Recovery of Coded-Wire Tags from
 Chinook Salmon in California's Central Valley Escapement, Inland Harvest, and Ocean Harvest in 2015

Melodie Palmer-Zwahlen ${ }^{1 /}$, Vanessa Gusman ${ }^{2 /}$ and Brett Kormos ${ }^{2 /}$

December 2019

${ }^{1 /}$ Pacific States Marine Fisheries Commission
${ }^{2 /}$ California Department of Fish and Wildlife
Marine Region
Ocean Salmon Project 3637 Westwind Blvd Santa Rosa, CA 95403

This report is funded by the U.S. Bureau of Reclamation, East Bay Municipal Utilities District, and the California Department of Water Resources contracts with the Pacific States Marine Fisheries Commission (PSMFC). The work necessary to produce this report was a cooperative effort between the California Department of Fish and Wildlife and the PSMFC.

INTRODUCTION

Each year, approximately 32 million fall-run Chinook salmon (Oncorhynchus tshawytscha) are produced at five hatcheries in California's Central Valley (CV): Coleman National Fish Hatchery (CFH), Feather River Hatchery (FRH), Nimbus Fish Hatchery (NIM), Mokelumne River Hatchery (MOK), and Merced River Hatchery (MER). Production from these hatcheries contributes to CV escapement and sport harvest while also supporting ocean fisheries in California and Oregon. Since 2007, a constant fractional marking (CFM) program has ensured that at least 25% of all CV hatchery fish are tagged with a microscopic ($\leq 1 \mathrm{~mm}$) coded-wire tag (CWT). Each CWT contains a binary or alpha-numeric code that identifies a specific release group of salmon (e.g., agency, species, run, brood year, hatchery or wild stock, release size, release date(s), release location(s), number tagged and untagged). Each salmon containing a CWT is also externally marked with a clipped adipose fin (ad-clip) to allow for easy visual identification.

This is the sixth annual report on the recovery of CFM CWTs in the CV and ocean fisheries. In 2015, approximately 41,500 CWTs were recovered and successfully read from ad-clipped Chinook salmon sampled in CV fall-, winter-, spring-, and late-fall-run natural area spawning surveys, at CV hatcheries, in the CV angler sport harvest, and in ocean salmon commercial and sport fisheries south of Cape Falcon (i.e., California and Oregon).

This report will focus primarily on the results of our analyses addressing the following questions:

- What are the proportions of hatchery- and natural-origin salmon in spawner returns to CV hatcheries and natural areas, in inland harvest, and in ocean fisheries? Of the hatchery component, what proportions originated from in-basin versus out-of-basin CWT release strategies?
- What are the relative recovery and stray rates for hatchery-origin salmon released in-basin versus salmon released into the waters of the Sacramento-San Joaquin River Delta, San Francisco-San Pablo bays, or coastal areas? How do recovery and stray rates differ between salmon acclimated in net pens and their siblings released directly into the water? Are these metrics affected by transporting salmon smolts down their natal waterways by vessel and exposing them to river water prior to release in the bay?
- What are the relative recovery and contribution rates of hatchery-origin salmon, by run and release type, to ocean and inland harvests?

Please see previous annual CFM reports (Kormos et al. 2012, Palmer and Kormos 2013, 2015, Palmer et al. 2018,2019) for more in-depth information and discussion regarding the CFM program, CWT marking and recovery programs in California, and the methods and analyses used in this report. Additional information on salmon escapement monitoring can be found in the Central Valley Chinook Salmon Escapement Monitoring Plan (Bergman et al. 2012) and other CV salmon population reports (Killam et al. 2014).

DATA AND METHODS

Inland Escapement and River Sport Harvest Monitoring

During 2015, monitoring of salmon escapement occurred at all five salmon hatcheries and on major rivers and tributaries throughout the CV. In addition, an angler creel survey was conducted on sport fisheries in the Sacramento, Feather, American, and Mokelumne river basins. It should be noted that the late-fall-run escapement in the upper Sacramento River and at CFH in this report is considered the 2016 return year, however the escapement monitoring period began in late 2015.

Sampling and estimation methods (e.g., carcass surveys, snorkel surveys, weir counts) continue to vary among natural spawner surveys throughout the CV (Table 1); however, most surveys on major rivers and tributaries in 2015 adequately sampled (sample rate $\geq 20 \%$) for ad-clipped fish. The sampling rate was generally lower for smaller creeks where biodata was collected over a few days and/or limited areas.

There were almost 93,500 salmon sampled, 28,600 ad-clipped salmon observed, and approximately 27,400 heads collected by various CV projects. Monitoring agencies and projects included the California Department of Fish and Wildlife (CDFW), California Department of Water Resources (DWR), East Bay Municipal Utility District (EBMUD), Pacific States Marine Fisheries Commission, U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service (FWS), and the Yuba Accord River Management Team (YARMT). Most heads were processed by CDFW at their Santa Rosa and Sacramento CWT labs with the exception of heads collected at CFH, which were processed by FWS staff. A few hundred additional heads were collected and processed by CDFW projects in Red Bluff and La Grange.

All estimates of CV escapement or harvest and the number of salmon sampled in this report were provided by individual monitoring projects or hatcheries.

Ocean Harvest Monitoring

In 2015, California sport and commercial ocean salmon fisheries (Table 2) continued to be less constrained than during the late 2000s primarily due to an increase in the abundance of both Sacramento River and Klamath River fall-run Chinook salmon. CDFW field staff sampled 48,600 salmon and collected 11,400 heads that were processed by the Santa Rosa CWT lab. An additional 4,600 heads collected in Oregon ocean sport and commercial fisheries during 2015 are also included in the analyses since Sacramento River fall Chinook is the primary stock harvested in fisheries south of Cape Falcon (PFMC 2016).

Each year, CDFW validates and uploads all CWT recoveries in California, along with their respective catch-sample data, to the Regional Mark Processing Center (RMPC), which is the central repository for west coast CWT recoveries. All 2015 inland and ocean CWT recoveries are publicly available on the RMPC website at www.rmpc.org.

CWT Data Analysis

A "master" release database of CWT codes recovered in 2015 was created to determine species, brood year, run, stock origin (hatchery or natural), release site, release date(s), number of salmon CWT tagged, total number of salmon released, and any other pertinent release information (e.g., trucked, net pen acclimation, disease issues). Since almost all CV salmon recovered are between the ages of two and five, all CWT release data for Chinook salmon brood years (BY) 2010 through 2013 was downloaded from the RMPC. Approximately 142 million CV salmon were released for these brood years, of which 49 million were marked and tagged utilizing 449 unique CWT codes. Although a few thousand natural-origin salmon are trapped, marked, and tagged each year, primarily in the Feather and Mokelumne rivers, salmon produced by hatcheries make up more than 99% of all CWT releases. In 2015, there were 294 individual CWT codes recovered in the CV, primarily from age- 2 , age- 3 , and age- 4 salmon. The CWT master file was updated with any additional information obtained for special CV salmon releases (e.g., barge study) and the production factor calculated for each CWT code. The production factor, $F_{\text {prod, }}$ is the ratio of the total number of salmon released to the total number of salmon marked containing a CWT. Thus it is the total number of salmon (i.e., tagged and untagged) represented by each CWT recovery. $F_{\text {prod }}$ was calculated for each CWT code and is defined as,

$$
F_{\text {prod }}=(\text { Ad.CWT }+ \text { Ad.noCWT }+ \text { noAd.CWT }+ \text { noAd.noCWT }) / \text { Ad.CWT },
$$

where Ad.CWT is the number of salmon released with ad-clips and CWTs, Ad.noCWT is the number of salmon released with ad-clips but without CWTs (i.e., shed tags prior to release or CWT not correctly inserted), noAd.CWT is the number of salmon released without ad-clips but with CWTs, and noAd.noCWT is the number of salmon released without ad-clips and without CWTs. $F_{\text {prod }}$ allows expansion to total hatchery production from observed recoveries of CV CWTs.

For this analysis, each CV Chinook salmon CWT release was classified into a "release type" based on the following criteria: hatchery or natural stock, run, release location, and holding strategy. All CV CWT codes were assigned by brood year into one of sixteen fall-run release types, two spring-run release types, one winter-run release type, and one late-fall-run release type:

Sacramento River Basin Fall-run Chinook salmon release types		
CFHFh	Coleman National Fish Hatchery Fall-run hatchery releases (in-basin)	
CFHFn	Coleman National Fish Hatchery Fall-run bay net pen releases (San Pablo Bay)	
FRHFb	Feather River Hatchery Fall-run barge study releases	
FRHFk	Feather River Hatchery Fall-run Knaggs Ranch experimental releases	
FRHFn	Feather River Hatchery Fall-run bay net pen releases (San Pablo Bay)	
FRHFnc	Feather River Hatchery Fall-run coastal net pen releases (Santa Cruz and Pillar Point)	
FRHFtib	Feather River Hatchery Fall-run Tiburon net pen releases (held several months)	
NIMF	Nimbus Fish Hatchery Fall-run in-basin releases	
NIMFn	Nimbus Fish Hatchery Fall-run bay net pen releases (San Pablo Bay)	
San Joaquin River Basin Fall-run Chinook salmon release types		
MOKF	Mokelumne River Hatchery Fall-run in-basin releases	
MOKFb	Mokelumne River Hatchery Fall-run barge study releases	

MOKFn Mokelumne River Hatchery Fall-run bay net pen releases (Sherman Island) MOKFnc Mokelumne River Hatchery Fall-run coastal net pen releases (Santa Cruz) MOKFt Mokelumne River Hatchery Fall-run trucked releases (no net pen acclimation)
MERF Merced River Hatchery Fall-run in-basin releases
MERFt Merced River Hatchery Fall-run trucked releases (no net pen acclimation)

Central Valley Spring-run Chinook salmon release types

FRHS Feather River Hatchery Spring-run in-basin releases
FRHSn Feather River Hatchery Spring-run bay net pen releases (San Pablo Bay)

Sacramento River winter-run Chinook salmon release types

SacW Sacramento River Winter-run supplementation natural production in-basin releases

Central Valley Late-fall Chinook salmon release types

CFHLh Coleman National Fish Hatchery Late-fall-run hatchery releases (in-basin)
Note that not all release types occur every year and that release sites sometimes vary within a given release type (Table 3; Fig. 1). There were also a few problem CWT releases where fish were released utilizing multiple strategies (e.g., 15% of BY 2011 FRHFn were released directly into the bay). Thus, we urge caution when analyzing or comparing CWT recovery data from certain release types.

To estimate the total escapement or harvest associated with each CWT recovery, each tag recovery was expanded by its respective $F_{\text {prod }}$ and sample expansion factor, $F_{\text {samp }}$, which is defined as,

$$
F_{\text {samp }}=1 /\left(f_{e} \times f_{a} \times f_{d}\right),
$$

where f_{e} is the fraction of the total salmon escapement sampled and visually examined for an adclip, f_{a} is the fraction of heads from ad-clipped salmon collected and processed, and f_{d} is the fraction of observed CWTs that were successfully decoded (Tables 4 and 5).

Salmon sampled in CV carcass surveys are generally classified as 'fresh' or 'non-fresh' based on criteria such as condition of the eyes (clear vs. opaque) or gills (pink vs. grey). Often the adclipped (marked) status of a non-fresh (i.e., decayed) salmon cannot be determined due to the deteriorating condition of the carcass. While condition criteria are somewhat ambiguous and classification may vary among surveys, the ad-clip rate of fresh salmon sampled in 2015 was generally higher than the rate observed in non-fresh fish (Appendix 1). Fresh carcass heads also contained CWTs at a slightly higher rate than heads collected from non-fresh fish. Furthermore, the sample sizes between fresh and non-fresh fish are usually very different with the number of non-fresh salmon sampled generally much greater than fresh salmon in surveys that collected both conditions.

Mohr and Satterthwaite (2013) demonstrated how the sampling differences noted above could negatively bias the estimates of hatchery contribution. However, they cautioned that using only CWT data from fresh fish could eliminate the occurrence of rare CWT codes in analyses due to the small sample sizes common with fresh carcasses in these surveys. As in previous CFM
reports, the following equation developed by Mohr and Satterthwaite (2013) was used to calculate $F_{\text {samp }}$ for carcass surveys collecting fish condition data, thus reducing the potential to underestimate hatchery contribution while still incorporating CWT codes from both fresh and non-fresh fish:

$$
F_{\text {samp }}=\left(N \times p_{-} a d c\left|f r e s h \times p _c w t\right| f r e s h, a d c\right) /\left(n_{\text {valid } c w t}\right),
$$

where $N=$ estimated total escapement, $p_{_}$adc|fresh $=$proportion of fresh salmon sampled that were ad-clipped, p_{-}cwt fresh,adc $=$proportion of ad-clipped fresh salmon that contained a CWT, and $n_{\text {valid cwt }}=$ total number of valid CWTs collected from fresh and decayed salmon.

To help differentiate between raw CWT recoveries, CWT recoveries expanded for production, CWTs expanded for sampling, and CWTs expanded for production and sampling, the following nomenclature is used:
$C W T=$ Raw count CWT recoveries
$C W T_{\text {prod }}=$ CWT recoveries expanded only by their respective production factor, $F_{\text {prod }}$
$C W T_{\text {samp }}=$ CWT recoveries expanded only by their respective sample expansion factor, $F_{\text {samp }}$
$C W T_{\text {total }}=$ CWT recoveries expanded by both $F_{\text {prod }}$ and $F_{\text {samp }}$

Determining hatchery- and natural-origin proportions in CV escapement and harvest

 To determine the contribution of hatchery- and natural-origin salmon, all $C W T_{\text {total }}$ were summed to estimate the total number of hatchery salmon in each survey. The contribution of naturalorigin salmon for each survey was then determined by subtracting the total number of hatchery salmon from the total escapement estimate, as follows:Estimate of natural-origin salmon $=$ Total escapement estimate $-\sum_{i=1}^{m} C W T_{\text {total }, i}$, where $m=$ total number of hatchery-origin CWT release groups identified in an escapement survey or hatchery.

Determining recovery rates of various release types in CV escapement and ocean harvest

 To determine the relative CV recovery rate, $R_{c w t}$, of each unique CWT release group (i.e., code), all recoveries were expanded by their location-specific $F_{\text {samp }}$, summed over all recovery locations, and then divided by the total number of salmon tagged and released with this CWT. Since expanded recoveries for several individual CWT groups were less than 0.001% of the total number released, recovery rates are reported in recoveries per 100,000 CWT salmon released, as follows:$$
R_{c w t}=\sum_{j=1}^{l} C W T_{\text {samp }, j} \text { recoveries } /(\text { CWT release group size } / 100,000)
$$

where $j(=1,2,3,,, l)$ denotes recovery location.
Data from all CWT release groups belonging to the same brood year and release type (e.g., coastal net pen) were combined and an overall release type-specific CV recovery rate, $R_{\text {type }}$, was calculated as:
$R_{\text {type }}=\sum_{j=1}^{l} \sum_{k=1}^{n} C W T_{\text {samp } j, j} /\left(\sum_{k=1}^{n}\right.$ release group size of $\left.C W T_{k} / 100,000\right)$,
where $k(=1,2,3,,, n)$ denotes release group.
Determining stray proportions of various release groups in CV escapement
To be consistent with previous reports (Kormos et al. 2012, Palmer-Zwahlen and Kormos 2013, 2015, Palmer-Zwahlen et al. 2018, 2019), basin-of-origin is defined as the drainage of any major river as it pertains to the geographic region of the CV where a hatchery is located. The CV is divided into five hatchery basins: upper Sacramento River (including Battle Creek), Feather River (including the Yuba River), American River, Mokelumne River, and Merced River. Hatchery-origin salmon not returning to their basin-of-origin or to streams and rivers not included in any hatchery basin (e.g., Mill Creek, Butte Creek, Stanislaus River) are considered strays. Appendices 2 and 3 present alternative recovery and stray rates for CFH and FRH CWT releases based on the assumption that recoveries in the upper Sacramento River and Yuba River, respectively, are strays.

To determine the CV stray proportion, S_{cwt}, for each CWT code, the sum of all $C W T_{\text {samp }}$ recoveries collected outside the basin of origin was divided by total $\mathrm{CV} C W T_{\text {samp }}$ recoveries for that release group, as follows:

$$
S_{\mathrm{cwt}}=\sum_{p=1}^{o} C W T_{\text {samp }, p} \text { (out-of-basin locations) } / \sum_{p=1}^{q} C W T_{\text {samp }, p} \text { (all CV locations) }
$$

where p denotes recovery location, o denotes the number of out-of-basin recovery locations, and q denotes the total number of recovery locations.

Data from all CWT releases belonging to the same brood year and release type were combined and release type-specific CV stray proportion, $S_{\text {type }}$, was calculated as:

$$
S_{\text {type }}=\sum_{p=1}^{o} \sum_{k=1}^{n} C W T_{\text {samp }, p, k} \text { (out-of-basin) } / \sum_{p=1}^{q} \sum_{k=1}^{n} C W T_{\text {samp }, p, k} \text { (all CV locations) }
$$

RESULTS

General overview of 2015 CV inland recoveries and California ocean harvest

All except four of the 26,546 valid CWTs recovered in the CV during 2015 were from CV Chinook salmon releases. Most CWTs were brood year 2011 through 2013 releases (Table 6). About 89% of all $C W T_{\text {total }}$ recoveries were fall-run, followed by spring-run (8%), and late-fallrun (2%) salmon releases. Less than one percent of all $C W T_{\text {total }}$ recovered were winter-run, all of which were collected in the upper Sacramento River winter-run carcass survey and the Keswick Dam Fish Trap, where natural winter-run fish are collected for broodstock purposes at Livingston Stone National Hatchery. The four non-CV salmon were fall-run Chinook salmon released from hatcheries in the Klamath-Trinity River Basin and Smith River. The majority of fall-run $C W T_{\text {total }}$ recovered in the CV were age-3 (59\%), age-4 (21\%), and age-2 (19\%) fish (Table 6).

Most of the 10,501 valid CWT recoveries in the 2015 California ocean harvest were CV salmon releases belonging to brood years 2011 through 2013 (Table 7). Approximately 91% of all $C W T_{\text {total }}$ in the ocean harvest were CV fall-run, followed by CV spring-run (3\%), CV late-fallrun (1%), and CV winter-run (0.01%) salmon. The remaining 6% of California ocean CWT recoveries originated primarily from the Klamath-Trinity Basin and Smith River in northern California, and Oregon coastal streams. The majority of the hatchery-origin fish in the California harvest were age-3 (70\%) and age-4 (18\%) fish.

Approximately half of the 4,443 valid CWT recoveries in the 2015 Oregon ocean harvest were CV salmon releases (Table 8). Approximately 48% of all $C W T_{\text {total }}$ in the ocean harvest were CV fall-run salmon and 1% were CV spring-run. Non-CV stocks made up 51% of the harvest with most originating from the Columbia River Basin, coastal streams in Oregon, and the KlamathTrinity Basin. The majority of the hatchery fish in the Oregon harvest were age-3 (58\%) and age4 (37\%) fish.

1. Proportion of Hatchery- and Natural-origin Salmon in CV Escapement

Approximately 100,000 fall-run Chinook salmon returned to spawn in natural areas during 2015 (Table 4) and the proportion of hatchery-origin salmon in those areas sampled varied throughout the CV. The lowest hatchery proportion occurred in Cottonwood Creek (15%) while the highest proportion (100%) occurred in Deer Creek (Table 9, Fig. 2). It should be noted that the Battle Creek hatchery proportion is estimated using a surrogate since there has not been a carcass survey or CWT recovery program conducted in this waterway since 2005. The hatchery contribution and CWT release type composition in the Battle Creek escapement is assumed equivalent to the hatchery fall-run return sampled at CFH (K. Niemela, FWS, pers. comm.). The second highest hatchery proportion occurred in the Mokelumne River (94\%). The total fall-run hatchery proportion for all natural areas surveyed in the CV was 71%.

The hatchery proportion of the 55,900 fall-run salmon returning to the five CV hatcheries ranged from 74% to 96% (Table 9, Fig. 3). The fall-run hatchery proportion for all CV hatcheries combined was 85%. The spring-run return to FRH was almost entirely hatchery-origin fish (98\%) while the late-fall-return to CFH was 100% hatchery-origin salmon.

