

Lafayette Reservoir and Outlet Tower Seismic Retrofit Project

City of Lafayette

January 9, 2023

Jimi Yoloye, Director of Engineering and Construction, EBMUD Elizabeth Bialek, Manager of Engineering Services, EBMUD

Lafayette Reservoir

Lafayette Dam

- Constructed in 1927
- The reservoir is not part of the District's water supply
- The dam was evaluated in 2005. Findings were:
 - In a large earthquake, the crest could settle 2 to 3 feet.
 - The dam has a freeboard greater than 15 feet.
- DSOD has approved the findings and the conclusion that the dam is stable.

Lafayette Reservoir Tower

- 170 feet tall, 8 feet inside diameter, and functions as outlet & spillway.
- The tower is 40 feet higher than necessary because the original dam failed during construction and the dam was built 33 feet lower than planned.
- Studies indicate that the tower is vulnerable during an earthquake and retrofit is required.
- DSOD rated Lafayette "fair", restricted the reservoir elevation, and mandated tower upgrades. All other EBMUD dams are rated "satisfactory."
- Objectives of the project:
 - Safeguard dam safety following a Maximum Credible Earthquake
 - Allow the tower and conduits to remain functional following an Earthquake

Tower Seismic Deficiencies

- A large earthquake will induce high bending forces in the tower.
 - The bending force will exceed the bending capacity over part of the tower.
 - The bending force will likely fracture and break the rebar in the concrete.
 - The tower will likely be severely damaged.
- The damaged tower likely would not be able to function as spillway or outlet.

Tower Retrofit Alternatives

Post Tensioned Anchors

Base Isolators

Tower Shortening

Tower Shortening most reliably addresses the seismic concern and does not have long-term risks – it is the safest way to address the seismic hazard

Current Rendering

- Tower is being shortened by 40 feet, to an appropriate level for the height of the dam, while providing an adequate spillway elevation and removing the seismic hazard
- Current concept includes aesthetic treatment for the top of the tower, including an access platform with a beveled support to match aesthetic of other District towers.

Current Draft Renderings

Water Surface Elevation: 433 feet 440 feet

449 feet

District Reservoir Towers

Tower Platform Architectural Options

Option A

Option B

Site Layout

Construction Activities

Four phases:

- I. Temporary platform installation
- II. Tower sealing and dewatering
- III. Selective demolition to remove top of tower safely
- IV. Platform construction

Reservoir lowering is not required.

Lafayette Tower Seismic Retrofit Outreach

EBMUD

QUESTIONS AND DISCUSSION