.8	41.2	482	22.1	580	Γ
	25%	52.0	37.3	11.0	0.0	109.3	20	72.4	1 120	17.0	450	t

WSMP 2040 CLC Meeting #7 May 19, 2008

WSMP 2040 CLC Meeting #7 May 19, 2008

				CI C Port	folio Egge	lha
	Water Sup	ply Management	Program 204	to CLC F	PORTFOLIO SCORECARD	7
Name	ə:				Date:]
	ALTERNATIVE PORTFOLIO THEMES	ALTERNATIVE PORTFOLIO EMPHASIS	TOP 3 [Please rank your Top 3 Portfolios with *1*, *2* and *3* below].	RATION Please provide your rationale below. Wh Thank	ALE y are these your preferred portfolios? you.]
^	Groundwater	Groundwater storage / exchange & transfers				
в	Diversified	Partnership projects including groundwater, desalination & transfers				
с	Reliability	West of delta surface storage				
D	Lower Carbon Footprint	Upcountry surface storage				
E	Recycling &	High recycling level &				1

Appendix E3

WSMP 2040 Meeting Presentations

Public Workshops

6/16/2008

6/16/2008

	PLANNING	ENGINEERING / SCIENCE	ECONOMICS	CEQA/ ENVIRONMENTAL PERMITTING	PUBLIC	BOD WORKSHOP
1007 NTP=3.1.07 3 DEVEL 4 DEVEL 5 DEWEN 6 P 7 Packing 8 Devel 9 DEWEN 10 Devel 11 Devel 12 Devel 3 Extense 4 Devel 5 Devel 11 Devel 12 Devel 13 Devel 14 Devel 15 Devel 16 Devel 17 Devel 18 Devel 19 Devel 10 Devel 11 Devel 11 Devel 12 Devel 11 Devel 12 Devel 13 Devel	PLANNING Vision Visi	ENGINEERING / SCIENCE	ECONOMICS	ERAPPROACH PERMITING ERAPPROACH CUILENE CUILENE CUILENE CUILENE CUILENE CUILENE CUILENE CUILENE CUILENE CUILENE ER FUELC COMMENT	PUBLIC COMMUNITY COMMITTE METINGS JUL 19 JUL 19 JUL 19 JUL 19 DEC 3 MARY 11 JUL 19 DEC 3	Constraints of the second

Water S	Supply Managem	ient Program 2040
		Public Outread
	WSMP 2040) Community Liaison Committee
First Nam	e Last Name	Organization
Barbara	Becnel	Neighborhood House of North Richmond
Charles	Brydon	W.A.T.E.R
Merlin	Edwards	Oakland African American Chamber of Commerce (OAACC)
Stuart	Flashman	Rockridge Community Planning Council - Private Attorney
Henry	Gardner	Association of Bay Area Governments
Charles	Gilcrest	Senior Advisor to Mayor Santos of San Leandro
Walt	Gill	Chevron Richmond Refinery
John	Gioia	Contra Costa County Board of Supervisors
Bob	Glover	Home Builders Association of N. CA.
Betty	Graham	Dept of Health Services, SF District
Michael	Hanneman	UC Berkeley, Water and Economics
Laura	Harnish	Environmental Defense
Kris	Hunt	Contra Costa Taxpayers' Association
Bruce	Kern	East Bay Economic Development Alliance
Howard	Kerr	Oro Loma Sanitary District
Julia	Liou	Asian Health Services
Eleanor	Loynd	May Valley Neighborhood Council, Richmond
David	Nesmith	CA Environmental Water Caucus
Tomi	Van de Brooke	Contra Costa County Board of Supervisors

WSMP 2040 Public BOD Workshop June 16 & 17, 2008

Need for Water in 20 During Drought Planning Sequen									
Maximum rationing	Gross Annual Average Customer Demand (MGD)	Average Annual Need for Water (MGD)	Need for Water over 3 years (TAF)						
25%	306ª	57	194						
15%	306	77	259						
10%	306	87	294						
0%	306	107	359						

ngoing recycling

18

Water Supply Managemen	nt Program 2040		
WSMI	2040 P	lanning	Objectives
Operations, Engineering, Leg Provide water supply reliability Utilize current water right entit! Promote District involvement ii	al & Institutional ements. n regional solutions.	I	
Economic Minimize cost to District custor Minimize drought impact to Dis Maximize positive impact to lo	ners. trict customers. cal economy.		
Public Health, Safety & Comn Ensure the high quality of the I Minimize adverse sociocultura Minimize risks to public health Maximize security of infrastruc	Junity District's water supp impacts (including & safety. ture & water supply.	ly. environmental justice	:).
Environmental Preserve & protect the environ Preserve & protect biological r Minimize carbon footprint. Promote recreational opportun	ment for future gene esources.	erations.	20