To help differentiate the hatchery composition, all CV release types from the same stock, run, and hatchery use the same color scheme in the pie chart figures: Blue $=$ Sacramento River Basin fall-run releases, Green = San Joaquin Basin fall-run releases, Purple $=$ Central Valley (FRH) spring-run releases, Yellow $=$ Sacramento River winter-run releases, and Orange $=$ Central Valley (CFH) late-fall-run releases (Fig.4). Additionally, select patterns are used to designate different release types. All bay net pen releases contain black dots while net pen coastal releases are designated with a criss-cross pattern. Experimental barge study and trucked releases are designated with black stripes.

Upper Sacramento River Basin

At CFH, sampling of the fall-run return began in early October and continued through early December 2015 (Table 10). All ad-clipped salmon were sampled during the entire run. CFH began late-fall sampling immediately following fall-run sampling and continued through earlyMarch 2015. Based solely on the run-timing above, 15,806 salmon returned to CFH during the
"fall" run sampling period, and 2,266 salmon returned during the "late-fall" run period. However, based on the composition of CWT recoveries, FWS staff determined there was some overlap between runs, especially in late November through December. As a result, the final escapement was adjusted to 15,724 fall-run and 2,348 late-fall-run salmon. To promote genetic integrity, 65 natural (i.e., unmarked) late-fall salmon were collected at the Keswick Dam Fish Trap in the mainstem Sacramento River and transported to CFH as supplemental broodstock. An additional 104 late-fall salmon were trapped or counted via video at CFH after spawning operations ended in early-March.

Fall- and late-fall-run returns to CFH and fall spawners in most natural areas in the upper Sacramento River basin were predominantly hatchery-origin salmon with the exception of Cottonwood and Mill creeks (Figs. 5, 6). The proportion of hatchery-origin fish (prevalent release type shown in parentheses) at each of the following locations was:

- Fall-run returns CFH: 74\% (CFHFh)
- Late-fall-run returns CFH: 100% (CFHLh)
- Fall-run spawners Upper Sacramento River: 68\% (FRHFn)
- Fall-run spawners Clear Creek: 74\% (FRHFn)
- Fall-run spawners Battle Creek: 74\% (CFHFh)
- Fall-run spawners Cottonwood Creek: 15\% (CFHFn)
- Fall-run spawners Deer Creek: 100\% (FRHFn)
- Fall-run spawners Mill Creek: 44% (FRHFn)
- Winter-run spawners Upper Sacramento River: 18\% (SacW)
- Spring-run spawners Butte Creek: zero hatchery fish observed
- Late-fall-run spawners Upper Sacramento River: 8\% (CFHLh)

Feather River Basin

Spring- and fall-run returns to FRH and spawners in both the Feather River and Yuba River above Daguerre Point Dam (DPD) were predominantly hatchery-origin while escapement to the Yuba River below DPD contained more natural-origin salmon (Figs. 7, 8). The proportion of hatchery-origin fish (prevalent release type shown in parentheses) at each of the following locations was:

- Spring-run returns FRH: 98\% (FRHS)
- Fall-run returns FRH: 90\% (FRHFn)
- Fall/spring-run spawners Feather River: 83\% (FRHFn)
- Fall/spring-run spawners Yuba River above DPD: 60\% (CFHFn)
- Fall/spring-run spawners Yuba River below DPD: 45\% (FRHFn)

American River Basin

Fall-run returns to NIM and spawners in the American River were predominantly of hatcheryorigin (Fig. 9) while "washbacks" collected on the NIM weir were primarily natural-origin salmon. The proportion of hatchery-origin fish (prevalent release type shown in parentheses) at each of the following locations was:

- Fall-run returns NIM: 83\% (NIMFn, NIMF, MOKFn)
- Fall-run spawners American River: 65\% (NIMF, NIMFn)
- Fall-run returns NIM weir: 43\% (NIMFn)

Mokelumne River Basin

Hatchery-origin salmon (Fig. 10) dominated fall-run returns to MOK and spawners in the Mokelumne River. The proportion of hatchery-origin fish (prevalent release type shown in parentheses) at each of the following locations was:

- Fall-run returns MOK: 96\% (MOKFn)
- Fall-run spawners Mokelumne River: 94\% (MOKFn)

Merced River and other San Joaquin Basin Tributaries

Hatchery-origin salmon dominated fall-run returns to MER and spawners in the Merced, Stanislaus, and Tuolumne rivers (Fig. 11). The proportion of hatchery-origin fish (prevalent release type shown in parentheses) at each of the following locations was:

- Fall-run returns MER: 88\% (MOKFn)
- Fall-run spawners Merced River: 81% (MOKFn)
- Fall-run spawners Stanislaus River: 78\% (MOKFn)
- Fall-run spawners Tuolumne River: 65\% (MOKFn)

2. Contribution of CV Release Types to Total Salmon Escapement

Approximately 75% of the 167,700 total salmon escapement to CV hatcheries and natural areas during 2015-2016 were hatchery-origin fish (Table 11). The proportion of these fish that strayed from their basin-of-origin ranged from zero to 88 percent, depending on release type:

$\mathrm{R}_{\text {type }}$	Run	CWT $_{\text {total }}$	\#Strays	$(\%)$
CFHFh	Fall	14,846	773	(5%)
CFHFn	Fall	4,938	3,891	(79%)
FRHFk	Fall	18	0	(0%)
FRHFb	Fall	2,435	966	(40%)
FRHFn	Fall	48,090	23,337	(49%)
FRHFnc	Fall	2,757	1,301	(47%)
NIMF	Fall	6,177	631	(10%)
NIMFn	Fall	7,639	1,872	(25%)
MOKF	Fall	173	16	(9%)
MOKFn	Fall	20,202	11,343	(56%)
MOKFe	Fall	1,304	808	(62%)
MERF	Fall	4	0	(0%)
MERFt	Fall	2,143	1,894	(88%)
FRHS	Spr	5,706	4	(0%)
FRHSn	Spr	5,391	506	(9%)
SacW	Wint	558	0	(0%)
CFHLh	Late	2,646	4	(0.2%)
	Total	125,054	47,373	(38%)

3. Hatchery Proportion and Contribution of CV Release Types to CV Sport Harvest

 In 2015, approximately 78% of the 24,400 salmon harvested in the CV river sport fishery were hatchery-origin fish (Table 9; Figs. 12, 13). The proportion of hatchery-origin fish (prevalent release type shown in parentheses) in each of the following fisheries was:- Upper Sacramento River fall-run harvest: 73\% (CFHFh, FRHFn)
- Lower Sacramento River fall-run harvest: 77\% (FRHFn, NIMFn)
- Feather River fall-run harvest: 100% (FRHFn)
- American River fall-run harvest: 75\% (NIMFn, MOKFn)
- Mokelumne River fall-run harvest: 98\% (MOKFn)
- Upper Sacramento River late-fall-run harvest: 51\% (CFHLh)

It should be noted that the sample expansion factor, $F_{\text {samp }}$, for the Feather River fall-run harvest had to be reduced from 23.24 to 21.81 to prevent the calculated hatchery component from exceeding the total harvest (106%). Of all hatchery release types, FRHFn contributed the most (24\%) to the total CV sport harvest, followed by CFHFh (13\%), NIMFn (13\%), and MOKFn (12\%). All of the CFHFh recoveries occurred in the Upper Sacramento River fall fishery whereas FRHFn were recovered in all inland fisheries (Table 11).

Contribution of CV Release Types to CV Sport Harvest

R $_{\text {type }}$	Run	CWT $_{\text {total }}$	(\% harvest)
CFHFh	Fall	3,256	(13%)
CFHFn	Fall	850	(3%)
FRHFk	Fall	0	(0%)
FRHFb	Fall	407	(2%)
FRHFn	Fall	5,896	(24%)
FRHFnc	Fall	258	(1%)
NIMF	Fall	796	(3%)
NIMFn	Fall	3,132	(13%)
MOKF	Fall	0	(0%)
MOKFn	Fall	2,971	(12%)
MOKFe	Fall	95	(0%)
MERF	Fall	0	(0%)
MERFt	Fall	382	(2%)
FRHS	Spr	152	(1%)
FRHSn	Spr	434	(2%)
SacW	Wint	0	(0%)
CFHLh	Late	276	(1%)
	Total	18,903	(78%)

4a. Relative Recovery and Stray Rates of CV Release Types in Total Escapement Release strategies vary among hatcheries from year to year. This variability has often been in response to annual fluctuations in the abundance of certain stocks or differing policies among agencies with respect to best release practices. The 2011 through 2013 brood year releases were more consistent than release types analyzed in earlier CFM reports (Kormos et. al. 2012, PalmerZwahlen and Kormos 2013, 2015) and only a few "mixed strategy" releases were identified (Table 3).

Table 12 summarizes total $\mathrm{CWT}_{\text {samp }}$ recoveries and the escapement recovery rate, $R_{\text {type, }}$ (in-basin and stray) for all release types collected in the CV escapement and ocean fisheries during 2015. The CWTs collected in the river sport fishery are not included since it is not possible to ascertain where these fish would have eventually spawned. Recovery rates are standardized utilizing total $\mathrm{CWT}_{\text {samp }}$ recoveries per 100,000 tagged salmon released. Release types with less than 15,000 fish released with CWTs are not reported below since just a few recoveries may result in relatively large recovery and stray rate estimates.

Figures 14 and 15 provide a graphical representation of $R_{\text {type }}$ for Sacramento River fall-run salmon and other CV stocks, respectively, and include the total number of salmon released with CWTs for each release type. Fall-run salmon that were acclimated in bay and coastal net pens generally had higher CV recovery rates than their respective in-basin or trucked-only releases, but net pen and trucked release types also had higher stray proportions than their in-basin sibling releases in most cases.

Age-2 CV Escapement recovery rate; percent stray

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	$\%$ stray
CFHFh	2013	Fall	18	0%
CFHFn	2013	Fall	67	79%
FRHFk	2013	Fall	5	0%
FRHFb	2013	Fall	35	18%
FRHFn	2013	Fall	83	29%
FRHFnc	2013	Fall	254	32%
NIMFn	2013	Fall	122	32%
MOKFb	2013	Fall	110	53%
MOKFn	2013	Fall	79	61%
MOKFnc	2013	Fall	31	79%
MERFt	2013	Fall	11	92%
FRHS	2013	Spr	2	7%
FRHSn	2013	Spr	4	10%
SacW	2013	Wint	8	0%
CFHLh	2014	Late	76	0%

Age-3 CV Escapement recovery rate; percent stray

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	$\%$ stray
CFHFh	2012	Fall	56	6%
FRHFk	2012	Fall	12	0%
FRHFb	2012	Fall	666	42%
FRHFn	2012	Fall	577	49%
FRHFnc	2012	Fall	200	54%
NIMF	2012	Fall	142	8%
NIMFn	2012	Fall	217	16%
MOKF	2012	Fall	93	10%
MOKFn	2012	Fall	290	54%
MERFt	2012	Fall	139	88%
FRHS	2012	Spr	316	0%
FRHSn	2012	Spr	439	9%
SacW	2012	Wint	371	0%
CFHLh	2013	Late	49	1%

Age-4 CV Escapement recovery rate; percent stray

		\# recoveries per		
R $_{\text {type }}$	Brdyr	Run	100K released	

4b. Relative Recovery Rate of CV Release Types in the Ocean Harvest

The relative recovery rate of CV hatchery releases in 2015 ocean salmon sport and commercial fisheries varied by age and release type (Table 12). Almost all CWTs from age-2 CV salmon were recovered in the ocean sport fishery, most likely due to smaller size limits in effect
compared to those for the commercial fishery (Table 2). Fall-run net pen releases (coastal and bay) generally had the highest ocean recovery rates for all ages (Fig. 16).

Age-2 Ocean Harvest recovery rate; percent taken in sport harvest

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	$\%$ sport
CFHFh	2013	Fall	5	100%
CFHFn	2013	Fall	41	91%
FRHFk	2013	Fall	9	100%
FRHFb	2013	Fall	11	88%
FRHFn	2013	Fall	29	97%
FRHFnc	2013	Fall	256	98%
NIMFn	2013	Fall	45	97%
MOKFb	2013	Fall	70	93%
MOKFn	2013	Fall	26	97%
MOKFnc	2013	Fall	206	94%
MERFt	2013	Fall	1	100%
FRHS	2013	Spr	6	100%
FRHSn	2013	Spr	11	100%
CFHLh	2014	Late	1	100%

Age-3 Ocean Harvest recovery rate; percent taken in sport harvest

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	$\%$ sport
CFHFh	2012	Fall	48	19%
FRHFk	2012	Fall	17	10%
FRHFb	2012	Fall	924	23%
FRHFn	2012	Fall	616	18%
FRHFnc	2012	Fall	1,143	20%
NIMF	2012	Fall	98	16%
NIMFn	2012	Fall	234	26%
MOKF	2012	Fall	9	71%
MOKFn	2012	Fall	234	18%
MERFt	2012	Fall	137	16%
FRHS	2012	Spr	77	34%
FRHSn	2012	Spr	189	29%
SacW	2013	Wint	1	100%
CFHLh	2013	Late	6	64%

Age-4 Ocean Harvest recovery rate; percent taken in sport harvest

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	\% sport
CFHFh	2011	Fall	38	12%
FRHFb	2011	Fall	119	12%
FRHFn	2011	Fall	94	11%
FRHFnc	2011	Fall	337	16%
NIMF	2011	Fall	23	7%
NIMFn	2011	Fall	181	10%
MOKF	2011	Fall	12	14%
MOKFn	2011	Fall	30	12%
MOKFt	2011	Fall	111	13%
MERF	2011	Fall	2	100%
FRHS	2011	Spr	23	22%
FRHSn	2011	Spr	12	21%
SacW	2012	Wint	2	0%
CFHLh	2012	Late	43	6%

5. Hatchery Proportion and Contribution of CV Release Types to Ocean Salmon Fisheries More than half of the 148,000 and 100,100 Chinook salmon harvested in California and Oregon fisheries, respectively, were hatchery-origin fish (Fig. 17). Most of the hatchery-origin salmon in California ocean fisheries originated from the CV. Approximately half of the hatchery-origin salmon in Oregon ocean fisheries were CV stocks.

California ocean sport fishery

California anglers harvested almost 37,500 Chinook salmon in the ocean sport fishery during 2015. The total contribution of hatchery-origin salmon to the California ocean sport fishery was 69%, ranging from 59% to 81% of the total harvest, depending on major port area (Fig. 18). Most of the harvest occurred in San Francisco (67\%) and Fort Bragg (15\%), followed by EurekaCrescent City (10\%) and Monterey (8\%) port areas (Table 13).

Of all hatchery release types, FRHFn contributed the most (24%) to the total California ocean sport harvest, followed by MOKFn (9\%), CFHFn (7\%) and NIMFn (6\%). Non-CV releases (e.g., Klamath-Trinity River Basin, Smith River, Oregon and Washington hatchery stocks) contributed 1% to the total harvest (Table 14).

Contribution of CV Release Types to Ocean Salmon Sport Fishery

$\mathrm{R}_{\text {type }}$	Run	CWT $_{\text {total }}$	(\% harvest)
CFHFh	Fall	1,911	(5%)
CFHFn	Fall	2,673	(7%)

FRHFk	Fall	6	$(<1 \%)$
FRHFb	Fall	682	(2%)
FRHFn	Fall	8,928	(24%)
FRHFnc	Fall	2,640	(7%)
FRHFtib	Fall	34	$(<1 \%)$
NIMF	Fall	507	(1%)
NIMFn	Fall	2,209	(6%)
MOKF	Fall	8	$(<1 \%)$
MOKFb	Fall	193	(1%)
MOKFn	Fall	3,545	(9%)
MOKFnc	Fall	464	(1%)
MOKFt	Fall	67	$(<1 \%)$
MERF	Fall	464	(1%)
MERFt	Fall	306	(1%)
FRHS	Spr	417	(1%)
FRHSn	Spr	694	(2%)
SacW	Wint	3	$(<1 \%)$
CFHLh	Late	72	$(<1 \%)$
NonCV		469	(1%)
	Total	25,828	(69%)

California ocean commercial fishery

California trollers harvested over 110,500 Chinook salmon in the ocean commercial fishery during 2015. The total contribution of hatchery-origin salmon to the California ocean commercial fishery was 55%, ranging from 41% to 81% of the total harvest, depending on major port area (Fig. 19). Most of the harvest occurred in Fort Bragg (54\%) and San Francisco (32\%), followed by Monterey (13\%) and Eureka-Crescent City ($<1 \%$) port areas (Table 15).

Of all hatchery release types, FRHFn contributed the most (24%) to the total California commercial harvest, followed by MOKFn (8\%) and CFHFh (5\%). Non-CV releases (e.g., Klamath-Trinity River Basin, Smith River, Oregon and Washington hatchery stocks) contributed 4% to the total harvest (Table 16).

Contribution of CV Release Types to Ocean Salmon Commercial Fishery

R $_{\text {type }}$	Run	CWT $_{\text {total }}$	(\% harvest)
CFHFh	Fall	5,996	(5%)
CFHFn	Fall	316	$(<1 \%)$
FRHFk	Fall	20	$(<1 \%)$
FRHFb	Fall	2,009	(2%)
FRHFn	Fall	26,200	(24%)
FRHFnc	Fall	5,504	(5%)

FRHFtib	Fall	69	$(<1 \%)$
NIMF	Fall	2,408	(2%)
NIMFn	Fall	2,129	(2%)
MOKF	Fall	6	$(<1 \%)$
MOKFb	Fall	16	$(<1 \%)$
MOKFn	Fall	8,366	(8%)
MOKFnc	Fall	29	$(<1 \%)$
MOKFt	Fall	238	$(<1 \%)$
MERF	Fall	29	$(<1 \%)$
MERFt	Fall	1,361	(1%)
FRHS	Spr	554	(1%)
FRHSn	Spr	1,109	(1%)
SacW	Wint	3	$(<1 \%)$
CFHLh	Late	374	$(<1 \%)$
NonCV		4,331	(4%)
	Total	61,037	(55%)

6. Relative Recovery and Stray Rates of Experimental and Net Pen Release Types

In 2015, CWTs from several experimental and net pen release types were recovered in both the CV escapement and ocean harvest. These included a new experimental barge study and a coastal net pen program utilizing fish from Mokelumne Hatchery. The barge study involved approximately 300,000 BY 2013 MOK fall-run salmon that were either: 1) released into the Mokelumne River directly at Miller's Ferry Bridge, 2) barged from Miller's Ferry Bridge to the San Francisco Bay and released at the Golden Gate Bridge, or 3) trucked to San Francisco Bay and loaded into the barge at Tiburon and released at the Golden Gate Bridge. An additional 240,000 BY 2013 MOK fall-run salmon were trucked to and released from net pens operated by the Monterey Bay Trout and Salmon Project (MBTSP) in Santa Cruz. Approximately 60,000 salmon were trucked to and released into Monterey Bay each week during May 2014. This is the first time since the MBTSP began coastal pen releases in the 1990s that fall-run salmon from Feather River Hatchery are not being used for this program. This was also the second year that CWTs from the Knaggs Ranch rice field study were recovered.

These experimental and net pen releases are differentiated into the following release types:
FRHFbb Feather River Hatchery Fall-run barge study: trucked and released in SF bay
FRHFbg Feather River Hatchery Fall-run barge study: barged to SF Bay and released
FRHFbr Feather River Hatchery Fall-run barge study: released in-river (numerous sites on Sac R)
FRHFkc Feather River Hatchery Fall-run rice field study: Elkhorn Boat Ramp (Knaggs control group)
FRHFkr Feather River Hatchery Fall-run rice field study: Knaggs Ranch (Yolo Bypass)
FRHFnp Feather River Hatchery Fall-run net pen coastal releases - Pillar Point
FRHFns Feather River Hatchery Fall-run net pen coastal releases - Santa Cruz

MOKFbb Mokelumne River Hatchery Fall-run barge study: trucked and released in SF bay MOKFbg Mokelumne River Hatchery Fall-run barge study: barged to SF Bay and released MOKFbr Mokelumne River Hatchery Fall-run barge study: released in-river (Miller's Ferry, Mok R)

MOKFns Mokelumne River Hatchery Fall-run net pen coastal releases - Santa Cruz

Central Valley Escapement

The CV escapement recovery rate and percent stray for other fall-run experimental and net pen releases are included below to allow direct comparison among these release types (Table 17, Fig. 20).

