EBMUD First Half 2025 Data Update

These tables include data for detected water quality parameters from January 1, 2025 to June 30, 2025. EBMUD is providing this semi-annual update in anticipation of new requirements in the America's Water Infrastructure Act of 2018 (AWIA). EBMUD's 2024 report, with data from the entire calendar year, is here: www.ebmud.com/wqr

USL and San Pablo Water Treatment Plants are not included in this update since they were not in service from January 1, 2025 through June 30, 2025.

Units		В	The Treatment Technique for total coliform triggers follow-up actions if percent of samples positive for total coliform in any month exceeds 5%.						
gpg	grains per gallon	C	The Treatment Technique for turbidity requires that at least 95% of water samples collected each month at each water treatment plant be less than 0.3 NTU.						
NS	Not sampled in the first 6 months of 2025 and will be samples in the second half of 2025.	D	See page 10 of 2024 Annual Water Quality Report for additional information about fluoride in drinking water.						
NTU	Nephelometric Turbidity Unit. A measure of the cloudiness of water	E	There are new regulations for hexavalent chromium. See page 9 of 2024 Annual Water Qualit Report for more information.						
ppm	parts per million (milligrams per liter, mg/L). One ppm is like 1 second in 11.5 days.	F	The hexavalent chromium monitoring results shown for Orinda and Sobrante Water Treatment Plants are from monitoring conducted after June 30, 2025. A sampling error						
ppb	parts per billion (micrograms per liter, μg/L). One ppb is like 1 second in nearly 32 years.		occurred during initial monitoring earlier in the year.						
ppt	parts per trillion (nanograms per liter, ng/L). One ppt is like 1 second in nearly 32,000 years.	G	This value is the highest running annual average, on which compliance is based. The values shown under Water Treatment Plants are the range of individual sample results.						
	microsiemens per centimeter. A measure of electrical conductance		Sobrante water treatment plants is required to remove TOC.						
µ8/cm			Chloramine residuals in the distribution system are measured as an equivalent quantity of chlorine. When chloramine residual cannot be detected, the sample is further analyzed to ensure that the microbiological water quality is in compliance with regulations.						

		State or	Highest			EBMUD Res	ults				
1	Regulated for public health Primary MCL (Unit)	federal goal amount		System	WATER TREATMENT PLANTS Individual Sample Results ^A				Typical sources		
	Primary MGL (Unit)	or MRDLG	PHG, MCLG allowed or MRDLG MCL, MRDL or AL		Walnut Creek	Lafayette	Orinda	Sobrante			
gical	Total Coliform, highest % found any month	0	TTB	NA		0.	2%		Naturally present in the environment		
Microbiological	Turbidity Max (NTU)	NA	1	0.02	0.10	0.10	0.10	0.10	Soil runoff		
Micro	Turbidity ≤0.3 NTU, lowest % of any month (%)	NA	TTc	100%	100%	100%	100%	100%	Solitulion		
ပ	Aluminum (ppb)	600	1,000	ND	ND	ND	ND	ND - 60	Erosion of natural deposits; water treatment residue		
Inorganic	Fluoride ^D (ppm)	1	2	0.7	0.7 - 0.8	0.7 - 0.8	0.7 - 0.8	0.6 - 0.7	Erosion of natural deposits; water additive that promotes strong teeth		
<u>ou</u>	Hexavalent Chromium ^E (ppb)	0.02	10	ND	0.3	0.3	NDF	NDF	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes		
Lead and Copper	Copper (ppm)	0.3 NA 0 of 53 sample sites above AL, 90th percentile = ND, Rang		ange = ND - 0.2	Internal corrosion of household plumbing system, erosion of natural deposits						
Cop	Lead (ppb)	0.2	15	NA	0 of 53 sample sites above AL, 90th percentile = ND, Range = ND - 13.3			lange = ND - 13.3	Internal corrosion of household plumbing system, erosion of natural deposits		
	Bromate (ppb)	0.1	10	ND _G	NA	NA	NA	ND - 1	By-product of drinking water disinfection		
S	Chloramine as chlorine! (ppm)	4	4	2.4 ^G	0.15 - 3.71				Drinking water disinfectant added for treatment		
D/DBPs	Control of DBP precursors/TOC (NA)	NA	ТТН	NA	NA	NA	NA	met requirement	Various natural and man-made sources		
	Haloacetic acids, 5 species (ppb) ^K	NA	60	381	21 - 38	23 - 31	20 - 33	31 - 37	By-product of drinking water disinfection		
	Trihalomethanes (ppb) ^K	NA	80	50 ^J	31 - 39	25 - 37	33 - 39	32 - 37	By-product of drinking water disinfection		
			The Park of the Pa		THE RESERVE TO STATE OF THE PARTY OF THE PAR		The state of the s				