WSMP 2040 Public BOD Workshop June 16 & 17, 2008

C	Conservation	Progran	n Saving	s & Cos
Level	Description	# of Measures	2040 Water Savings (MGD)	Average Incremental Dry Year Unit Cost (\$/AF)
Α	Natural savings	11	19	NA
в	Natural savings + 10	39	29	\$800
с	Current program equivalent	51	37	\$6,200
D	Current program equivalent + 2	53	39	\$13,400
Е	Maximum voluntary program	58	41	\$19,700

WSMP 2040 Public BOD Workshop June 16 & 17, 2008

6/16/2008

6/16/2008

WSMP 2040 Public BOD Workshop June 16 & 17, 2008

													P	O	rti	fo	li	0	٦	h)e	n	16	;S	
Pettalo Number	Portolio Themes	Portola Descripton	Companients	0% NBW ¹	10% (20 mpd) NSW	15% (20 mpt	25%) (50 mpt) NPW	0101 (010) 2000 2000 2000 2000 2000 2000 2000	Center Program Equivalent (C)	55 Current Program Equivalent + 2 (2) 161	2 Automative Volument Program (1) ¹	B Recycling Lawel 1	Reguling 2 party Dapplord	E Peopeling Level 3	1. Countrater Basking Custange 65 (Secamente Basking	5 1 Nottem Caffernia Witter Transfers	Bayelon Phase 2 Groundwater	1) 5 Puotkoon Campon Revenoe	EAD at C84 Dage	Come Creatingion	"Bereart needing presend. 17.4 MGC	Erdage Lavor Bear Reservel	Colurge Parties Reserves	Purchako Vakit (MOD) (Comenvation + Ringcling + Supplementar Rapidel	Amount Record Stand In Viewe College
1	Low Customer Impect	Salance of low relianing, low cost, high water quality.	H	•	87 MGD	78.MG0	- 37 MGD	25					8			20						22	51.2	107.4	t
2	Findhility for Future Extended Drought or Climate Change	Kaap rationingkonnanvation & transfers available as abactizem response.	11			\vdash		29			Н		\$							20		2.2	81.2	107.4	t
3	Upcountry Surface Storage Emphasis	Portfolio 2 with increased retioning & conservation & no recycling or deexil.	11		•	\vdash	\square		27		\square	0											51.2	88.2	t
•	Groundwater Storage	Partfolio 3, but replace surface storage with providentiar, & increases conservation, recycling, & increases	11		3 0 0					30			5		4.2	15	9				17.4			89.5	t
,	Regional Partnershipe	All partnenihip projecte & conservation.	11		•				37				5		42	45				20	17.4	2.2		90.3	t
	Emergency Reliability - A	West of delta surface storage.	11			•			37				5					42						84.0	t
7	Emergency Reliability - B	West of delta production - desail, recycle, conservation.	11			•				39				11			9			20				79.0	ſ
	Diversified	Balanced levels of conservation & recycling, non- Mahahama sources - transfers, deasi, Bayelde.	1			•			37				8			90	9			20				81.0	Γ
	Conservation & Recycling Emphasis	High conservation & recycling with LEAD. Transfere & Baywide to satisfy need for water.	11			•					41			11		15	9		1.5					77.5	Γ
о.	Law Carlson Footprint	Pardea plue conservation.	1			•			37				8					\square					51.2	93.2	Γ
1	Leer Capital Cont / Lew Boucheral	29% patiening, conservation, & transfere,	1				•	29				0				30								\$9.0	Γ
2	Colaman Alternative 1					F	F		37		\square			11	42	27	9		15					89.7	F
12	Celaman Alternative 1				•	$\left \right $		_	37					11	42	27	9		15		<u> </u>			8	17
			1													1	- 10 L				-			-	ł

	Water Supply Management Program 2040 Primary Portfolios																	
Portíciío Number	Portfolio	Portfolio Theme	Portolo Emphasia	Components	10% (20 MGD)	15% (29 MGD)	Current Program Equivalent (C)	Current Program Equivalent + 2 Set	Recycling Level 2	Recycling Level 3	Groundwater Banking/Exchange (Sacramento Basin) ²	Northern California Water Transfers	Bayside Phase 2 Groundwater Project	Buckhorn Canyon Reservoir	Kegional Desaination	IRCUP/San Josquin Banking ¹	Entarge Lower Bear Reservoir	Enlarge Pardee Reservoir
4	*	Groundwater	Groundwater storage/exchange & transfers.		NFW 87 MGD	NFW 78 MGD	37 MGD	39 MGD 39	5 MGD	11 MGD	4.2 MGD	4.5-44.6 MGD	9 MGD 9	42 MGD	20 MGD	17.4 MGD	2.2 MGD	51.2 MGD
5	в	Diversified	Partnership projects including groundwater, desalination & transfers.		•5		37		5		4.2	4.5			20	17.4	2.2	
6	c	Reliability	West of delta surface storage.			٠	37		5					42				
10	D	Lower Carbon Footprint	Upcountry surface storage.			•	37		5				9					51.2
12	E	Recycling & Transfer	High recycling & major transfer.		•1		37			11	4.2	28.5	9					
																	- 52	