Age-2 CV Escapement recovery rate; percent stray

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	\% stray
CFHFn	2013	Fall	67	79%
FRHFbb	2013	Fall	23	16%
FRHFbg	2013	Fall	46	5%
FRHFbr	2013	Fall	38	34%
FRHFkr	2013	Fall	5	0%
FRHFn	2013	Fall	83	29%
FRHFnp	2013	Fall	254	32%
NIMFn	2013	Fall	122	32%
MOKFbb	2013	Fall	72	78%
MOKFbg	2013	Fall	248	48%
MOKFbr	2013	Fall	8	0%
MOKFn	2013	Fall	79	61%
MOKFns	2013	Fall	31	79%

Age-3 CV Escapement recovery rate; percent stray

$\mathrm{R}_{\text {type }}$	\# recoveries per			
	Brdyr	Run	100 K released	\% stray
FRHFbb	2012	Fall	922	49\%
FRHFbg	2012	Fall	1062	36\%
FRHFbr	2012	Fall	2	0\%
FRHFkc	2012	Fall	32	0\%
FRHFkr	2012	Fall	1	0\%
FRHFn	2012	Fall	577	49\%
FRHFnp	2012	Fall	262	58\%
FRHFns	2012	Fall	92	35\%
NIMFn	2012	Fall	216	16\%
MOKFn	2012	Fall	290	54\%

Age-4 CV Escapement recovery rate; percent stray

R $_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	$\%$ stray
FRHFbb	2011	Fall	54	24%
FRHFbg	2011	Fall	88	50%
FRHFbr	2011	Fall	155	22%
FRHFn	2011	Fall	101	57%
FRHFnp	2011	Fall	239	55%
FRHFns	2011	Fall	26	68%
NIMFn	2011	Fall	126	13%
MOKFn	2011	Fall	27	63%

Ocean Harvest

The ocean harvest recovery rate and proportion taken in the sport fishery for other fall-run experimental and net pen releases are included below to allow direct comparison among these release types (Table 17, Fig. 21).

Age-2 Ocean Harvest recovery rate; percent taken in sport harvest

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	\% sport
CFHFn	2013	Fall	41	91%
FRHFbb	2013	Fall	14	71%
FRHFbg	2013	Fall	0	
FRHFbr	2013	Fall	19	100%
FRHFkr	2013	Fall	9	100%
FRHFn	2013	Fall	29	97%
FRHFnp	2013	Fall	256	98%
NIMFn	2013	Fall	45	97%
MOKFbb	2013	Fall	87	100%
MOKFbg	2013	Fall	117	91%
MOKFbr	2013	Fall	5	0%
MOKFn	2013	Fall	26	97%
MOKFns	2013	Fall	206	94%

Age-3 Ocean Harvest recovery rate; percent taken in sport harvest

$R_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	\% sport
FRHFbb	2012	Fall	1,433	20%
FRHFbg	2012	Fall	1,300	25%
FRHFbr	2012	Fall	25	38%
FRHFkc	2012	Fall	40	13%
FRHFkr	2012	Fall	5	0%
FRHFn	2012	Fall	616	18%
FRHFnp	2012	Fall	1,076	23%
FRHFns	2012	Fall	1,259	17%
NIMFn	2012	Fall	234	26%
MOKFn	2012	Fall	234	18%

Age-4 Ocean Harvest recovery rate; percent taken in sport harvest

$\mathrm{R}_{\text {type }}$	Brdyr	Run	\# recoveries per 100K released	\% sport
FRHFbb	2011	Fall	125	7%
FRHFbg	2011	Fall	122	21%
FRHFbr	2011	Fall	110	8%
FRHFn	2011	Fall	94	11%
FRHFnp	2011	Fall	393	18%
FRHFns	2011	Fall	293	14%
NIMFn	2011	Fall	181	10%
MOKFn	2011	Fall	30	12%

2015 CFM ANALYSES KEY POINTS

- Salmon escapement into CV hatcheries was predominately hatchery-origin fish. The majority of hatchery-origin fish returning to each hatchery was comprised primarily of its respective releases with the exception of Merced River Hatchery. Almost two-thirds of all hatcheryorigin fish at MER were net pen MOKFn releases.
- Rivers and creeks with hatchery installations generally had the highest proportions of hatchery-origin spawners in natural areas. Most of the hatchery proportion consisted of release types from their respective hatcheries with the exception of hatchery-origin spawners in the Merced River, which were primarily net pen MOKFn releases.
- Fall-run escapement into the Upper Sacramento River and its sampled tributaries was predominantly hatchery-origin salmon with the exception of Cottonwood and Mill creeks. Net pen FRHFn was the hatchery release type most often observed in these rivers and creeks.
- Fall-run escapement into the Yuba River below DPD was predominantly natural-origin salmon while the Yuba River above the dam was primarily hatchery-origin. Net pen CNFHn, FRHFn and MOKFn were the predominate release types recovered in both sectors.
- Fall-run escapement into the Feather River was predominantly hatchery-origin salmon, primarily net pen FRHFn, along with spring-run FRHS and FRHSn releases.
- Fall-run escapement into the American River was predominantly hatchery-origin salmon, primarily in-basin NIMF, along with net pen NIMFn and MOKFn releases.
- Fall-run escapement into all sampled tributaries of the San Joaquin Basin (Mokelumne, Stanislaus, Tuolumne and Merced rivers) was predominantly hatchery-origin salmon, the vast majority of which were net pen MOKFn releases. Trucked MERFt, along with net pen NIMFn, also contributed to hatchery-origin returns.
- Approximately three-fourths of the total 2015-2016 CV salmon escapement (all run-types) were hatchery-origin fish. Net pen FRHFn and MOKFn, along with hatchery CFHFh releases, contributed most to the total CV escapement. Trucked MERFt and MOKFt, along with net pen CFHFn, MOKFn and FRHFn releases, had the highest total stray proportions.
- For age-2 fall-run salmon, coastal net pen FRHFnc, net pen NIMFn and experimental barge study MOKFb releases had the highest CV recovery rates for their cohort. Trucked MERFt, coastal net pen MOKFnc, and net pen CFHFn had the highest stray proportions observed for age-2 releases.
- For age-3 fall-run salmon, coastal net pen FRHFnc, along with net pen FRHFn and MOKFn releases, had the highest CV recovery rates for their cohort. Trucked MERFt, net pen MOKFn and coastal net pen FRHFnc had the highest stray proportions observed for age-3 release types.
- For age-4 fall-run salmon, trucked MOKFt, net pen NIMFn and FRHFn, and coastal net pen FRHFnc had the highest CV recovery rates for their cohort. These same releases, with the exception of net pen NIMFn, also had the highest stray proportions observed for age-4 release types.
- Approximately three-fourths of the CV inland sport harvest was hatchery-origin fish. Net pen FRHFn, NIMFn, and MOKFn, along with hatchery CFHFh releases, contributed the most to the total harvest.
- More than half of the California ocean sport and commercial harvest was comprised of hatchery-origin fish. Net pen FRHFn, MOKFn and NIMFn, along with coastal net pen FRHFnc and hatchery CFHFh releases, contributed the most to the total harvest.
- Coastal net pen FRHFnc releases had the highest ocean recovery rates for all release types and ages. Their recovery rate was several times greater than that for other net pen releases of the same cohort and nearly an order of magnitude greater than that of most in-basin releases for the same age. The age-2 ocean recovery rate for coastal net pen Pillar Point FRHFnp and Santa Cruz MOKFns releases were very similar.
- Pillar Point coastal net pen FRHFnp releases had the highest CV recovery rates among all age-2 releases whereas relatively few Santa Cruz coastal net pen releases MOKFns returned
to the CV. The majority of Pillar Point FRHFnp recoveries occurred in the Feather River Basin whereas most of the Santa Cruz MOKFns recovered strayed outside the Mokelumne River.
- Among the barge study releases, salmon barged down the Mokelumne River (MOKFbg) had the highest age- 2 CV recovery rate with moderate straying. This release also had the highest age-2 ocean recovery rate in this study group. Salmon trucked to and released into San Francisco Bay (MOKFbb) had the highest stray rate among all barge study releases. Salmon released as part of the Feather River barge study (FRHFbb, FRHFbg, and FRHFbr) had relatively low CV and ocean age-2 recovery rates, especially compared to previous reports.
- Salmon transported via barge (FRHFbg) or trucked and released (FRHFbb) into San Francisco Bay had the highest age-3 CV and ocean recovery rates among all experimental and net pen releases. Recoveries of age-3 salmon released in river (FRHFbr) as part of this study were minimal.
- Pillar Point coastal net pen FRHFnp releases had the highest CV and ocean recovery rates among all age- 4 releases. Approximately half of the FRHFnp recoveries in the CV strayed outside of the Feather River Basin. Although the age-4 ocean recovery rate of Santa Cruz coastal net pen FRHFns was slightly lower than the Pillar Point releases, this release also had the lowest CV recovery and highest stray rate among all age-4 experimental and net pen releases.

CONCLUSION

A primary goal of this report is to provide information that will be useful in California salmon management, including CV hatchery assessment. This report contains the data and analyses needed to determine the contribution of hatchery- and natural-origin salmon to hatchery and natural areas throughout the CV, evaluate hatchery release strategies and programs, improve California ocean and river salmon fisheries management, evaluate the effectiveness of habitat restoration, and determine if other goals of the CFM program are being met. Although no discussion section is included, as in earlier CFM reports, the authors plan to further analyze these data and draw general conclusions as these and additional tagged broods become complete. This will allow resource managers to determine the total contribution of various release strategies to CV escapement and to ocean and inland fisheries by time and area.

We believe the CFM program should be continued with the current design to provide comparable, consistent data needed for hatchery and harvest management. Efforts are still ongoing to secure permanent funding for this program, which will allow critical data to be available by February of each year to manage CV salmon stocks, hatchery production, and California ocean and river fisheries in real-time, similar to the Klamath River fall-run salmon management process.

ACKNOWLEDGEMENTS

Sincere appreciation to the myriad of staff among many agencies that work tirelessly in the field to gather the necessary data and CWT recoveries that provide the basis for this report. They are too numerous to name individually, but without each of them, this valuable analysis would not be possible. We again thank the following agencies for providing 2015 CV escapement estimates and their respective salmon heads or CWT recoveries: CDFW, DWR, FWS, PSMFC, EBMUD, and YARMT. Special thanks are extended to staff at the following hatcheries for their cooperation in this monitoring effort: Coleman National Fish Hatchery, Feather River Hatchery, Nimbus Fish Hatchery, Mokelumne River Hatchery, Merced River Hatchery, and Livingston Stone National Fish Hatchery.

Special kudos are extended to both CDFW Santa Rosa and Sacramento CWT labs for processing nearly 38,800 salmon heads and recovering, reading, and validating most of the CWTs used in this analysis. Personal thanks are extended to Doug Killam (CDFW) for providing additional information on Upper Sacramento escapement surveys, and to FWS staff Kevin Offill and Kevin Niemela for providing the catch-sample and CWT data collected at CFH and Keswick facilities.

Thanks to the following individuals for providing internal review and text edits for this report: CDFW Ocean Salmon Project staff Pete McHugh, Alex Letvin, Audrey Dean and Kevin Offill (FWS Coleman National Fish Hatchery).

We again want to acknowledge Stan Allen (PSMFC) and Alice Low (CDFW retired) for their efforts in developing the CFM program and facilitating its funding, staffing, tagging, and coordination needs. Funding for most of the sampling and CWT processing provided by BOR, CDFW, DWR, EBMUD, and YARMT.

REFERENCES

Bergman, J., R. Nielson, and A. Low. 2012. Central Valley Chinook Salmon In-River Escapement Monitoring Plan. California Department of Fish and Game. Fisheries Branch Administrative Report Number: 2012-1. January 2012

Killam, D., M. Johnson and R. Revnak. 2016. Chinook Salmon Populations of the Upper Sacramento River Basin in 2015. RBFO Technical Report No. 03-2016

Kormos, B., M. Palmer-Zwahlen, and A. Low. 2012. Recovery of Coded-Wire Tags from Chinook Salmon in California's Central Valley Escapement and Ocean Harvest in 2010. Fisheries Branch Administrative Report 2012-02.

Pacific Fishery Management Council (PFMC). 2016. Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational Salmon Fisheries off the Coasts of Washington, Oregon, and California as Amended through Amendment 19. PFMC, 7700 NE Ambassador Place, Suite 101, Portland, Oregon, 97220-1384. March 2016.

Pacific Fishery Management Council (PFMC) 2019. Review of 2018 Ocean Salmon Fisheries: Stock Assessment and Fishery Evaluation Document for the Pacific Coast Salmon Fishery Management Plan. PFMC, 7700 NE Ambassador Place, Suite 101, Portland, Oregon, 972201384. February 2019.

Pacific States Marine Fisheries Commission (PSMFC) 2017. Lower Yuba River Accord Monitoring and Evaluation Plan - Chinook Salmon Escapement Technical Memorandum Fall 2015. Prepared for the Lower Yuba River Accord Planning Team. PSMFC, 205 SE Spokane Street Suite 100, Portland, Oregon, 97202.

Palmer-Zwahlen, M. and B. Kormos. 2013. Recovery of Coded-Wire Tags from Chinook Salmon in California's Central Valley Escapement and Ocean Harvest in 2011. Fisheries Branch Administrative Report 2013-02.

Palmer-Zwahlen, M. and B. Kormos. 2015. Recovery of Coded-Wire Tags from Chinook Salmon in California's Central Valley Escapement and Ocean Harvest in 2012. Fisheries Branch Administrative Report 2015-04.

Palmer-Zwahlen, M., V. Gusman, and B. Kormos. 2018. Recovery of Coded-Wire Tags from Chinook Salmon in California's Central Valley Escapement and Ocean Harvest in 2013. Joint PSMFC-CDFW Report October 2018.

Palmer-Zwahlen, M., V. Gusman, and B. Kormos. 2019. Recovery of Coded-Wire Tags from Chinook Salmon in California's Central Valley Escapement and Ocean Harvest in 2014. Joint PSMFC-CDFW Report March 2019.

LIST OF ACRONYMS AND ABBREVIATIONS

Ad-clipped	clipped adipose fin
BOR	U.S. Bureau of Reclamation
BY	Brood year
CFM	Constant Fractional Marking
CFH	Coleman National Fish Hatchery
CV	California Central Valley
CWT	coded-wire tag
CDFW	California Department of Fish and Wildlife
DPD	Daguerre Point Dam (Yuba River)
DWR	California Department of Water Resources
EBMUD	East Bay Municipal Utilities District
FRH	Feather River Hatchery
FWS	U.S. Fish and Wildlife Service
MER	Merced River Hatchery
MOK	Mokelumne River Hatchery
NMFS	National Marine Fisheries Service
NIM	Nimbus Fish Hatchery
OSP	Ocean Salmon Project
PFMC	Pacific Fishery Management Council
PSMFC	Pacific States Marine Fisheries Commission
RMPC	Regional Mark Processing Center
SJ	San Joaquin
TL	Total length
WD	Woodbridge Dam (Mokelumne River)
YARMT	Yuba Accord River Management Team

LIST OF TABLES

Table 1a. Estimation and sampling methods used for the 2015 CV Chinook hatchery escapement.

Table 1b. Estimation and sampling methods used for the 2015 CV Chinook natural escapement.

Table 1c. Survey design and open dates for the 2015 CV Chinook river sport harvest.
Table 2. California ocean salmon sport and commercial fishery seasons by major port area, 2015.

Table 3. Central Valley coded-wire tag (CWT) Chinook releases recovered in 2015 by age, run, stock, and release type.

Table 4. Central Valley hatchery and natural escapement estimates, sport harvest, and sample data, 2015.

Table 5. Total harvest and sample data for 2015 Ocean Salmon Sport and Commercial Fisheries by major port area.

Table 6. Raw and expanded Chinook CWT recoveries in the Central Valley by run type and brood year during 2015.

Table 7. Raw and expanded Chinook CWT recoveries in 2015 California ocean fisheries by run type and brood year.

Table 8. Raw and expanded Chinook CWT recoveries in 2015 Oregon ocean fisheries by run type and brood year.

Table 9. Percentage of inland $\mathrm{CWT}_{\text {total }}$ recoveries by location, run, and release type in hatchery returns, natural escapement and sport harvest during 2015.

Table 10. Fall- and late-fall-run (2016) Chinook salmon escapement at Coleman National Fish Hatchery based on run-timing and CWT stock composition in 2015.

Table 11. Total inland $\mathrm{CWT}_{\text {total }}$ recoveries by location, run, and release type in hatchery returns, natural escapement and sport harvest during 2015.

Table 12. CWT recovery rate (recoveries per 100,000 CWTs released) by release type, brood year and recovery location in 2015.

Table 13. Percentage of $\mathrm{CWT}_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon sport fishery.

Table 14. Total CWT $_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon sport fishery.

Table 15. Percentage of $\mathrm{CWT}_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon commercial fishery.

Table 16. Total $\mathrm{CWT}_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon commercial fishery.

Table 17. CWT recovery rate (recoveries per 100,000 CWTs released) for Experimental \& Net Pen release types in 2015.

LIST OF FIGURES

Figure 1. Map of release sites for CV hatchery release types, brood years 2009-2012.
Figure 2. Fall-run CV Natural Area Escapement, Hatchery and Natural Proportions, 2015.
Figure 3. Fall-run CV Hatchery Escapement, Hatchery and Natural Proportions, 2015.
Figure 4. Color and pattern scheme used in all pie chart figures for CV Chinook hatchery release types, brood years 2010-2013.

Figure 5. Proportion of hatchery- and natural-origin fish at Coleman National Fish Hatchery, 2015.

Figure 6. Proportion of hatchery- and natural-origin fish in Upper Sacramento River and tributaries, 2015.

Figure 7. Proportion of hatchery- and natural-origin fish in Butte Creek \& Yuba River, 2015.
Figure 8. Proportion of hatchery- and natural-origin fish in the Feather River Basin, 2015.
Figure 9. Proportion of hatchery- and natural-origin fish in the American River Basin, 2015.
Figure 10. Proportion of hatchery- and natural-origin fish in the Mokelumne River Basin, 2015.

Figure 11. Proportion of hatchery- and natural-origin fish in Merced River \& San Joaquin Basin tributaries, 2015.

Figure 12. Proportion of hatchery- and natural-origin fish in CV river sport harvest on Sacramento \& Feather rivers, 2015.

Figure 13. Proportion of hatchery- and natural-origin fish in CV river sport harvest on American \& Mokelumne rivers, 2015.

Figure 14. CWT recovery rates of Sacramento River fall Chinook releases by age in 2015.
Figure 15. CWT recovery rates of Other CV Chinook releases by age in 2015.
Figure 16. CWT recovery rates by release type in 2015 ocean fisheries.
Figure 17. Proportion of hatchery- and natural-origin salmon in 2015 California and Oregon ocean fisheries.

Figure 18. Proportion of hatchery- and natural-origin salmon in the 2015 California ocean sport fishery.

Figure 19. Proportion of hatchery- and natural-origin salmon in the 2015 California ocean commercial fishery.

Figure 20. CWT recovery rates of Experimental and Net Pen releases by age in 2015.
Figure 21. CWT recovery rates of Experimental and Net Pen releases in 2015 ocean sport and commercial fisheries

LIST OF APPENDICES

Appendix 1. Sample expansion factors for Central Valley salmon carcass surveys collecting fish condition in 2015.

Appendix 2. Alternative 2015 CWT recovery and stray rates (recoveries per 100,000 CWTs released) of CFH and FRH releases.

Appendix 3. Alternative CWT recovery rates for CFH and FRH releases by age in 2015.
Appendix 4. Sample expansion for CWTs recovered in Yuba River escapement above Daguerre Point Dam (DPD) based on carcass survey vs video data, 2015.

Appendix 5. Sample expansion for CWTs recovered in Mokelumne River escapement above Woodbridge Dam (WD) based on video data, 2015.

Table 1a. Estimation and sampling methods used for the 2015 CV Chinook hatchery escapement.