		State or	Highest			EBMUD Res	ults			
2	Regulated for drinking water aesthetics Secondary MCL (Unit)	federal goal PHG or MCLG		System average	WATER TF Walnut Creek	REATMENT PLANTS Individual Sample Results ^A Lafayette Orinda Sobrante			Typical sources	
Alum	inum (ppb)	600	200	ND	ND	ND	ND	ND - 60	Erosion of natural deposits; water treatment residue	
Chloride (ppm)		NA	250	5	4 - 5	4	4 - 5	13 - 17	Runoff/leaching from natural deposits	
Specific conductance (µS/cm)		NA	900	92	64	68	75	290	Substances that form ions when in water	
Sulfa	te (ppm)	NA	250	5	1 - 2	1 - 2	1-3	34 - 44	Runoff/leaching from natural deposits	
Total dissolved solids (ppm)		NA	500	55	ND - 57	ND - 49	ND - 55	140 - 190	Runoff/leaching from natural deposits	

Notes

- A San Pablo and Upper San Leandor water treatment plants were out of service in 2024.

- This value is the highest running annual average at a single location, on which compliance is based.
- These data are collected in the distribution system. The sample locations are assigned to the most representative water treatment plant, but the data may also represent water from another plant.

AL	Regulatory Action Level. The concentration which, if exceeded, triggers treatment or other requirements that a water system must follow.
DBP	Disinfection By-Products. These are formed when chlorine and/or ozone reacts with natural constituents in water. Trihalomethanes (THMs), haloacetic acids (HAAs), chlorate, and bromate are disinfection by-products.
D/DBPs	Disinfectants and Disinfection By-products. Disinfectant residuals, disinfection byproducts and byproduct precursors.
MCL	Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or MCLGs as is economically and technologically feasible Secondary MCLs address odor, taste and appearance of drinking water.
MCLG	Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.
MRDL	Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG	Maximum Residual Disinfectant Level Goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
NA	Not Applicable.
ND	Not Detected.
Primary Drinking Water Standard	These standards regulate contaminants that affect health by setting MCLs, MRDLs, and Treatment Techniques (TT) along with their monitoring and reporting requirements.
PHG	Public Health Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.
TOC	Total Organic Carbon. A measure of organic content in the water.
Turbidity	A measure of the cloudiness of water. Turbidity is monitored because it is a good indication of the effectiveness of our filtration systems.
П	Treatment Technique. A required process intended to reduce the level of a contaminant in drinking water.

Notes A San Pab J This val

- A San Pablo and Upper San Leandor water treatment plants were out of service in 2024.
- J This value is the highest running annual average at a single location, on which compliance is based.
- K These data are collected in the distribution system. The sample locations are assigned to the most representative water treatment plant, but the data may also represent water from another plant.
- PFBA is not one of the 6 newly regulated PFAS compounds and it does not have an MCL.
- M Parameters with a notification level.
- **N** Grains per gallon (gpg) is a measure of water hardness. Knowing the amount can help improve the function of dishwasher, cooling equipment and other industrial processes. Refer to your appliance manufacturer's instruction manual for the optimum grains per gallon level.
- Walnut Creek, Lafayette, and Orinda water treatment plants are not required to monitor TOC. Their treated water TOC values are similar to or less than their source water.

3		State Notification level	EBMUD Results						
	Unregulated Contaminants			WATER TREATMENT PLANTS Individual Sample Results ^A					
	No established MCL (Unit)		System average	Walnut Creek	Lafayette	Orinda	Sobrante		
UCMR5	Perfluorobutanoic acid - PFBA (ppt) ^L	NA	ND	ND	ND	ND	ND - 5.1		
Others™	Chlorate (ppb)	800	73	66	80	68	80 - 140		
	N-Nitrosodimethylamine - NDMA ^K (ppt)	10	3.9 J	ND - 2.7	ND - 2.3	1.2 - 2.7	ND - 3.8		

			EBMUD Results				
	4 Other parameter	s of interest to customers (Unit)	WATER TREATMENT PLANTS Individual Sample Results ^A				
			Walnut Creek	Lafayette	Orinda	Sobrante	
	Alkalinity, Total as CaCO3	(ppm)	22 - 28	20 - 25	22 - 27	69 - 85	
	Calcium (ppm)		5 - 6	5 - 6	5 - 6	19 - 24	
	Hardness as CaCO3	(gpg) ^N	1	1 - 2	1	4 - 5	
-	Hardness as Cacos	(ppm)	15 - 21	17 - 27	15 - 20	76 - 92	
	Magnesium (ppm)		1	1	1	6 - 8	
	рН (рН)		9.2 - 9.3	9.2 - 9.3	9.2 - 9.4	8.3 - 8.8	
	Potassium (ppm)		1	1	1	1	
	Silica (ppm) TOC in source water (ppm) TOC in treated water ⁰ (ppm)		8 - 11	8 - 11	8 - 11	10 -11	
			1.3 - 1.7	1.3 - 1.7	1.3 - 3	3.2 - 5	
D.W.			-	-	-	2.1 - 3.1	
	Sodium (ppm)		6 - 7	5 - 6	6 - 7	21 - 26	

EBMUD's Pardee Reservoir in the Sierra Nevada foothills supplies water from the Mokelumne River. Here, a turbidity curtain near the outlet tower is deployed to improve water clarity and quality.