Sampling Location	Estimation and Sampling Methods	Agency
Hatchery Spawners Coleman National Fish Hatchery (CFH) Fall and Late-Fall (2016)	Direct count. All fish examined and bio-sampled ${ }^{\text {a/ }}$ for fin-clips, tags, marks. Access upstream of the hatchery closed Aug 1-Sep 30. Fall-run period: Oct 6-Dec 3, Late-fall-run period: Dec $30-$ Mar 9. All ad-clipped fish sampled. Fish returning to CFH from mid-Nov through early Dec parsed into run-type based on CWT code recoveries and total run-type proportions by date. Grilse cutoff: 700 mm fall, 580 mm late-fall.	FWS
CFH Late-Fall Fish Trap	Direct count. All fish examined and bio-sampled for fin-clips, tags, marks. All unmarked untagged-phenotypic late-fall fish released into Battle Creek above CFH Dec 9 - Mar 31. All ad-clipped fish sampled and heads collected for CWT recovery Mar 10-31 (after CFH spawning operations cease). Late-fall data from video weir counts during Apr-May added. Grilse cutoff: 580mm.	FWS
Keswick Fish Trap (KES) Winter	Direct count. All fish examined and bio-sampled for fin-clips, tags, marks. All unmarked fish electronically sampled for presence of CWT and genetically tested to ensure winter-run broodstock. Grilse cutoff: 580 mm .	FWS
Feather River Hatchery (FRH) Spring and Fall	Direct count. All fish examined for fin-clips, tags, marks. Fish arriving at the hatchery May 21-Jul $2(n \sim 5,355)$ were considered "spring-run" and marked with uniquely-numbered dart tags prior to release back into the Feather River. Only fish marked with dart tags returning to FRH in fall were spawned as spring-run. All remaining fish were considered fall-run. FRH fish ladder opened Sep 14 and spring spawning began Sep 17. All spring-run fish bio-sampled until Sep 28 when the rate was reduced to 50%. Fall spawning occured on Oct 1 for the cold water program and began normally on Oct 7 . Systematic random bio-sample $\sim 20 \%$ of all fish for fall-run. All ad-clipped fish were sampled and heads collected for CWT recovery. Grilse cutoff: 650 mm spring and fall.	CDFW
FRH Trap Spring	Direct count of salmon that died during early processing of "spring-run" salmon returning to FRH during May-June. All fish examined for fin-clips, tags, marks. All ad-clipped fish were sampled and heads collected for CWT recovery. These fish are not included in FRH spring escapement. Grilse cutoff: 650 mm .	DWR
Nimbus Fish Hatchery (NIM) Fall	Direct count. NIM ladder open Nov 2 - Dec 22. All fish examined for fin-clips, tags, marks. Systematic random bio-sample of 33.3% of total fish returning until November 19th when the rate was reduced to 20%. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 650 mm .	CDFW
Mokelumne River Hatchery (MOK) Fall	Direct count. MOK open Oct 1 - Feb. 28. All fish examined for fin-clips, tags, marks. Systematic random bio-sample $\sim 33 \%$ of total fish returning. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 650 mm .	CDFW
Mokelumne Weir Fall	Direct count. All fish examined for fin-clips, tags, marks. All ad-clipped fish were biosampled and heads processed for CWT recovery. Grilse cutoff: 650 mm females, 710 mm males.	CDFW
Merced River Hatchery (MER) Fall	Direct count. MER open Nov 5-Dec 24. All fish examined for fin-clips, tags, marks. All ad-clipped fish were sampled and heads processed for CWT recovery. Grilse cutoff: 620 mm females, 700 mm males.	CDFW

[^0]Table 1b. Estimation and sampling methods used for the 2015 CV Chinook natural escapement. (page 1 of 2)

Sampling Location	Estimation and Sampling Methods	Agency
Natural Spawners		
Upper Sacramento River Mainstem Winter, Fall, and Late-Fall (2015)	Population estimate for each run produced utilizing five-step process: 1) Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate using all females within carcass survey area (Balls Ferry Bridge to Keswick Dam). 2) Total female escapement estimate in upper Sacramento River is derived using expansions for females spawning outside of the survey area (Princeton to Balls Ferry) through aerial redd surveys. 3) Adult male escapement estimated using adult sex ratio of live fish counts at CFH or Keswick Trap. 4) Grilse escapement estimated using survey ratio of fresh adult males to fresh grilse. 5) Addition of any fish removed for hatchery brood stock purposes. All fish in carcass survey examined for fin-clips, tags, marks, and condition (e.g., fresh, non-fresh, skeleton). Biodata ${ }^{\text {a/ }}$ collected from all fresh fish. Systematic random bio-sample may occur if carcass counts expected to be high. All ad-clipped fish (fresh and non-fresh), including "unknown" ad-clipped status, were sexed, measured and heads collected for CWT recovery. Grilse cutoff: 575 mm females, 610 mm males winter; 610 mm females, 670 mm males fall; 610 mm females, 610 mm males late-fall.	CDFW, FWS
Clear Creek Fall	Video Station count used to estimate population. Supplemental bio-sampling survey used to estimate biological characteristics of the population (age, sex, hatcheryorigin, spawn sucess). All fish in carcass survey examined for fin-clips, tags, marks, and condition (e.g., fresh, non-fresh, skeleton). Bio-data collected from all fresh fish. All ad-clipped fish (fresh and non-fresh), including "unknown" ad-clipped status, were sampled and heads collected for CWT recovery. Grilse cutoff: 610 mm .	CDFW, FWS
Cow Creek Fall	Video weir count in lower creek used to determine total escapement. Two kayak surveys conducted to collect bio-data from fresh fish. Less than 1% of total escapement sampled; opportunistic collection of CWTs. Grilse cutoff: 610 mm females, 670 mm males.	CDFW
Battle Creek Fall	Video weir count (Aug 17 - Nov 24) in lower creek used to determine total fall escapement. Natural fall escapement into Battle Creek calculated by substracting CFH fall return from total run. Surrogate CWTs based on hatchery proportion and CWT composition of CFH fall return. Grilse cutoff: 700 mm .	CDFW
Cottonwood Creek Fall	Video weir count (Sep 24 - Dec 11) in lower creek used to determine total escapement. Kayak surveys conducted to collect bio-data from fresh fish. All adclipped fish (fresh and non-fresh), including "unknown" ad-clipped status, were sampled and heads collected for CWT recovery. Grilse cutoff: 610 mm females, 670 mm males.	CDFW
Mill Creek Fall	Video counts at Ward Dam in lower Mill Creek plus expanded redd count between Ward Dam and the Sacramento River confluence used to determine total escapement. Bio-sampling surveys conducted to collect bio-data from fresh fish. All ad-clipped fish (fresh and non-fresh), including "unknown" ad-clipped status, were sampled and heads collected for CWT recovery. Grilse cutoff: 610 mm females, 670 mm males.	CDFW
Deer Creek Fall	Video counts at Stanford Vina Ranch Irrigation Company (SVRIC) Dam plus expanded redd count between SVRIC Dam and the Sacramento River confluence used to determine total escapement. Kayak surveys conducted to collect bio-data from fresh fish. Approximately 1% of total escapement sampled; opportunistic collection of CWTs. Grilse cutoff: 610 mm females, 670 mm males.	CDFW

Table 1b. Estimation and sampling methods used for the 2015 CV Chinook natural escapement. (page 2 of 2)

Sampling Location	Estimation and Sampling Methods	Agency
Natural Spawners cont.		
Butte Creek Spring and Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate for spring and fall. All fish examined for fin-clips, tags, marks. Systematic random bio-sample of all fish. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 600 mm spring, 650 mm fall.	CDFW
Feather River Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fish examined for fin-clips, tags, marks. Systematic random bio-sample of fresh fish. All ad-clipped fresh fish sampled and heads collected for CWT recovery. Escapement estimate includes spring-run. Grilse cutoff: 650 mm .	DWR
Yuba River Fall	Above Daguerre Point Dam: Vaki Riverwatcher direct count of escapement and adclipped fish. Supplemental carcass survey to collect bio-data and heads from adclipped fish (fresh fish only). Below Daguerre Point Dam: Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fish examined for fin-clips, tags, marks, and condition. All ad-clipped fresh fish sampled and heads collected for CWT recovery. Escapement estimate includes spring-run. Grilse cutoff: 650 mm .	$\begin{aligned} & \text { CDFW, } \\ & \text { YARMT } \end{aligned}$
American River Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fish examined for fin-clips, tags, marks, and condition. Systematic random biosample of all fish. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 620 mm females, 690 mm males.	CDFW
Nimbus Weir Fall	Direct count. Installed Sept 4 to force returning salmon into Nimbus Hatchery; salmon that migrated above prior to installation trapped between Nimbus Dam (located $1 / 4$ mile upstream) and weir. All dead fish that washed back down river ("washbacks") onto weir examined for fin-clips, tags, marks. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 650 mm .	CDFW
Mokelumne River Fall	Video count at Woodbridge Irrigation District Dam (WIDD) used to determine total escapement and ad-clipped fish above WIDD. Natural spawner escapement estimate and ad-clip rate calculated by subtracting total count and number of adclipped fish returning to MOK. Supplemental carcass survey to collect bio-data from fresh fish and heads from all ad-clipped fish. Grilse cutoff: 700 mm .	EBMUD
Stanislaus River Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fresh fish examined for fin-clips, tags, marks. All fresh ad-clipped fish sampled and heads collected for CWT recovery. Opportunistic sampling of ad-clipped fish on Stanislaus Weir (i.e., "washbacks"). Grilse cutoff: 620 mm females, 700 mm males.	CDFW
Tuolumne River Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fish examined for fin-clips, tags, marks, and condition. All ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 620 mm females, 700 mm males.	CDFW
Merced River Fall	Superpopulation modification of the Cormack-Jolly-Seber mark-recapture estimate. All fresh fish examined for fin-clips, tags, marks. All fresh ad-clipped fish sampled and heads collected for CWT recovery. Grilse cutoff: 620 mm females, 700 mm males.	CDFW

${ }^{2 /}$ Biological sampling ("bio-samples" or "bio-data") of live fish or carcasses may include observed tags or marks, sex, fork length, scales, carcass condition, spawning condition, and heads collected from ad-clipped fish for CWT recovery.

Table 1c. Survey design and open dates for the 2015 CV Chinook river sport harvest.

Sampling Location	Survey Design and Open Dates	Agency
Sport Harvest		
	Survey Design	
Central Valley Angler Survey (CVAS)	Stratified-random sampling design (one weekday and one weekend sample per week per section during the open season in each management zone) that included both roving counts and access interview components and sub-sampling of kept salmon. Almost all ad-clipped salmon sampled and heads collected for CWT recovery. Estimates of fishing effort, catch, and harvest of Chinook salmon made monthly for each survey section and then summed for the season total.	CDFW
	Open Dates	
Upper Sacramento River Fall and Late-Fall	Open Jul 16 - Dec 16 From the Lower Red Bluff Boat Ramp to Highway 113 bridge and Aug 1 - Dec 16 from the Deschutes Road Bridge to the Red Bluff Diversion Dam. Nov 1 is used to delineate the cutoff between the fall-run fishery and the late-fall-run fishery. Grilse cutoff: 650 mm fall.	
Feather River Fall	Open Jul 16 - Oct 15 from the unimproved boat ramp above the Thermolito Afterbay Outfall to 200 yards above the Live Oak boat ramp and Jul 16 - Dec 16 from 200 yards above the Live Oak boat ramp to the Sacramento River confluence. Grilse cutoff: 600 mm .	
American River Fall	Open Jul 16 - Dec 31 from Nimbus Dam to the Hazel Avenue Bridge, Jul 16 - Aug 15 from the Hazel Avenue Bridge to the USGS cable crossing, Jul 16-Oct 31 from the USGS cable crossing to the SMUD power line crossing, Jul 16 - Dec 31 from the SMUD power line crossing to the Jibboom Street Bridge, and Jul 16 - Dec 16 from the Jibboom Street Bridge to the Sacramento River confluence. Grilse cutoff: 650 mm .	
Lower Sacramento River Fall	Open Jul 16 - Dec 16 from the Highway 113 bridge to the Carquinez Bridge. Grilse cutoff: 650 mm .	
Mokelumne River Fall	Open Jul 16 - Oct 15 from Camanche Dam to the Highway 99 Bridge, Jul 16 - Dec 31 from the Highway 99 Bridge to Woodbridge Dam, including Lodi Lake, and Jul 16 - Dec 16 from the Lower Sacramento Road bridge to the San Joaquin River confluence. . Grilse cutoff: 700 mm .	
All Areas	Bag and Size Limit 2 Chinook salmon per day; no minimum size limit.	

Table 2. California ocean salmon sport and commercial fishery seasons by major port area, 2015.

Major Port Area	Sport Fishery			Commercial Fishery			
	Season	Size Limit ${ }^{\text {a/ }}$	Days Open	Season	Size Limit ${ }^{\text {al }}$	Days Open	Quota
Eureka/Crescent City (Klamath Mgmt Zone)	May 1 - Sep 7	20" TL	130	Sep 11-30	28" TL	18	$3,000^{\text {b/ }}$
Fort Bragg	Apr 4 - Nov 8	20" TL	219	May 1-31	27" TL	31	
				Jun 15-30	27" TL	16	
				Jul 12 - Aug 26	27" TL	46	
				Sep 1-30	27" TL	30	
						123	
San Francisco	Apr 4 - Apr 30	24" TL	27	May 1-31	27" TL	31	
	May 1 - Nov 8	20" TL	184	Jun 7-30	27" TL	24	
			211	Jul 8 - Aug 29	27" TL	53	
				Sep 1-30	26" TL	30	
				Oct 1-15 ${ }^{\text {c/ }}$	26" TL	11	
						149	
Monterey - North (Pigeon Pt - Pt Sur)	Apr 4 - May 31	24" TL	58	May 1-31	27" TL	31	
	May 1 - Sep 7	20" TL	$\underline{99}$	Jun 7-30	27" TL	24	
			157	Jul 8 - Aug 15	27" TL	39	
						94	
Monterey - South (Pt Sur - US / Mexico)	Apr 4 - May 31	24" TL	58	May 1-31	27" TL	31	
	May 1 - July 19	20" TL	$\underline{49}$	Jun 7-30	27" TL	24	
			107	Jul 8-31	27" TL	$\underline{24}$	
						79	
California Total ${ }^{\text {d/ }}$			717			384	

a/ Size limit in inches total length (TL).
b/ Klamath Management Zone quota fishery; daily bag and possession limit of 20 salmon per day. c/ Open Monday through Friday between Pt. Reyes and Pt. San Pedro.
d/ California Total does not include days open in Monterey - South (subset of Monterey port area).

Table 3. Central Valley coded-wire tag (CWT) Chinook releases recovered in 2015 by age, run, stock, and release type.(page 1 of 2)
Age 2 CWT releases

	Release type*	Brood year	Hatchery / wild	Stock origin	Run type	CWT codes	$\begin{aligned} & \text { \# CWT } \\ & \text { tagged } \end{aligned}$	Total fish released	\% CWT	Release strategy	Release locations / notes
	FRHS	2013	FRH	Fea R	Spr	4	1,217,640	1,227,476	99\%	In-basin	Feather River (Boyds Pump Ramp \& Gridley)
	FRHSn	2013	FRH	Fea R	Spr	1	997,962	1,009,198	99\%	Bay pens	Wickland Oil net pen releases
	CFHFh	2013	CFH	Sac R	Fall	4	1,125,706	4,506,160	25\%	Hatchery	CFH only
	CFHFn	2013	CFH	Sac R	Fall	11	1,810,972	7,273,847	25\%	Bay pens	San Pablo Bay net pen releases
	FRHFk	2013	FRH	Fea R	Fall	1	44,127	44,127	100\%	Experimental	Yolo Bypass experimental (Knaggs Ranch rice field study)
	FRHFb	2013	FRH	Fea R	Fall	3	300,145	301,417	100\%	Barge study	3 release sites: Sac R (Rio Vista), barged (SF Bay) \& trucked (Tiburon)
	FRHFn	2013	FRH	Fea R	Fall	5	1,459,468	5,906,741	25\%	Bay pens	San Pablo Bay net pen releases
	FRHFnc	2013	FRH	Fea R	Fall	1	366,033	368,458	99\%	Coastal pens	Pillar Point net pens; acclimated 1-2 weeks
	FRHFtib	2013	FRH	Fea R	Fall	1	11,791	11,791	100\%	Bay pens	Tiburon net pens; acclimated 1 week
	NIMFn	2013	NIM	Ame R	Fall	4	896,419	3,587,565	25\%	Bay pens	Mare Island net pens
	MOKFb	2013	MOK	Mok R	Fall	3	302,658	303,669	100\%	Barge study	3 release sites: Mok R (Miller's Ferry), barged (SF Bay) \& trucked (Tiburo
	MOKFn	2013	MOK	Mok R	Fall	11	1,148,423	4,604,315	25\%	Bay pens	Sherman Island net pens
	MOKFnc	2013	MOK	Mok R	Fall	1	239,294	240,497	99\%	Coastal pens	Santa Cruz net pens; 60 K released per week, acclimated a few hours
	MERFt	2013	MER	Mer R	Fall	3	393,182	1,501,007	26\%	Trucked	San Joaquin River at Jersey Point and Mossdale
	SJOx	2013	MER/FRH	MER/FRH	Fall/Spr	7	139,393	184,393	76\%	Experimental	San Joaquin River Conservation Hatchery experimental releases
	SacW	2013	LSH	Sac R	Wint	4	190,905	193,155	92\%	In-basin	Sacramento River (Lake Redding Park)
-1	CFHLh	2014	CFH	Sac R	Late	14	1,056,322	1,094,719	96\%	Hatchery	CFH (includes spring surrogate \& small experimental releases)
	Total age 2 releases:					78	11,700,440	32,358,535	36\%		
	Age 3 CWT releases										
	Release type*	Brood year	Hatchery / wild	Stock origin	Run type	$\begin{aligned} & \text { CWT } \\ & \text { codes } \end{aligned}$	\# CWT tagged	Total fish released	\% CWT	Release strategy	Release locations / notes
	FRHS	2012	FRH	Fea R	Spr	2	1,106,679	1,125,897	98\%	In-basin	Feather River (Boyds Pump Ramp \& Gridley net pens)
	FRHSn	2012	FRH	Fea R	Spr	1	1,015,285	1,033,174	98\%	Bay pens	Wickland Oil net pen releases
	CFHFh	2012	CFH	Sac R	Fall	14	2,956,348	11,873,864	25\%	Hatchery	CFH only
	FRHFk	2012	FRH	Fea R	Fall	12	138,888	138,888	100\%	Experimental	Yolo Bypass experimental (Knaggs Ranch rice field study)
	FRHFb	2012	FRH	Fea R	Fall	3	293,784	299,404	98\%	Barge study	3 release sites: Sac R (Broderick), barged (SF Bay) \& trucked (Ft Baker)
	FRHFn	2012	FRH	Fea R	Fall	4	1,453,105	5,848,045	25\%	Bay pens	San Pablo Bay net pen releases
	FRHFnc	2012	FRH	Fea R	Fall	2	649,160	656,564	99\%	Coastal pens	Santa Cruz and Pillar Point net pens; acclimated 1-14 days
	FRHFtib	2012	FRH	Fea R	Fall	1	9,918	10,028	99\%	Bay pens	Tiburon net pens
	NIMF	2012	NIM	Ame R	Fall	3	1,026,596	3,277,594	31\%	In-basin	American River (Jibboom Street bridge \& Howe Ave launch ramp)
	NIMFn	2012	NIM	Ame R	Fall	1	182,413	734,906	25\%	Bay pens	Mare Island net pens (19% transportation mortality prior to release)
	MOKF	2012	MOK	Mok R	Fall	1	99,548	100,306	99\%	In-basin	Mokelumne Hatchery (yearlings)
	MOKFn	2012	MOK	Mok R	Fall	13	1,275,158	5,123,986	25\%	Bay pens	Sherman Island net pens
	MERFt	2012	MER	Mer R	Fall	4	325,953	1,384,973	24\%	Trucked	San Joaquin River at Jersey Point and Mossdale
	SacW	2012	LSH	Sac R	Wint	16	169,967	181,857	92\%	In-basin	Sacramento River (Lake Redding Park)
	CFHLh	2013	CFH	Sac R	Late	14	960,075	984,977	97\%	Hatchery	CFH (includes spring surrogate \& small experimental releases)
	Total age 3 releases:					91	11,662,877	32,774,463	36\%		

Table 3. Central Valley coded-wire tag (CWT) Chinook releases recovered in 2015 by age, run, stock, and release type.(Page 2 of 2)
Age 4 CWT releases

Release type*	Brood year	Hatchery	Stock origin	Run type	CWT codes	$\begin{aligned} & \text { \# CWT } \\ & \text { tagged } \end{aligned}$	Total fish released	$\begin{gathered} \text { \% } \\ \text { CWT } \end{gathered}$	Release strategy	Release locations / notes
FRHS	2011	FRH	Fea R	Spr	2	1,088,286	1,110,709	98\%	In-basin	Feather River (Boyds Pump Ramp \& Thermolito Bypass)
FRHSn	2011	FRH	Fea R	Spr	1	1,125,189	1,134,280	99\%	Bay pens	San Pablo Bay net pen releases
CFHFh	2011	CFH	Sac R	Fall	28	3,117,042	12,508,161	25\%	Hatchery	CFH only
FRHFk	2011	FRH	Fea R	Fall	1	10,218	10,218	100\%	Experimental	Yolo Bypass experimental (Knaggs Ranch rice field study)
FRHFb	2011	FRH	Fea R	Fall	3	297,089	297,969	100\%	Barge study	3 release sites: Sac R (Elkhorn), barged (SF Bay) \& trucked (Ft Baker)
FRHFn	2011	FRH	Fea R	Fall	6	2,293,211	9,265,375	25\%	Bay pens	San Pablo Bay net pen releases (approx 15\% released directly into bay)
FRHFnc	2011	FRH	Fea R	Fall	3	426,190	427,337	100\%	Coastal pens	Santa Cruz and Pillar Point net pens; acclimated 1-14 days
FRHFtib	2011	FRH	Fea R	Fall	1	9,933	9,967	100\%	Bay pens	Tiburon net pens
FeaFw	2011	wild	Fea R	Fall	23	156,526	159,811	98\%	In-basin	Thermalito Bypass \& Feather River Outlet launch ramp
NIMF	2011	NIM	Ame R	Fall	3	1,078,191	3,492,113	31\%	In-basin	American River (Howe Ave launch ramp)
NIMFn	2011	NIM	Ame R	Fall	2	328,073	1,312,930	25\%	Bay pens	Mare Island net pens
MOKF	2011	MOK	Mok R	Fall	1	92,020	109,043	84\%	In-basin	Mokelumne Hatchery (yearlings)
MOKFn	2011	MOK	Mok R	Fall	21	1,487,132	5,973,754	25\%	Bay pens	Sherman Island net pens
MOKFt	2011	MOK	Mok R	Fall	2	110,737	448,659	25\%	Trucked	Sherman Island, opposite Jersey Point
MERF	2011	MER	Mer R	Fall	9	262,108	262,108	100\%	In-basin	Merced River Hatchery and Hatfield State Area
SacW	2011	LSH	Sac R	Wint	18	185,313	194,264	92\%	In-basin	Sacramento River (Lake Redding Park)
CFHLh	2012	CFH	Sac R	Late	14	1,031,419	1,094,288	94\%	Hatchery	CFH (includes spring surrogate \& small experimental releases)
Total age 4 releases:					138	13,098,677	37,810,986	35\%		
Age 5 CWT releases										
Release type*	Brood year	Hatchery	Stock origin	Run type	$\begin{aligned} & \text { CWT } \\ & \text { codes } \end{aligned}$	$\begin{aligned} & \text { \# CWT } \\ & \text { tagged } \end{aligned}$	Total fish released	$\begin{gathered} \text { \% } \\ \text { CWT } \end{gathered}$	Release strategy	Release locations / notes
FRHS	2010	FRH	Fea R	Spr	2	1,170,340	1,181,710	99\%	In-basin	Feather River (Boyds Pump Ramp)
CFHFh	2010	CFH	Sac R	Fall	25	2,835,420	11,369,732	25\%	Hatchery	CFH
CFHFn	2010	CFH	Sac R	Fall	3	334,756	1,339,659	25\%	Bay pens	Mare Island net pens
FRHFn	2010	FRH	Fea R	Fall	9	2,554,115	10,308,722	25\%	Bay pens	San Pablo Bay net pens; Wickland Oil net pens
NIMF	2010	NIM	Ame R	Fall	3	1,014,340	3,259,868	31\%	In-basin	American River (at Sunrise launch ramp \& Discovery Park)
NIMFn	2010	NIM	Ame R	Fall	0	368,363	1,595,731	23\%	Bay pens	Wickland Oil net pens
CFHLh	2011	CFH	Sac R	Late	14	1,037,859	1,053,282	99\%	Hatchery	CFH (includes spring surrogate releases)

*CWT release types:

Sacramento River fall Chinook release types (SFC)
CFHFh Coleman National Fish Hatchery fall hatchery releases
CFHFn Coleman National Fish Hatchery fall net pen releases
FRHFk Feather River Hatchery fall experimental Knaggs Ranch releases
FRHFb Feather River Hatchery fall barge study releases
FRHFn Feather River Hatchery fall bay net pen releases
FRHFnc Feather River Hatchery fall coastal net pen releases
FRHFtib Feather River Hatchery fall Tiburon net pen releases
FeaFw Feather River fall wild
NIMF Nimbus Fish Hatchery fall in-basin releases
NIMFn Nimbus Fish Hatchery fall net pens

Other CV Chinook release types (OCV)
MOKF Mokelumne Hatchery fall in-basin releases
MOKFb Mokelumne Hatchery fall barge study releases
MOKFn Mokelumne Hatchery fall net pen releases
MOKFnc Mokelumne Hatchery fall coastal net pen releases (Santa Cruz)
MOKFt Mokelumne Hatchery fall trucked releases (no net pens)
MERF Merced River Hatchery fall in-basin releases
MERFt Merced River Hatchery fall trucked releases (no net pens)
FRHS Feather River Hatchery spring in-basin releases
FRHSn Feather River Hatchery spring net pen releases
SacW Livingston Stone Hatchery winter in-basin releases
CFHLh Coleman National Fish Hatchery late fall hatchery releases

Table 4. Central Valley hatchery and natural escapement estimates, sport harvest, and sample data, 2015.

Central Valley Survey	Run	Total Escapement	Chinook Sampled ${ }^{\text {a/ }}$	Observed Ad-Clips	Heads Processed	Valid CWTs	Sample rate (fe)	$\begin{gathered} \text { Ad-clips } \\ \text { processed (fa) } \end{gathered}$	Valid CWTs (fd)	$\begin{aligned} & \text { CWT } \\ & F_{\text {samp }} \end{aligned}$
Hatchery Escapement										
Keswick Dam Fish Trap	Winter	257	257	133	132	127	1.000	0.992	1.000	1.01
Feather River Hatchery	Spring	3,386	3,386	3,270	3,270	3,227	1.000	1.000	0.999	1.00
Coleman National Fish Hatchery	Fall	15,724	15,724	3,123	3,119	3,032	1.000	0.998	0.995	$1.01{ }^{\text {b/ }}$
Feather River Hatchery	Fall	20,816	20,816	9,070	9,070	8,901	1.000	1.000	0.998	1.00
Nimbus Fish Hatchery	Fall	9,822	9,822	2,273	2,273	2,131	1.000	1.000	0.964	1.04
Mokelumne River Hatchery	Fall	8,298	8,298	2,227	2,227	2,181	1.000	1.000	0.998	1.00
Merced River Hatchery	Fall	1,198	1,198	287	286	261	1.000	0.997	0.942	1.07
Coleman National Fish Hatchery	Late-fall ${ }^{\text {c/ }}$	2,348	2,348	2,297	2,297	2,274	1.000	1.000	0.997	$1.00{ }^{\text {b/ }}$
Coleman National Fish Hatchery Trap	Late-fall ${ }^{\text {c/ }}$	104	104	103	46	45	1.000	0.447	1.000	2.24
Keswick Dam Fish Trap	Late-fall ${ }^{\text {c/ }}$	65	65	4	4	4	1.000	1.000	1.000	1.00
Total Hatchery Escapement		62,018	62,018	22,787	22,724	22,183				
Natural Area Escapement										
Upper Sacramento River (above RBDD)	Winter	3,182	1,076	195	194	161	0.338	0.995	1.000	$3.23{ }^{\text {d/ }}$
Butte Creek	Spring	413	185	0	0	0	0.448	-	-	.
Upper Sacramento River (above RBDD)	Fall	28,668	3,175	405	404	381	0.111	0.998	0.974	$16.05{ }^{\text {d/ }}$
Clear Creek	Fall	8,809	1,778	271	270	246	0.202	0.996	0.946	$8.30{ }^{\text {f/ }}$
Cow Creek	Fall	591	12	Video - no bi	data collected	0	0.020	-	-	-
Battle Creek	Fall	3,631	3,631	Video - no bi	data collected	$112{ }^{\text {e/ }}$	-	-	-	-
Cottonwood Creek	Fall	604	33	2	2	2	0.055	1.000	1.000	$18.30{ }^{\text {f/ }}$
Mill Creek	Fall	1,033	62	9	9	8	0.060	1.000	1.000	$15.65{ }^{\text {f/ }}$
Deer Creek	Fall	612	51	15	15	15	0.083	1.000	1.000	$10.68{ }^{\text {f/ }}$
Butte Creek	Fall	82	4	Video - no bi	data collected	0	0.049	-	-	-
Feather River	Fall	20,566	3,578	1,323	1,323	1,238	0.174	1.000	0.968	5.94
Yuba River above Daguerre Point Dam (DPD)	Fall	4,981	148	28	28	28	0.030	1.000	1.000	$33.66{ }^{\text {g/ }}$
Yuba River below DPD	Fall	2,569	237	36	36	32	0.092	1.000	1.000	$10.50{ }^{\text {d/ }}$
American River	Fall	13,793	7,516	1,374	1,242	1,100	0.545	0.904	0.967	$2.23{ }^{\text {d/ }}$
Nimbus Fish Hatchery Weir	Fall	1,946	1,946	290	290	247	1.000	1.000	0.961	1.04
Mokelumne River	Fall	4,581	4,581	1,229	194	178	1.000	0.158	0.994	$6.37{ }^{\text {g/ }}$
Stanislaus River	Fall	6,136	794	200	200	190	0.129	1.000	0.960	$6.55{ }^{\text {n/ }}$
Tuolumne River	Fall	113	45	8	8	8	0.398	1.000	1.000	2.51
Merced River	Fall	1,247	443	75	75	69	0.355	1.000	0.945	$3.78{ }^{\text {d/ }}$
Upper Sacramento River (above RBDD)	Late-fall ${ }^{\text {c/ }}$	3,085	637	16	16	13	0.206	1.000	0.867	$14.73{ }^{\text {d/ }}$
Total Natural Area Escapement		106,642	29,932	5,476	4,306	4,028				
CV Sport Harvest										
Sacramento River (above Feather River)	Fall	8,088	733	155	138	134	0.091	0.890	0.993	12.49
Sacramento River (below Feather River)	Fall	6,205	232	60	60	57	0.037	1.000	0.983	27.21
Feather River	Fall	1,906	82	32	32	32	0.043	1.000	1.000	21.81
American River	Fall	6,630	322	76	75	75	0.049	0.987	1.000	20.86
Mokelumne River	Fall	1,281	101	26	26	26	0.079	1.000	1.000	12.68
Sacramento River (above Feather River)	Late-fall ${ }^{\text {d }}$	252	28	11	11	11	0.111	1.000	1.000	9.00
	Total Sport Harvest	24,362	1,498	360	342	335				
		Total Sampled	93,448	28,623	27,372	26,546				

a/ Number of Chinook salmon sampled and visually checked for a clipped adipose fin or electronically scanned to check for the presence of a CWT.
b/ Average sample expansion factor. Coleman National Fish Hatchery sample expansion factors calculated based on run-timing and sampling protocol; fall and late-fall counts parsed based on CWT codes.
c/ Late-fall hatchery returns, natural escapement, and sport harvest occurred during late fall of 2015 through early 2016 (return year 2016).
d/ Carcass survey sample expansion factor based on fresh fish only and expanded to all valid CWTs (Mohr and Satterthwaite, 2013; Appendix 1)
e/ Battle Creek fall natural escapement estimated using Battle Creek video count minus fall return to Coleman National Fish Hatchery (CFH). Surrogate CWTs based on CFH hatchery proportion and CWT recoveries.
f/ Escapement estimate based on video counts; CWTs collected in separate survey (e.g., kayak survey).
$\mathrm{g} /$ Natural escapement CWTs collected on spawning grounds and expanded based on total ad-clip count observed via video weir (e.g., Mokelumne River, Yuba River above DPD).
$\mathrm{h} /$ Stanislaus natural escapement and sample expansion factor based on fresh fish only and expanded to all valid CWTs (e.g., 37 CWTs recovered from washbacks on Stanislaus Weir).

Table 5. Total harvest and sample data for 2015 Ocean Salmon Sport and Commercial Fisheries by major port area

Fishery - Port Area	Ocean Harvest	Chinook Sampled ${ }^{\text {a/ }}$	Observed Ad-Clips	Heads Processed	Valid CWTs	Sample rate (fe)	$\begin{gathered} \text { Ad-clips } \\ \text { processed (fa) } \end{gathered}$	Valid CWTs (fd)	$\begin{aligned} & \hline \text { CWT } \\ & F_{\text {samp }} \end{aligned}$
California Sport									
Eureka/Crescent	3,690	1,180	261	259	239	0.320	0.992	0.992	3.18
Fort Bragg	5,493	1,311	303	303	277	0.239	1.000	0.965	4.34
San Francisco	25,227	8,474	2,491	2,469	2,326	0.336	0.991	0.970	3.10
Monterey	3,070	637	$\underline{274}$	$\underline{271}$	$\underline{258}$	$\underline{0.207}$	$\underline{0.989}$	$\underline{0.977}$	5.00
	37,480	11,602	3,329	3,302	3,100	0.310	0.992	0.939	
California Commercial									
Eureka/Crescent	46	5	1	1	1	0.109	1.000	1.000	9.17
Fort Bragg	60,052	20,341	3,390	3,384	2,965	0.339	0.998	0.976	3.03
San Francisco	35,696	11,032	2,750	2,748	2,603	0.309	0.999	0.973	3.33
Monterey	14,713	5,612	1,925	1,924	1,832	$\underline{0.381}$	$\underline{0.999}$	$\underline{0.974}$	2.70
	110,507	36,990	8,066	8,057	7,401	0.335	0.999	0.919	
California Total	147,987	48,592	11,395	11,359	10,501	0.328	0.997	0.924	
Oregon Sport	6,685	2,071	194	194	181	0.310	1.000	0.995	3.24
Oregon Commercial	93,377	28,203	4,442	4,440	4,262	$\underline{0.302}$	1.000	$\underline{0.990}$	3.34
Oregon Total	100,062	30,274	4,636	4,634	4,443	0.303	1.000	0.959	

a/ Number of salmon visually checked for a clipped adipose fin or electronically scanned to check for the presence of a CWT.

Table 6. Raw and expanded Chinook CWT recoveries in the Central Valley by run type and brood year during 2015.

$\frac{\text { Fall-run }}{\text { Age }}$	2014 1	2013 $2^{\text {a/ }}$	2012 3	2011 $4^{\text {a/ }}$	$\begin{array}{r}2010 \\ 5 \\ \hline\end{array}$	Total CV CWTs	Total CV \%
Raw CWT Recoveries	$\begin{array}{r} 4 \\ (<1 \%) \end{array}$	$\begin{aligned} & 3,712 \\ & (23 \%) \end{aligned}$	$\begin{aligned} & 9,425 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 2,835 \\ & (18 \%) \end{aligned}$	$\begin{array}{r} 88 \\ (<1 \%) \end{array}$	16,064	61\%
Expanded CWTtotal	$\begin{array}{r} 13 \\ (<1 \%) \end{array}$	$\begin{array}{r} 24,835 \\ (19 \%) \end{array}$	$\begin{array}{r} 76,266 \\ (59 \%) \end{array}$	$\begin{array}{r} 26,960 \\ (21 \%) \end{array}$	$\begin{array}{r} 730 \\ (<1 \%) \end{array}$	128,805	89\%

Spring-run	2013 2	2012 3	2011 4	2010 5	Total CV CWTs	Total CV \%
Raw CWT Recoveries	45	5,800	1,976	18	7,839	30\%
	(<1\%)	(74\%)	(25\%)	(<1\%)		
Expanded CWTtotal	111	8,477	3,052	43	11,683	8\%
	(<1\%)	(73\%)	(26\%)	(<1\%)		

Late-Fall-run	2014	2013	2012	2011		Total CV
Age	2	3	4	5	CWTs	Total CV \%
Raw CWT Recoveries	796	469	1,041	49	2,355	9%
	(34%)	(20%)	(44%)	(2%)		
Expanded CWTtotal	932	582	1,347	$\mathbf{6 0}$	2,922	2%
	(32%)	(20%)	(46%)	(2%)		

Winter-run	2014	2013	2012	2011	2010		Total CV Age	1

All Runs						Total CV	
Age	1	$2^{\text {a/ }}$	3	$4^{\text {a/ }}$	5	CWTs	Total CV \%
Raw CWT Recoveries	10	4,557	15,971	5,853	155	26,546	100\%
	(<1\%)	(17\%)	(60\%)	(22\%)	(<1\%)		
CV Expanded CWTtotal	22	25,884	86,001	31,363	833	144,103	100\%
	(<1\%)	(18\%)	(60\%)	(22\%)	(<1\%)		

a/ Includes one age-2 and three age-4 fall-run Chinook released from northern California hatcheries.

Table 7. Raw and expanded Chinook CWT recoveries in 2015 California ocean fisheries by run type and brood year.

$\frac{\text { Fall-run }}{\text { Age }}$	2013 2	2012 3	2011 4	$\begin{array}{r} 2010 \\ 5 \end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries	$\begin{aligned} & 1,096 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 6,755 \\ & (75 \%) \end{aligned}$	$\begin{aligned} & 1,173 \\ & (13 \%) \end{aligned}$	$\begin{array}{r} 22 \\ (<1 \%) \end{array}$	9,046	86\%
Expanded CWTtotal	$\begin{aligned} & 9,386 \\ & (12 \%) \end{aligned}$	$\begin{array}{r} 58,048 \\ (74 \%) \end{array}$	$\begin{array}{r} 11,184 \\ (14 \%) \end{array}$	$\begin{array}{r} 223 \\ (<1 \%) \end{array}$	78,841	91\%
Spring-run	2013	2012	2011	2010	Total Ocean	Total
Age	2	3	4	5	CWTs	Ocean\%
Raw CWT Recoveries	$\begin{array}{r} 54 \\ (6 \%) \end{array}$	$\begin{array}{r} 749 \\ (85 \%) \end{array}$	$\begin{array}{r} 78 \\ (9 \%) \end{array}$	$\begin{array}{r} 1 \\ (<1 \%) \end{array}$	882	8\%
Expanded CWTtotal	$\begin{array}{r} 175 \\ (6 \%) \end{array}$	$\begin{aligned} & 2,367 \\ & (85 \%) \end{aligned}$	$\begin{gathered} 229 \\ (8 \%) \end{gathered}$	$\begin{array}{r} 3 \\ (<1 \%) \end{array}$	2,773	3\%
$\frac{\text { Late-Fall-run }}{\text { Age }}$	2014 2	2013 3	2012 4	$\begin{array}{r} 2011 \\ 5 \end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries	$\begin{array}{r} 2 \\ (1 \%) \end{array}$	$\begin{array}{r} 17 \\ (12 \%) \end{array}$	$\begin{array}{r} 122 \\ (86 \%) \end{array}$	$\begin{array}{r} 1 \\ (<1 \%) \end{array}$	142	1\%
Expanded CWTtotal	$\begin{array}{r} 8 \\ (2 \%) \end{array}$	$\begin{array}{r} 59 \\ (13 \%) \end{array}$	$\begin{array}{r} 376 \\ (84 \%) \end{array}$	3	446	1\%
$\frac{\text { Winter-run }}{\text { Age }}$	2014 2	2013 3	2012 4	$\begin{array}{r} 2011 \\ 5 \\ \hline \end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries		$\begin{array}{r} 1 \\ (50 \%) \end{array}$	$\begin{array}{r} 1 \\ (50 \%) \end{array}$		2	0.02\%
Expanded CWTtotal		3	3		5	0.01\%
		(49\%)	(51\%)			
Non-CV stocks	2013	2012	2011	2010	Total Ocean	
Age	2	3	4	5	CWTs	Ocean\%
Raw CWT Recoveries	$\begin{array}{r} 1 \\ (<1 \%) \end{array}$	$\begin{array}{r} 46 \\ (11 \%) \end{array}$	$\begin{array}{r} 382 \\ (89 \%) \end{array}$		429	4\%
Expanded CWTtotal	$\begin{array}{r} 11 \\ (<1 \%) \end{array}$	$\begin{array}{r} 585 \\ (12 \%) \end{array}$	$\begin{aligned} & 4,204 \\ & (88 \%) \end{aligned}$		4,800	6\%
$\frac{\text { All Runs }}{\text { Age }}$	2	3	4	5	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries	$\begin{aligned} & 1,153 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 7,568 \\ & (72 \%) \end{aligned}$	$\begin{aligned} & 1,756 \\ & (17 \%) \end{aligned}$	$\begin{array}{r} 24 \\ (<1 \%) \end{array}$	10,501	100\%
Expanded CWTtotal	$\begin{aligned} & 9,580 \\ & (11 \%) \end{aligned}$	$\begin{array}{r} 61,061 \\ (70 \%) \end{array}$	$\begin{array}{r} 15,996 \\ (18 \%) \end{array}$	$\begin{array}{r} 228 \\ (<1 \%) \end{array}$	86,866	100\%
CV Expanded CWTtotal proportion CV stocks	$\begin{array}{r} 9,569 \\ (100 \%) \end{array}$	$\begin{array}{r} 60,476 \\ (99 \%) \end{array}$	$\begin{array}{r} 11,792 \\ (74 \%) \end{array}$	$\begin{array}{r} 228 \\ (100 \%) \end{array}$	82,065	94\%

Table 8. Raw and expanded Chinook CWT recoveries in 2015 Oregon ocean fisheries by run type and brood year.

$\frac{\text { Fall-run }}{\text { Age }}$	2013 2	$\begin{array}{r} 2012 \\ 3 \\ \hline \end{array}$	2011 4	$\begin{array}{r}2010 \\ 5 \\ \hline\end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries	$\begin{array}{r} 14 \\ (<1 \%) \end{array}$	$\begin{aligned} & 1,406 \\ & (60 \%) \end{aligned}$	$\begin{array}{r} 892 \\ (38 \%) \end{array}$	$\begin{array}{r} 21 \\ (<1 \%) \end{array}$	2,333	53\%
Expanded CWTtotal	$\begin{array}{r} 93 \\ (<1 \%) \end{array}$	$\begin{array}{r} 12,891 \\ (57 \%) \end{array}$	$\begin{aligned} & 9,560 \\ & (42 \%) \end{aligned}$	$\begin{gathered} 236 \\ (1 \%) \end{gathered}$	22,780	48\%
Spring-run	2013 2	2012 3	2011 4	$\begin{array}{r}2010 \\ 5 \\ \hline\end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries		$\begin{array}{r} 128 \\ (75 \%) \end{array}$	$\begin{array}{r} 42 \\ (25 \%) \end{array}$		170	4\%
Expanded CWTtotal		$\begin{array}{r} 451 \\ (73 \%) \end{array}$	$\begin{array}{r} 164 \\ (27 \%) \end{array}$		614	1\%
$\frac{\text { Late-Fall-run }}{\text { Age }}$	2014 2	2013 3	2012 4	$\begin{array}{r}2011 \\ 5 \\ \hline\end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries			$\begin{array}{r} 27 \\ (93 \%) \end{array}$	$\begin{array}{r} 2 \\ (7 \%) \end{array}$	29	1\%
Expanded CWTtotal		(<1\%)	$\begin{array}{r} 89 \\ (92 \%) \end{array}$	8	97	0.2\%
Non-CV stocks	2013 2	2012 3	2011 4	$\begin{array}{r}2010 \\ 5 \\ \hline\end{array}$	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries		$\begin{array}{r} 568 \\ (30 \%) \end{array}$	$\begin{array}{r} 990 \\ (52 \%) \end{array}$	$\begin{array}{r} 353 \\ (18 \%) \end{array}$	1,911	43\%
Expanded CWTtotal		$\begin{array}{r} 14,186 \\ (59 \%) \end{array}$	$\begin{aligned} & 7,802 \\ & (32 \%) \end{aligned}$	$\begin{array}{r} 2,231 \\ (9 \%) \end{array}$	24,219	51\%
$\frac{\text { All Runs }}{\text { Age }}$	2	3	4	5	Total Ocean CWTs	Total Ocean\%
Raw CWT Recoveries	$\begin{array}{r} 14 \\ (<1 \%) \end{array}$	$\begin{aligned} & 2,102 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 1,951 \\ & (44 \%) \end{aligned}$	$\begin{array}{r} 376 \\ (8 \%) \end{array}$	4,443	100\%
Expanded CWTtotal	$\begin{array}{r} 93 \\ (<1 \%) \end{array}$	$\begin{array}{r} 27,527 \\ (58 \%) \end{array}$	$\begin{array}{r} 17,614 \\ (37 \%) \end{array}$	$\begin{array}{r} 2,475 \\ (5 \%) \end{array}$	47,709	100\%
CV Expanded $\mathrm{CWT}_{\text {total }}$ (proportion CV stocks)	$\begin{array}{r} 93 \\ (100 \%) \end{array}$	$\begin{array}{r} 13,341 \\ (48 \%) \end{array}$	$\begin{aligned} & 9,812 \\ & (56 \%) \end{aligned}$	$\begin{array}{r} 244 \\ (10 \%) \end{array}$	23,491	49\%

Table 9. Percentage of inland $\mathrm{CWT}_{\text {total }}$ recoveries by location, run, and release type ${ }^{a /}$ in hatchery returns, natural escapement and sport harvest during 2015.

Location	Run					FRH						NIM		MOK			MER		Total \%		Total Run
		SacW	CFHLh	CFHFh	CFHFn	FRHS	FRHSn	FRHFk	FRHFb	FRHFn	FRHFnc	NIMF	NIMFn	MOKF	MOKFn	MOKFe	MERF	MERFt	Hatchery	Natural	
Keswick Dam Fish Trap	Winter	53\%																	53\%	47\%	257
Feather River Hatchery	Spring					60\%	37\%		0\%	1\%									98\%	2\%	3,386
Coleman National Fish Hatchery	Fall			60\%	3\%		-		1\%	9\%	1\%	0\%	-		0\%	-		0\%	74\%	26\%	15,724
Feather River Hatchery	Fall			0\%	2\%	10\%	10\%	0\%	4\%	58\%	4\%	0\%	1\%	-	1\%	0\%		1\%	90\%	10\%	20,816
Nimbus Fish Hatchery	Fall		-		2\%				-	3\%	0\%	24\%	24\%	0\%	24\%	2\%		3\%	83\%	17\%	9,822
Mokelumne River Hatchery	Fall		-		3\%		-		0\%	3\%	0\%		10\%	1\%	69\%	3\%		5\%	96\%	4\%	8,298
Merced River Hatchery	Fall				4\%					6\%	1\%		3\%		62\%	2\%		12\%	88\%	12\%	1,198
Coleman National Fish Hatchery	Late-fall ${ }^{\text {b/ }}$		100\%																100\%		2,348
Coleman Hatchery Fish Trap	Late-fall ${ }^{\text {b/ }}$		100\%																100\%		104
Keswick Dam Fish Trap	Late-fall ${ }^{\text {b/ }}$		6\%																6\%	94\%	65
Total Hatchery Fall Run			,	17\%	3\%	4\%	4\%	-	2\%	25\%	2\%	4\%	6\%	0\%	16\%	1\%		2\%	85\%	15\%	55,858
Natural Spawners																					
Upper Sacramento River	Winter	18\%																	18\%	82\%	3,182
Upper Sacramento River	Fall			8\%	2\%		1\%		2\%	52\%	3\%								68\%	32\%	28,668
Clear Creek	Fall			8\%	4\%		1\%		3\%	55\%	3\%								74\%	26\%	8,809
Battle Creek	Fall ${ }^{\text {c }}$			60\%	3\%				1\%	9\%	1\%	0\%	-		0\%			0\%	74\%	26\%	3,631
Cottonwood Creek	Fall				12\%						3\%								15\%	85\%	604
Deer Creek	Fall				14\%					77\%	2\%				7\%				100\%		612
Mill Creek	Fall			6\%	6\%					30\%	2\%								44\%	56\%	1,033
Feather River	Fall			0\%	2\%	8\%	8\%		3\%	57\%	3\%	1\%	0\%		1\%	-		1\%	83\%	17\%	20,566
- Yuba River above DPD	Fall				19\%		1\%		1\%	11\%	2\%	9\%	3\%		12\%	3\%			60\%	40\%	4,981
$\stackrel{\rightharpoonup}{\omega}$ Yuba River below DPD	Fall				11\%				0\%	15\%	1\%		3\%		10\%	1\%		4\%	46\%	54\%	2,569
American River	Fall		-		2\%				-	1\%	0\%	23\%	21\%	-	15\%	1\%		1\%	65\%	35\%	13,793
Nimbus Fish Hatchery Weir	Fall				5\%	0\%	1\%		0\%	3\%	0\%	1\%	23\%	0\%	8\%	1\%		1\%	43\%	57\%	1,946
Mokelumne River	Fall				2\%					2\%	0\%		10\%	1\%	68\%	6\%		5\%	94\%	6\%	4,581
Stanislaus River	Fall				3\%					2\%	0\%		1\%		66\%	3\%		3\%	78\%	22\%	6,136
Tuolumne River	Fall												9\%		47\%			10\%	65\%	35\%	113
Merced River	Fall				1\%					4\%	0\%		1\%		62\%	4\%	0\%	9\%	81\%	19\%	1,247
Upper Sacramento River	Late-fall ${ }^{\text {b/ }}$		6\%															2\%	8\%	92\%	3,085
Total Natural Area Fall-run ${ }^{\text {d/ }}$			-	5\%	3\%	2\%	2\%		1\%	34\%	2\%	4\%	4\%	0\%	11\%	1\%	-	1\%	71\%	29\%	99,289
In-basin $\mathrm{CWT}_{\text {total }}$	All	0\%	2\%	12\%	1\%	5\%	4\%	-	1\%	21\%	1\%	5\%	5\%	0\%	7\%	0\%	-	0\%	65\%	35\%	120,292
Stray $\mathrm{CWT}_{\text {total }}$	All		-	2\%	8\%	-	1\%		2\%	49\%	3\%	1\%	4\%	-	24\%	2\%		4\%	100\%		47,373
Total CV Spawners		0\%	2\%	9\%	3\%	3\%	3\%	-	1\%	29\%	2\%	4\%	5\%	0\%	12\%	1\%	-	1\%	75\%	25\%	167,665
CV Sport Harvest																					
Upper Sacramento River	Fall			40\%	1\%		1\%		2\%	28\%	1\%								73\%	27\%	8,088
Lower Sacramento River	Fall		3%		9\%				1\%	28\%	3\%		21\%		9\%	1\%		2\%	77\%	23\%	6,205
Feather River	Fall				5\%	4\%	6\%		6\%	74\%	1\%							5\%	100\%		1,906
American River	Fall				3\%	1\%	4\%		1\%	5\%	0\%	12\%	25\%		23\%			1\%	75\%	25\%	6,630
Mokelumne River	Fall		1\%							8\%			12\%		72\%	1\%		4\%	98\%	2\%	1,281
Upper Sacramento River	Late-fall ${ }^{\text {b/ }}$		37\%							14\%									51\%	49\%	252
Total Sport Harvest			1\%	13\%	3\%	1\%	2\%		2\%	24\%	1\%	3\%	13\%		12\%	0\%		2\%	78\%	22\%	24,362

a/ Any values less than 0.05% of $\mathrm{CWT}_{\text {total }}$ are displayed as "-"; values equal or greater than 0.05% but less than 0.5% of $\mathrm{CWT}_{\text {total }}$ are displayed as 0%.
b/ Late-fall hatchery returns, natural escapement, and sport harvest occurred in late fall 2015 (return year 2016).
c/ No CWT recovery survey or ad-clip count available for Battle Creek natural escapement. CWT release groups and hatchery proportions assumed to be equivalent to fall return at CFH (FWS staff, per. comm).
d/ Total Natural Area Fall-run does not include unsampled escapement into Cow Creek ($\mathrm{n}=591$) and Butte Creek ($\mathrm{n}=82$).
Note: Recoveries of Mokelumne Hatchery MOKFb (age-2 barge study releases) and MOKFt (age-4 trucked releases) merged into MOKFe.

Table 10. Fall- and late-fall-run Chinook salmon escapement at Coleman National Fish Hatchery in 2015 based on run-timing and CWT stock composition.
Calculation of CFH sample expansion factors based on run-timing only
2015 CFH fall-run escapement (Oct 6, 2015 - Dec 3, 2015)

Run timing (CWT sample rate)	Escapement N	$\begin{gathered} \text { Chinook } \\ \text { sampled (n) } \end{gathered}$	Observed ad-clips	Heads processed	CWTs recovered	Valid CWTs	Sample rate (fe)	Ad-clips processed (fa)	Valid CWTs (fd)	$\mathrm{F}_{\text {samp }}$	Avg $\mathrm{F}_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	Hatchery proportion
Oct 6 - Dec 3 (100\%)	15,806	15,806	3,204	3,200	3,128	3,113	100\%	99.9\%	99.5\%	1.01	3.742	11,763	74.4\%

2016 CFH late-fall-run escapement (Dec 23, 2015 - Mar 9, 2016)

Run timing (CWT sample rate)	Escapement N	Chinook sampled	Observed ad-clips	Heads processed	CWTs recovered	Valid CWTs	Sample rate (fe)	Ad-clips processed (fa)	Valid CWTs (fd)	$\mathrm{F}_{\text {samp }}$	$\begin{gathered} \text { Avg } \\ \mathrm{F}_{\text {prod }} \end{gathered}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	Hatchery proportion
Dec 23 - Mar 9 (100\%)	2,266	2,266	2,216	2,216	2,199	2,193	100\%	100.0\%	99.7\%	1.00	1.046	2,294	>100\%
Total CFH count	18,072	18,072	5,420	5,416	5,327	5,306							

Final CFH escapment based on CWT stock segregation

Run timing	Escapement N	Chinook sampled	Observed ad-clips	Heads processed	CWTs recovered	Fall CWTs	Sample rate (fe)	Ad-clips processed (fa)	Valid CWTs (fd)	$F_{\text {samp }}$	$\begin{gathered} \mathrm{Avg} \\ \mathrm{~F}_{\mathrm{prod}} \end{gathered}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	Hatchery proportion
Oct 6 - Jan 27	15,724	15,724	3,123	3,119	3,047	3,032	100\%	99.8719\%	99.5\%	1.01	3.824	11,712	74.5\%
2016 CFH late-fall-run escapement													
Run timing	Escapement N	Chinook sampled	Observed ad-clips	Heads processed	CWTs recovered	Late fall CWTs	Sample rate (fe)	Ad-clips processed (fa)	Valid CWTs (fd)	$F_{\text {samp }}$	$\begin{gathered} \text { Avg } \\ \mathrm{F}_{\text {prod }} \\ \hline \end{gathered}$	$\sum_{i=1}^{m} C W T_{\text {totat }, i}$	Hatchery proportion
Nov 11 - Mar 9	2,348	2,348	2,297	2,297	2,280	2,274	100\%	100.0\%	99.7\%	1.00	1.030	2,348	100\%
Total CFH count	18,072	18,072	5,420	5,416	5,327	5,306							

Table 11. Total inland $\mathrm{CWT}_{\text {total }}$ recoveries by location, run, and release type ${ }^{\text {a/ }}$ in hatchery returns, natural escapement and sport harvest during 2015.

a/ Release types defined in Table 3; recoveries of Mokelumne Hatchery MOKFb (age-2 barge study releases) and MOKFt (age-4 trucked releases) merged into MOKFe.
b/ Late-fall hatchery returns, natural escapement, and sport harvest occurred in late fall 2015 (return year 2016).
c/ Battle Creek natural escapement CWT total based on hatchery proportions at CFH (FWS staff, per. comm).
d/ Total Natural Area Fall-run does not include unsampled escapement into Cow Creek ($n=591$) and Butte Creek ($n=82$).

Table 12. CWT recovery rate (recoveries per 100,000 CWTs released) by release type, brood year and recovery location in 2015. (page 1 of 2)

Age 2 CWT recoveries

Release	Brood	Run	\# CWT	Central Valley total recoveries (CWT ${ }_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \text { \% CV } \\ & \text { Stray } \end{aligned}$	Ocean CWT ${ }_{\text {samp }}$	Recovery rate per 100K released			
type	year	type	tagged	Bat Cr	Up Sac	Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHS	2013	Spr	1,217,640				26		2				26	2	28	7\%	68	2	0	2	6
FRHSn	2013	Spr	997,962				36		4				36	4	40	10\%	105	4	0	4	11
CFHFh	2013	Fall	1,125,706	201									201	0	201	0\%	61	18	0	18	5
CFHFn	2013	Fall	1,810,972	147	112	138	228	309	134	91	14	46	259	961	1,220	79\%	736	14	53	67	41
FRHFk	2013	Fall	44,127				2						2	0	2	0\%	4	5	0	5	9
FRHFtib	2013	Fall	11,791	5			9			1			9	6	15		30				
FRHFb	2013	Fall	300,145	6		8	88		2	2			88	19	106	18\%	33	29	6	35	11
FRHFn	2013	Fall	1,459,468	52	144	77	801	67	27	36	6	7	868	349	1,217	29\%	422	59	24	83	29
FRHFnc	2013	Fall	366,033	44	80	84	607	21	34	35	4	20	628	301	930	32\%	938	172	82	254	256
NIMFn	2013	Fall	896,419				31	55	742	248	9	7	742	349	1,091	32\%	405	83	39	122	45
MOKFb	2013	Fall	302,658	1			9	21	87	156	19	39	156	176	332	53\%	212	52	58	110	70
MOKFn	2013	Fall	1,148,423	1			6	44	87	358	138	278	358	554	912	61\%	303	31	48	79	26
MOKFnc	2013	Fall	239,294				2	34	12	15	2	9	15	59	74	79\%	493	6	25	31	206
MERFt	2013	Fall	393,182				1		5	20	3	13	3	39	43	92\%	2	1	10	11	1
SacW ${ }^{\text {b/ }}$	2013	Wint	190,905		14								14	0	14	0\%	3	8	0	8	1
CFHLh	2014	Late	1,056,322	789	15					1			804	1	805	0\%	7	76	0	76	1
		Total	11,561,047	1,246	366	308	1,845	551	1,136	965	196	418	4,211	2,820	7,031	40\%	3,823				

Age 3 CWT recoveries

Release type	Brood year	Run type	\# CWT tagged	Central Valley total recoveries (CWT ${ }_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \text { \% CV } \\ & \text { Stray } \\ & \hline \end{aligned}$	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100K released			
				Bat Cr	Up Sac	Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHS	2012	Spr	1,106,679				3,495		1				3,495	1	3,496	0\%	848	316	0	316	77
FRHSn	2012	Spr	1,015,285	2	305	66	4,026	34	20	2			4,060	396	4,455	9\%	1,916	400	39	439	189
CFHFh	2012	Fall	2,956,348	1,473	80	90	1						1,553	91	1,645	6\%	1,418	53	3	56	48
FRHFk	2012	Fall	138,888				16						16	0	16	0\%	23	12	0	12	17
FRHFtib	2012	Fall	9,918			17	14						14	17	31		81				
FRHFb	2012	Fall	293,784	92	546	174	1,057	78	8	1			1,135	821	1,956	42\%	2,714	386	280	666	924
FRHFn	2012	Fall	1,453,105	360	2,520	1,080	4,101	162	75	51	18	20	4,262	4,124	8,386	49\%	8,957	293	284	577	616
FRHFnc	2012	Fall	649,160	57	465	168	482	111	6	2	6		594	704	1,298	54\%	7,418	91	109	200	1143
NIMF	2012	Fall	1,026,596	2			42	67	1,343				1,343	112	1,455	8\%	1,011	131	11	142	98
NIMFn	2012	Fall	182,413	1			7		330	49	1	7	330	65	394	16\%	428	181	36	217	234
MOKF	2012	Fall	99,548				1		9	83			83	10	92	10\%	9	83	10	93	9
MOKFn	2012	Fall	1,275,158	2		11	49	143	875	1,693	220	698	1,693	1,998	3,692	54\%	2,990	133	157	290	234
MERFt	2012	Fall	325,953	5	15		65	21	115	143	56	35	56	399	455	88\%	447	17	122	139	137
SacW ${ }^{\text {b/ }}$	2012	Wint	169,967		631								631	0	631	0\%	3	371	0	371	2
CFHLh	2013	Late	960,075	467					3				467	3	470	0.7\%	58	49	0	49	6
		Total	11,662,877	2,463	4,561	1,606	13,356	616	2,785	2,024	302	759	19,732	8,741	28,473	31\%	28,320				

Table 12. CWT recovery rate (recoveries per 100,000 CWTs released) by release type, brood year and recovery location in 2015. (page 2 of 2)

Age 4 CWT recoveries

Release		Run		Central Valley total recoveries ($\mathrm{CWT}_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			\% CV Stray	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100K released			
type	year	type	tagged	Bat Cr	Up Sac N	Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHS	2011	Spr	1,088,286				2,051		1				2,051	1	2,052	0\%	254	188	0	188	23
FRHSn	2011	Spr	1,125,189		80	17	698		1				698	98	796	12\%	132	62	9	71	12
CFHFh	2011	Fall	3,117,042	1,208	465	91	10						1,674	101	1,775	6\%	1,172	54	3	57	38
FRHFtib	2011	Fall	9,933	1									0	1	1		3				
FRHFb	2011	Fall	297,089	2	48	33	206		5	1			206	90	296	30\%	354	69	30	99	119
FRHFn	2011	Fall	2,293,211	41	1,011	250	984		16	2			984	1,321	2,304	57\%	2,163	43	58	101	94
FRHFnc	2011	Fall	426,190	27	209	50	220						220	286	506	57\%	1,435	52	67	119	337
NIMF	2011	Fall	1,078,191				14	67	350				350	81	431	19\%	247	32	8	40	23
NIMFn	2011	Fall	328,073				23		361	26	2	3	361	54	415	13\%	593	110	16	126	181
MOKF	2011	Fall	92,020						5	63			63	5	68	8\%	11	68	6	74	12
MOKFn	2011	Fall	1,487,132				9	11	169	150	19	46	150	253	403	63\%	444	10	17	27	30
MOKFt	2011	Fall	110,737				2	34	67	84	13	39	84	155	239	65\%	123	76	140	216	111
MERF	2011	Fall	262,108								4		4	0	4	0\%	4	1	0	1	2
$\mathrm{SacW}^{\text {b/ }}$	2011	Wint	185,313		3								3	0	3	0\%	0	2	0	2	0
CFHLh	2012	Late	1,031,419	1,061	166								1,227	0	1,227	0.00\%	440	119	0	119	43
		Total	12,931,933	2,342	1,983	441	4,216	111	975	326	38	88	8,074	2,446	10,520	23\%	7,375				

Age 5 CV recoveries

Release type	Brood year	Run type	\# CWT tagged	Central Valley total recoveries (CWT samp) by basin								CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \text { \% CV } \\ & \text { Stray } \end{aligned}$	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100K released			
				Bat Cr	Up Sac Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHS	2010	Spr	1,170,340			20						20	0	20	0\%	3	2	0	2	0.2
CFHFh	2010	Fall	2,835,420	32	48							80	0	80	0\%	20	3	0	3	1
CFHFn	2010	Fall	334,756	1	8							1	8	10	87\%	16	0	3	3	5
FRHFn	2010	Fall	2,554,115	1		32		2		4		32	7	39	18\%	59	1	0	2	2
NIMF	2010	Fall	1,014,340			1		12				12	1	13	8\%	10	1	0	1	1
NIMFn	2010	Fall	368,363					5				5	0	5	0\%	3	2	0	2	1
CFHLh	2011	Late	1,037,859	58								58	0	58	0\%	11	6	0	6	1

a/ Natural creeks can include Clear Creek, Cow Creek, Cottonwood Creek, Paynes Creek, Mill Creek, Deer Creek and Butte Creek, depending on survey year.
b/ Ocean recoveries of SacW are considered one year older than those of the same brood year recovered in CV (i.e., brood year $2012=a g e-4$ ocean).

Sacramento River fall Chinook release types (SFC)

CFHFh Coleman National Fish Hatchery fall hatchery releases
CFHFn Coleman National Fish Hatchery fall bay net pen releases
FRHFk Feather River Hatchery fall Knaggs Ranch experimental releases
FRHFtib Feather River Hatchery fall Tiburon net pen releases
FRHFb Feather River Hatchery fall barge study releases
FRHFn Feather River Hatchery fall bay net pen releases
FRHFnc Feather River Hatchery fall coastal net pen releases (Pillar Point)
NIMF Nimbus Hatchery fall in-basin releases
NIMFn Nimbus Hatchery fall bay net pens releases

Other CV Chinook release types (OCV)

FRHS

FRHSn
MOKF
Mokelumne River Hatchery fall in-basin rel releas
MOKFb Mokelumne River Hatchery fall barge study releases
MOKFn Mokelumne River Hatchery fall bay net pen releases
MOKFnc Mokelumne River Hatchery fall coastal net pen releases (Santa Cruz)
MOKFt Mokelumne River Hatchery fall trucked releases
MERF Merced River Hatchery fall in-basin releases
MERFt Merced River Hatchery fall trucked releases
SacW Livingston Stone Hatchery winter in-basin releases
CFHLh Coleman National Fish Hatchery late fall hatchery releases

Table 13. Percentage of $C W T_{\text {total }}$ recoveries by port area, month and release typea/ in 2015 California ocean salmon sport fishery.

CFH					$\mathrm{FRH}^{\text {/b }}$				NFH				$\mathrm{MOK}^{\text {/b }}$		MER		Non CV	Total CV	Total \%		Total Harvest
Sacw	CFHLh	CFHFh	CFHFn	FRHS	FRHSn	FRHFk	FRHFb	FRHFn	FRHFnc	NIMF	NIMFn	MOKF	MOKFb	MOKFn	MOKFnc	MERFt			Hatchery	Natural	
California Sport Harvest																					
Eureka/Crescent City																					
May	0\%	7\%		1\%	2\%		1\%	20\%	4\%	4\%	6\%	2\%		12\%		2\%	15\%	61\%	76\%	24\%	900
Jun		14\%	7\%	1\%			2\%	19\%	5\%	4\%				3\%	2\%			57\%	57\%	43\%	279
Jul	0\%	1\%	6\%	1\%	0\%		2\%	14\%	2\%		4\%		2\%	8\%	1\%		6\%	40\%	47\%	53\%	1,088
Aug	0\%	3\%	7\%	0\%	1\%		0\%	19\%	4\%	4\%	5\%	0\%	1\%	9\%	2\%		4\%	55\%	59\%	41\%	1,407
Sep																				100\%	16
Total	0\%	4\%	5\%	1\%	1\%		1\%	18\%	3\%	3\%	4\%	1\%	1\%	9\%	1\%	0\%	7\%	52\%	59\%	41\%	3,690
Fort Bragg																					(10\%)
Apr				3\%	5\%		2\%	15\%	3\%	4\%				9\%			4\%	40\%	44\%	56\%	394
May	1\%	4\%		2\%	1\%			24\%	4\%		4\%			8\%				47\%	47\%	53\%	331
Jun		7\%						30\%	6\%								2\%	43\%	46\%	54\%	215
Jul		4\%	4\%	0\%			2\%	27\%	5\%	1\%	4\%	1\%		7\%	1\%		3\%	57\%	60\%	40\%	3,071
Aug		6\%	11\%				2\%	26\%	6\%	1\%	6\%			12\%	1\%		3\%	69\%	73\%	27\%	1,295
Sep			14\%					7\%	5\%		20\%		2\%	22\%	2\%	8\%		79\%	79\%	21\%	187
Total	0\%	4\%	6\%	0\%	0\%		2\%	25\%	5\%	1\%	5\%	0\%	0\%	9\%	1\%	0\%	3\%	58\%	61\%	39\%	5,493
San Francisco																					(15\%)
Apr	0\%	7\%		7\%	8\%		4\%	28\%	6\%	1\%	1\%	0\%		3\%		2\%	0\%	68\%	68\%	32\%	933
May	0\%	5\%	2\%	3\%	4\%		3\%	28\%	9\%	1\%	2\%			12\%		2\%	1\%	72\%	73\%	27\%	1,072
Jun	0\%	4\%	8\%	2\%	4\%	0\%	2\%	27\%	6\%	1\%	4\%		0\%	9\%	1\%	1\%		72\%	72\%	28\%	2,396
Jul 0\%	-	5\%	10\%	0\%	1\%		2\%	26\%	8\%	0\%	7\%		1\%	8\%	2\%	1\%	0\%	71\%	71\%	29\%	5,126
Aug	0\%	7\%	12\%	0\%	0\%	0\%	2\%	23\%	10\%	1\%	8\%		0\%	8\%	2\%		0\%	75\%	75\%	25\%	6,113
Sep	0\%	3\%	9\%	0\%	0\%		0\%	22\%	8\%	1\%	5\%	0\%	1\%	13\%	1\%	1\%		66\%	66\%	34\%	8,014
Oct	1\%	1\%	1\%	0\%	0\%		0\%	3\%	1\%	5\%	24\%	1\%	1\%	29\%	2\%	5\%		74\%	74\%	26\%	1,573
Total -	0\%	5\%	9\%	1\%	1\%	-	2\%	23\%	8\%	1\%	7\%	0\%	1\%	11\%	2\%	1\%	0\%	70\%	71\%	29\%	25,227
Monterey																					(67\%)
Apr		9\%		8\%	18\%		5\%	39\%	7\%					1\%				87\%	87\%	13\%	1,697
May		5\%		4\%	1\%		12\%	66\%	2\%	4\%				5\%			1\%	99\%	100\%	0\%	490
Jun		11\%					4\%	26\%	7\%	5\%	8\%							59\%	59\%	41\%	543
Jul		36\%					2\%	9\%	11\%									58\%	58\%	42\%	313
Aug									68\%									68\%	68\%	32\%	27
Total		11\%		5\%	10\%		5\%	38\%	7\%	1\%	1\%			1\%			0\%	81\%	81\%	19\%	3,070
																					(8\%)
California Total Sport Harvest																					
-	0\%	5\%	7\%	1\%	2\%	-	2\%	24\%	7\%	1\%	6\%	0\%	1\%	9\%	1\%	1\%	1\%	68\%	69\%	31\%	37,480
Oregon Total Sport Harvest																					
	-	1\%	0\%		0\%		0\%	3\%	1\%	0\%	1\%		-	1\%	0\%	0\%	9\%	7\%	16\%	84\%	6,685

a/ Any values less than 0.05% of $\mathrm{CWT}_{\text {total }}$ are displayed as "-"; values equal or greater than 0.05% but less than 0.5% of $\mathrm{CWT}_{\text {total }}$ are displayed as 0%.
b/ In 2015, several hatch_grps were grouped together in ocean fisheries: FRHFn includes FRHFtib, MOKF includes MOKFt.

Table 14. Total $C W T_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon sport fishery.

CFH					FRH^{12}				NFH				$\mathrm{MOK}^{\text {1a }}$				Non CV	Total CV	Total CWT ${ }_{\text {total }}$		Total Harvest
Sacw	CFHLh	CFHFh	CFHFn	FRHS	FRHSn	FRHFk	FRHFb	FRHFn	FRHFnc	NIMF	NIMFn	MOKF	MOKFb	MOKFn	MOKFnc	MERFt			Hatchery	Natural	
California Sport Harvest																					
Eureka/Crescent City																					
May	4	60		6	22		11	181	39	33	50	17		109		18	136	549	685	215	900
Jun		40	19	4			5	53	14	12				9	5			160	160	119	279
Jul	3	11	68	7	3		18	152	23		45		18	84	7		71	439	510	578	1,088
Aug	3	41	105	3	12		3	272	51	51	70	3	16	122	26		51	778	829	578	1,407
Sep																				16	16
Total	10	152	192	19	37		38	657	127	96	164	19	34	324	38	18	258	1,925	2,184	1,506	3,690
Fort Bragg																					(10\%)
Apr				10	20		7	57	13	14				36			14	158	172	222	394
May	3	13		7	3			78	12		13			26				156	156	175	331
Jun		16						65	12								5	93	98	117	215
Jul		137	136	5			59	822	163	29	137	20		215	20		104	1,742	1,846	1,225	3,071
Aug		71	141				22	340	72	9	74			158	9		44	897	941	354	1,295
Sep			26					14	9		37		3	41	3	15		148	148	39	187
Oct																					
Total	3	237	303	22	24		89	1,376	281	52	261	20	3	477	32	15	167	3,194	3,362	2,131	5,493
San Francisco																					(15\%)
Apr	2	67		68	79		40	261	52	11	7	2		31		18	2	635	637	296	933
May	3	57	18	33	45		36	295	94	15	24			131		25	9	777	786	286	1,072
Jun	11	102	185	51	102	2	53	643	148	34	104		8	225	14	30		1,713	1,713	683	2,396
Jul 3	3	280	528	8	35		98	1,313	403	12	377		44	386	100	47	14	3,637	3,651	1,475	5,126
Aug	11	404	718	26	23	4	128	1,417	638	82	478		26	465	136		15	4,556	4,572	1,541	6,113
Sep	16	255	716	23	27		29	1,790	661	85	374	20	61	1,015	118	82		5,271	5,271	2,743	8,014
Oct	13	14	14	3	7		3	55	21	76	379	14	17	449	27	71		1,161	1,161	412	1,573
Nov																					
Total 3	58	1,179	2,179	212	318	6	387	5,773	2,016	315	1,743	36	157	2,702	394	273	39	17,751	17,791	7,436	25,227
Monterey																					(67\%)
Apr		149		143	309		80	663	117					19				1,481	1,481	216	1,697
May		22		20	6		60	326	11	18				22			5	486	490		490
Jun		59					20	140	35	25	41							321	321	222	543
Jul		112					7	28	35									182	182	131	313
Aug									18									18	18	9	27
Sep																					
Oct																					
Total		342		163	315		168	1,156	217	43	41			42			5	2,488	2,493	577	3,070
California Total Sport Harvest																					(8\%)
3	72	1,911	2,673	417	694	6	682	8,963	2,640	507	2,209	75	193	3,545	464	306	469	25,359	25,828	11,652	37,480
Oregon Total Sport Harvest																					
	2	41	10		3		14	198	39	17	38		3	72	5	8	613	450	1,063	5,622	6,685

a/ In 2015, several hatch_grps were grouped together in ocean fisheries: FRHFn includes FRHFtib, MOKF includes MOKFt .

Table 15. Percentage of $\mathrm{CWT}_{\text {total }}$ recoveries by port area, month and release typea/ in 2015 California ocean salmon commercial fishery.

	CFH				FRH ${ }^{\text {/b }}$				NFH				MOK ${ }^{\text {/b }}$			MER	Non CV	Total CV	Total \%		Total Harvest
SacW	CFHLh	CFHFh	CFHFn	FRHS	FRHSn	FRHFk	FRHFb	FRHFn	FRHFnc	NIMF	NIMFn	MOKF	MOKFb	MOKFn	MOKFnc	MERFt			Hatchery	Natural	
California Commercial Harvest																					
Eureka/Crescent City																					
Sep																	80\%		80\%	20\%	46
Fort Bragg																					(1\%)
Jun	0\%	6\%	0\%	0\%	1\%	-	2\%	26\%	4\%	3\%	2\%	0\%		5\%		1\%	6\%	50\%	55\%	45\%	11,317
Jul	0\%	3\%		0\%	0\%		1\%	22\%	4\%	2\%	2\%			11\%		2\%	4\%	49\%	54\%	46\%	5,333
Aug	0\%	4\%			0\%		1\%	26\%	7\%	2\%	2\%	0\%		11\%		2\%	2\%	55\%	58\%	42\%	3,848
Sep	0\%		1\%	0\%				16\%	4\%	13\%		1\%		25\%		3\%		64\%	64\%	36\%	1,008
Total	0\%	4\%	0\%	1\%	1\%	-	1\%	16\%	3\%	2\%	1\%	0\%		5\%		1\%	6.5\%	35\%	41\%	59\%	60,052
San Francisco																					(54\%)
May -	1\%	8\%		1\%	2\%		2\%	30\%	8\%	2\%	3\%	0\%		7\%		1\%	2\%	66\%	68\%	32\%	7,407
Jun	1\%	4\%		1\%	1\%	0\%	2\%	36\%	6\%	2\%	2\%			10\%		1\%	4\%	67\%	70\%	30\%	4,762
Jul	0\%	9\%		0\%	0\%		3\%	28\%	6\%	3\%	2\%			9\%		2\%	1\%	63\%	65\%	35\%	4,456
Aug		11\%	0\%	0\%	0\%	-	2\%	38\%	6\%	1\%	1\%			6\%	0\%	1\%	-	67\%	67\%	33\%	7,055
Sep	0\%	4\%	2\%	-			0\%	27\%	5\%	4\%	2\%		0\%	20\%	0\%	4\%		68\%	68\%	32\%	9,399
Oct	0\%	2\%	1\%					2\%	0\%	10\%	15\%	2\%	0\%	37\%		8\%		76\%	76\%	24\%	2,617
Total -	0\%	7\%	1\%	0\%	1\%	-	2\%	29\%	6\%	3\%	3\%	0\%	-	13\%	0\%	2\%	1\%	67\%	68\%	32\%	35,696
Monterey																					(32\%)
May	1\%	10\%	0\%	2\%	3\%	-	6\%	40\%	9\%	1\%	2\%	0\%		4\%		0\%	0\%	79\%	79\%	21\%	7,608
Jun	0\%	9\%		0\%	0\%	0\%	5\%	45\%	10\%	4\%	2\%	0\%		6\%		1\%	0\%	81\%	81\%	19\%	3,410
Jul	0\%	9\%		0\%	0\%		3\%	43\%	12\%	2\%	4\%	0\%		11\%		1\%		86\%	86\%	14\%	3,131
Aug	1\%	4\%					1\%	25\%	19\%	2\%	2\%	2\%		17\%				73\%	73\%	27\%	564
Total	1\%	10\%	0\%	1\%	2\%	-	5\%	41\%	10\%	2\%	2\%	0\%		7\%		1\%	0\%	81\%	81\%	19\%	14,713
																					(13\%)
California Total Commercial Harvest																					
-	0\%	5\%	0\%	1\%	1\%	-	2\%	24\%	5\%	2\%	2\%	0\%	-	8\%	-	1\%	4\%	51\%	55\%	45\%	110,507
Oregon Total Commercial Harvest																					
	0\%	3\%	-	0\%	0\%	-	0\%	12\%	2\%	1\%	1\%	0\%		3\%		0\%	24\%	25\%	49\%	51\%	93,377

a/ Any values less than 0.05% of $\mathrm{CWT}_{\text {total }}$ are displayed as "-"; values equal or greater than 0.05% but less than 0.5% of $\mathrm{CWT}_{\text {total }}$ are displayed as 0%.
b/ In 2015, several hatch_grps were grouped together in ocean fisheries: FRHFn includes FRHFtib, MOKF includes MOKFt .

Table 16. Total $\mathrm{CWT}_{\text {total }}$ recoveries by port area, month and release type in 2015 California ocean salmon commercial fishery.

CFH					$\mathrm{FRH}^{\text {1a }}$				NFH				$\mathrm{MOK}^{\text {1a }}$		MER		Non CV	Total CV	Total $\mathrm{CWT}_{\text {total }}$		Total Harvest
Sacw	CFHLh	CFHFh	CFHFn	FRHS	FRHSn	FRHFk	FRHFb	FRHFn	FRHFnc	NIMF	NIMFn	MOKF	MOKFb	MOKFn	MOKFnc	MERFt			Hatchery	Natural	
California Commercial Harvest																					
Eureka/Crescent City																					
Sep																	37		37	9	46
Fort Bragg																					(<1\%)
Jun	31	649	12	24	80	3	176	2,932	477	327	232	15		569		92	651	5,617	6,268	5,049	11,317
Jul	9	181		17	17		71	1,196	224	115	99			576		126	224	2,629	2,853	2,480	5,333
Aug	7	168			6		35	987	251	96	70	3		440		71	90	2,133	2,224	1,625	3,848
Sep	4		13	4				157	40	132		13		253		29		644	644	364	1,008
Total	147	2,205	46	303	626	3	681	9,830	1,945	1,008	702	125		2,728		488	3,887	20,837	24,725	35,327	60,052
San Francisco																					
May 3	63	604		73	141		180	2,219	558	168	248	32		530		73	146	4,893	5,039	2,368	7,407
Jun	33	205		36	56	8	112	1,720	278	83	95			490		53	174	3,169	3,343	1,419	4,762
Jul	16	388		6	17		151	1,252	282	143	97			405		68	55	2,825	2,880	1,576	4,456
Aug		802	16	4	4	3	152	2,684	428	86	59			455	4	58	3	4,753	4,757	2,298	7,055
Sep	21	352	221	4			24	2,514	484	335	227		5	1,834	25	334		6,380	6,380	3,019	9,399
Oct	6	43	21					43	11	266	383	43	11	958		212		1,995	1,995	622	2,617
Total 3	140	2,393	258	123	219	11	618	10,431	2,042	1,080	1,108	75	16	4,671	29	798	379	24,015	24,394	11,302	35,696
-																					(32\%)
\checkmark May	60	776	13	115	256	3	464	3,012	690	106	140	13		318		24	25	5,990	6,015	1,593	7,608
Jun	9	321		11	5	3	157	1,520	330	124	52	10		207		23	3	2,772	2,775	635	3,410
Jul	15	277		2	2		83	1,333	391	77	115	9		346		28		2,680	2,680	451	3,131
Aug	3	24					6	142	107	12	12	12		95				412	412	152	564
Total	87	1,398	13	127	263	6	710	6,007	1,518	319	319	44		967		76	28	11,853	11,881	2,832	$\begin{gathered} 14,713 \\ (13 \%) \end{gathered}$
California Total Commercial Harvest																					
3	374	5,996	316	554	1,109	20	2,009	26,269	5,504	2,408	2,129	244	16	8,366	29	1,361	4,331	56,706	61,037	49,470	110,507
Oregon Total Commercial Harvest																					
	95	2,765	18	224	387	1	438	11,379	1,735	1,137	1,352	200		3,044		266	22,577	23,041	45,618	47,759	93,377

a/ In 2015, several hatch_grps were grouped together in ocean fisheries: FRHFn includes FRHFtib, MOKF includes MOKFt .

Table 17. CWT recovery rate (recoveries per 100,000 CWTs released) for Experimental \& Net Pen release types in 2015. (page 1 of 2)

Age 2 CWT recoveries																					
Release type	Brood year	Run type	\# CWT tagged	Central Valley total recoveries (CWT $_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \% \mathrm{CV} \\ & \text { Stray } \end{aligned}$	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100K released			
				Bat Cr	Up Sac	Nat crks ${ }^{\text {a }}$	Fea	Yub	Ame	Mok	Mer	sJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
CFHFn	2013	Fall	1,810,972	147	112	138	228	309	134	91	14	46	259	961	1,220	79\%	736	14	53	67	41
FRHFbb	2013	Fall	100,227	4			19						19	4	23	16\%	14	19	4	23	14
FRHFbg	2013	Fall	100,564	1			44			1			44	2	46	5\%	0	44	2	46	0
FRHFbr	2013	Fall	99,354	1		8	25		2	1			25	13	38	34\%	19	25	13	38	19
FRHFtib	2013	Fall	11,791	5			9			1			9	6	15	40\%	30	76	51	127	255
FRHFkr	2013	Fall	44,127				2						2	0	2	0\%	4	5	0	5	9
FRHFn	2013	Fall	1,459,468	52	144	77	801	67	27	36	6	7	868	349	1,217	29\%	422	59	24	83	29
FRHFnp	2013	Fall	366,033	44	80	84	607	21	34	35	4	20	628	301	930	32\%	938	172	82	254	256
NIMFn	2013	Fall	896,419				31	55	742	248	9	7	742	349	1,091	32\%	405	83	39	122	45
MOKFbb	2013	Fall	101,051				1	11	23	16	9	13	16	56	72	78\%	88	16	56	72	87
MOKFbg	2013	Fall	101,426	1			8	11	64	132	10	26	132	120	252	48\%	119	130	118	248	117
MOKFbr	2013	Fall	100,181							8			8	0	8	0\%	5	8	0	8	5
MOKFn	2013	Fall	1,148,423	1			6	44	87	358	138	278	358	554	912	61\%	303	31	48	79	26
MOKFns	2013	Fall	239,294				2	34	12	15	2	9	15	59	74	79\%	493	6	25	31	206

Age 3 CWT recoveries

Release type	Brood year	$\begin{aligned} & \text { Run } \\ & \text { type } \\ & \hline \end{aligned}$	\# CWT tagged	Central Valley total recoveries (CWT $_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \% \text { cV } \\ & \text { Stray } \\ & \hline \end{aligned}$	Ocean CWT samp	Recovery rate per 100 K released			
				Bat Cr	Up Sac	Nat crks ${ }^{\text {a }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHFbb	2012	Fall	97,760	52	321	66	458		2	1			458	443	901	49\%	1,401	469	453	922	1433
FRHFbg	2012	Fall	99,192	40	225	108	597	78	6				675	379	1,053	36\%	1,289	680	382	1062	1300
FRHFbr	2012	Fall	96,832				2						2	0	2	0\%	24	2	0	2	25
FRHFtib	2012	Fall	9,918			17	14						14	17	31	54\%	81	141	167	308	817
FRHFkc	2012	Fall	46,492				15						15	0	15	0\%	19	32	0	32	40
FRHFkr	2012	Fall	92,396				1						1	0	1	0\%	5	1	0	1	5
FRHFn	2012	Fall	1,453,105	360	2,520	1,080	4,101	162	75	51	18	20	4,262	4,124	8,386	49\%	8,957	293	284	577	616
FRHFnp	2012	Fall	412,360	47	417	151	409	44	4	2	6		453	628	1,081	58\%	4,436	110	152	262	1076
FRHFns	2012	Fall	236,800	10	48	17	74	67	2				141	77	218	35\%	2,982	60	32	92	1259
NIMFn	2012	Fall	182,413	1			7		330	49	1	7	330	65	394	16\%	428	181	35	216	234
MOKFn	2012	Fall	1,275,158	2		11	49	143	875	1,693	220	698	1,693	1,998	3,692	54\%	2,990	133	157	290	234

Table 17. CWT recovery rate (recoveries per 100,000 CWTs released) for Experimental \& Net Pen release types in 2015. (page 2 of 2)

Age 4 CWT recoveries																					
Release	Brood	Run	\# CWT	Central Valley total recoveries ($\mathrm{CWT}_{\text {samp }}$) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \text { \% CV } \\ & \text { Stray } \\ & \hline \end{aligned}$	Ocean CWT ${ }_{\text {samp }}$	Recovery rate per 100 K released			
type	year	type	tagged	Bat Cr	Up Sac	Nat crks ${ }^{\text {a }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
FRHFbb	2011	Fall	98,241	1		8	41		3				41	13	54	24\%	122	41	13	54	125
FRHFbg	2011	Fall	98,947	1	16	25	44			1			44	43	87	50\%	121	44	44	88	122
FRHFbr	2011	Fall	99,901		32		121		2				121	34	156	22\%	110	121	34	155	110
FRHFn	2011	Fall	2,293,211	41	1,011	250	984		16	2			984	1,321	2,304	57\%	2,163	43	58	101	94
FRHFnp	2011	Fall	185,303	25	177	42	200						200	243	443	55\%	729	108	131	239	393
FRHFns	2011	Fall	240,887	2	32	8	20						20	43	63	68\%	706	8	18	26	293
NIMFn	2011	Fall	328,073				23		361	26	2	3	361	54	415	13\%	593	110	16	126	181
MOKFn	2011	Fall	1,487,132				9	11	169	150	19	46	150	253	403	63\%	444	10	17	27	30

${ }^{2 /}$ Natural creeks can include Clear Creek, Cow Creek, Cottonwood Creek, Paynes Creek, Mill Creek, Deer Creek and Butte Creek, depending on survey year.

Central Valley Chinook Experimental and Net Pen release types

CFHFn Coleman National Fish Hatchery fall bay net pen releases
FRHFbb Feather River Hatchery fall barge study: trucked \& released in SF Bay (Ft Baker, Tiburon)
FRHFbg Feather River Hatchery fall barge study: barged to SF Bay and released

FRHFnp Feather River Hatchery fall coastal net pen releases - Pillar Point FRHFns Feather River Hatchery fall coastal net pen releases - Santa Cruz NIMFn Nimbus Hatchery fall bay net pens releases
MOKFbb Mokelumne River Hatchery fall barge study: trucked \& released in SF Bay (Tiburon) MOKFbg Mokelumne River Hatchery fall barge study: barged to SF Bay and released MOKFbr Mokelumne River Hatchery fall barge study: in-river releases (Miller's Ferry, Mok R.) MOKFn Mokelumne River Hatchery fall bay net pen releases MOKFns Mokelumne River Hatchery fall coastal net pen releases - Santa Cruz

Figure 1. Map of release locations for CV hatchery release types, brood years 2010-2013.

Figure 2. Fall-run CV Natural Area Escapement, Hatchery and Natural Proportions, 2015.

Figure 3. Fall-run CV Hatchery Escapement, Hatchery and Natural Proportions, 2015.

Figure 4. Color and pattern scheme used in all pie chart figures for Central Valley hatchery release types, brood years 2010-2013.

Coleman National Fish Hatchery fall 2015
$\mathrm{n}=\mathbf{1 5 , 7 2 4}$

Keswick Dam Trap late－fall 2016

$$
\mathrm{n}=65
$$

K

Coleman National Fish Hatchery late－fall 2016

Battle Creek（above CNFH）late－fall 2016
$\mathrm{n}=104$

\square Natural	\square FRHFk	＠FRHFn	日FRHFb	©FRHFnc	\square NIMF	םNIMFn	－CFHFh	\square CFHFn	－MOKF
＠MOKFn	目MOKFb，t	囫MERFt	口MERF	－FRHS	©FRHSn	ロSacW	$\square \mathrm{CFHLh}$	$\square \mathrm{nonCV}$	

Figure 5．Proportion of hatchery－and natural－origin fish at Coleman National Fish Hatchery，2015－16．

Upper Sacramento River winter carcass
$\mathrm{n}=\mathbf{3 , 1 8 2}$

Upper Sacramento River late-fall carcass 2016 $\mathrm{n}=\mathbf{3 , 0 8 5}$

Figure 6. Proportion of hatchery- and natural-origin fish in Upper Sacramento River \& tributaries, 2015. (page 1 of 2)

Cottonwood Creek fall carcass

$\mathrm{n}=604$

Deer Creek fall carcass

Battle Creek fall spawners

$n=3,631$

Mill Creek fall carcass

\square Natural	\square FRHFk	＠FRHFn	日FRHFb	－FRHFnc	\square NIMF	－NIMFn	－CFHFh	－CFHFn	MOKF
＠MOKFn	日MOKFb，t	日MERFt	－MERF	םFRHS	๑FRHSn	םSacW	$\square \mathrm{CFHLh}$	anonCV	

Figure 6．Proportion of hatchery－and natural－origin fish in Upper Sacramento River \＆tributaries，2015．（page 2 of 2）

Butte Creek Spring carcass

$$
n=5,083
$$

Yuba River carcass（above DPD）

$$
n=4,981
$$

Π

－Natural ＠MOKFn
－FRHFk
目MOKFb，t
＠FRHFn
日MERFt

目FRHFb
®FRHFnc
－FRHS

Butte Creek fall carcass

$$
\mathrm{n}=82
$$

Yuba River carcass（below DPD）

$$
n=2,569
$$

\square NIMF
－NIMFn
＠FRHSn
－SacW

■CFHFn －nonCV

Figure 7．Proportion of hatchery－and natural－origin fish in Butte Creek \＆Yuba River， 2015.

Feather River Hatchery spring

$n=3,386$

Feather River Hatchery fall

$\mathbf{n}=\mathbf{2 0 , 8 1 6}$

Feather River fall carcass

\square Natural	$\square \mathrm{FRHFk}$	＠FRHFn	目FRHFb	©FRHFnc	\square NIMF	\square NIMFn	$\square \mathrm{CFHFh}$	＠CFHFn	$\square \mathrm{MOKF}$
＠MOKFn	⿴囗MOKFb， t	日MERFt	$\square \mathrm{MERF}$	$\square \mathrm{FRHS}$	＠FRHSn	$\square S a c W$	$\square \mathrm{CFHLh}$	－nonCV	

Figure 8．Proportion of hatchery－and natural－origin fish in the Feather River Basin， 2015.

American River fall carcass

$$
n=13,793
$$

Figure 9. Proportion of hatchery- and natural-origin fish in the American River Basin, 2015.

Mokelumne Hatchery fall
$\mathrm{n}=\mathbf{8 , 2 9 8}$

Mokelumne River fall carcass

$n=\mathbf{4 , 5 8 1}$

\square Natural	\square FRHFk	＠FRHFn	日FRHFb	－FRHFnc	\square NIMF	\square NIMFn	－CFHFh	๑CFHFn	－MOKF
＠MOKFn	日MOKFb， t	日MERFt	－MERF	םFRHS	\square FRHSn	$\square \mathrm{SacW}$	ロCFHLh	\square nonCV	

Figure 10．Proportion of hatchery－and natural－origin fish in the Mokelumne River Basin， 2015.

Merced River Hatchery fall
$\mathrm{n}=1,198$

Stanislaus River fall carcass
$\mathrm{n}=\mathbf{6 , 1 3 6}$

Merced River fall carcass

$$
\mathrm{n}=1,247
$$

Tuolumne River fall carcass
$\mathrm{n}=113$

\square Natural	$\square F R H F k$	QFRHFn	FRHFb	®FRHFnc	\square NIMF	\square NIMFn	$\square \mathrm{CFHFh}$	®CFHFn	$\square \mathrm{MOKF}$
@MOKFn	目MOKFb,t	目MERFt	$\square \mathrm{MERF}$	$\square F R H S$	@FRHSn	$\square \mathrm{SacW}$	םCFHLh	\square nonCV	

Figure 11. Proportion of hatchery- and natural-origin fish in Merced River \& San Joaquin Basin tributaries, 2015.

Upper Sacramento River fall creel
$\mathrm{n}=\mathbf{8 , 0 8 8}$

Lower Sacramento River fall creel

Upper Sacramento River late－fall creel 2016

$$
\mathrm{n}=252
$$

Feather River fall creel $n=1,906$

\square Natural	$\square \mathrm{FRHFk}$	\％FRHFn	日FRHFb	\square FRHFnc	\square NIMF	\square NIMFn	$\square \mathrm{CFHFh}$	®CFHFn	$\square \mathrm{MOKF}$
＠MOKFn	日MOKFb，	日MERFt	$\square \mathrm{MERF}$	$\square F R H S$	■FRHSn	$\square \mathrm{SacW}$	ロCFHLh	$\square \mathrm{nonCV}$	

Figure 12．Proportion of hatchery－and natural－origin fish in sport harvest on Sacramento \＆Feather rivers， 2015.

American River fall creel

$\mathrm{n}=\mathbf{6 , 6 3 0}$

Mokelumne River fall creel

$$
\mathrm{n}=1,281
$$

Figure 13. Proportion of hatchery- and natural-origin fish in sport harvest on American \& Mokelumne rivers, 2015.

Age-2 CWT recovery rate of Sacramento River fall Chinook releases

Age-3 CWT recovery rate of Sacramento River fall Chinook releases

Age-4 CWT recovery rate of Sacramento River fall Chinook releases

Figure 14. CWT recovery rates of Sacramento River fall Chinook releases by age in 2015.

Age-2 CWT recovery rate of Other CV Chinook releases

Age-3 CWT recovery rate of Other CV Chinook releases

Age-4 CWT recovery rate of Other CV Chinook releases

Figure 15. CWT recovery rates of Other CV Chinook releases by age in 2015.

Age-2 CWT recovery rate of CV releases in Ocean Fisheries

Age-3 CWT recovery rate of CV releases in Ocean Fisheries

Age-4 CWT recovery rate of CV releases in Ocean Fisheries

Figure 16. CWT recovery rates by release type in 2015 Ocean Salmon Fisheries.

Figure 17. Proportion of hatchery- and natural-origin salmon in 2015 California and Oregon ocean fisheries.

Eureka／Crescent City Sport

$\mathrm{n}=3,690$

Fort Bragg Sport

 $\mathrm{n}=5,493$

Monterey Sport
$\mathrm{n}=\mathbf{3 , 0 7 0}$

\square Natural	םFRHFk	＠FRHFn	日FRHFb	®FRHFnc	\square NIMF	QNIMFn	－CFHFh	＠CFHFn	$\square \mathrm{MOKF}$
＠MOKFn	日MOKFb，t	－MERFt	日MERF	םFRHS	＠FRHSn	－SacW	$\square \mathrm{CFHLh}$	－nonCV	

Figure 18．Proportion of hatchery－and natural－origin salmon in the 2015 California ocean sport fishery．
Eureka / Crescent City Commercial

$$
n=46
$$

San Francisco Commercial
$\mathrm{n}=\mathbf{3 5 , 6 9 6}$

Figure 19. Proportion of hatchery- and natural-origin salmon in the 2015 California ocean commercial fishery.

Age-2 CWT recovery rate of Experimental \& Net Pen releases

Age-3 CWT recovery rate of Experimental \& Net Pen releases

Age-4 CWT recovery rate of Experimental \& Net Pen releases

Figure 20. CWT recovery rates of Experimental and Net Pen releases by age in 2015.

Age-2 CWT recovery rate of Experimental \& Net Pen releases

Age-3 CWT recovery rate of Experimental \& Net Pen releases

Age-4 CWT recovery rate of Experimental \& Net Pen releases

Figure 21. CWT recovery rates of Experimental and Net Pen releases in 2015 ocean sport and commercial fisheries

Appendix 1. Sample expansion factors for Central Valley salmon carcass surveys collecting fish condition in 2015. (page 1 of 2)

Upper Sacramento River fall-run Chinook salmon carcass survey														
Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$		$C W T_{\text {total }, i}$	
fresh	22\%	708	2.5\%	154	154	151	151	0.22	0.98	40.49	3.17		19,374	67.6\%
nonfresh	78\%	2,467	8.6\%	251	250	240	230	0.10	0.96					
total	28,668	3,175	11.1\%	405	404	391	381			16.05	3.17		19,374	67.6\%

Clear Creek fall-run Chinook salmon carcass survey

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
fresh		539	6.1\%	130	129	124	114	0.24	0.96	17.91	3.18	6,488	73.7\%
nonfresh	70\%	1,239	14.1\%	141	141	136	132	0.11	0.96				
total	8,809	1,778	20.2\%	271	270	260	246			8.30	3.18	6,488	73.7\%

Mill Creek fall-run Chinook salmon carcass survey

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $\mathrm{F}_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
fresh	53\%	33	3.2\%	5	5	4	4	0.15	0.80	31.30	3.64	455	44.0\%
nonfresh		29	2.8\%	4	4	4	4	0.14	1.00				
total	1,033	62	6.0\%	9	9	8	8			15.65	3.64	455	44.0\%

Feather River fall-run Chinook salmon carcass survey (fresh only)

Lower Yuba River (below DPD) fall-run Chinook salmon carcass survey

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
fresh	100\%	237	9.2\%	35	35	31	31	0.15	0.89	10.84	3.48	1,168	45.5\%
random		1		1	1	1	1						
total	2,569	237	9.2\%	36	36	32	32			10.50	3.48	1,168	45.5\%

Appendix 1. Sample expansion factors for Central Valley salmon carcass surveys collecting fish condition in 2015. (page 2 of 2)

Lower American River fall-run Chinook salmon carcass survey													
Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	$p_{-} c w t \mid a d c$	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
fresh		714	5.2\%	134	134	127	122	0.19	0.95	20.11	3.66	8,972	65.0\%
nonfresh	91\%	6,802	49.3\%	1,240	1,108	1,010	978	0.18	0.91				
total	13,793	7,516	54.5\%	1,374	1,242	1,137	1,100			2.23	3.66	8,972	65.0\%

Merced River fall-run Chinook salmon carcass survey

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	$\begin{gathered} \text { \% } \\ \text { hatchery } \end{gathered}$
fresh		277	22.2\%	60	60	58	55	0.22	0.97	4.75	3.89	1,014	81.3\%
nonfresh	37\%	166	13.3\%	15	15	15	14	0.09	1.00				
total	1,247	443	35.5\%	75	75	73	69			3.78	3.89	1,014	81.3\%

Stanislaus River fall-run Chinook salmon carcass survey

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$F_{\text {samp }}$	Avg $\mathrm{F}_{\mathrm{prod}}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	
fresh	100\%	794	12.9\%	163	163	161	153	0.21	0.99	8.13	3.85	4,797	78.2\%
weir CWTs				37	37	37	37						
total	6,136	794	12.9\%	200	200	198	190			6.55	3.85	4,797	78.2\%
Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$F_{\text {samp }}$	Avg $\mathrm{F}_{\mathrm{prod}}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	$\%$ hatchery
fresh	47\%	502	15.8\%	100	100	82	82	0.20	0.82	6.34	1.07	558	17.5\%
nonfresh	53\%	574	18.0\%	95	94	79	79	0.17	0.84				
total	3,182	1,076	33.8\%	195	194	161	161			3.23	1.07	558	17.5\%

Upper Sacramento River late-fall-run Chinook salmon carcass survey 2016

Condition	Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	$\begin{aligned} & \text { Avg } \\ & \mathrm{F}_{\text {prod }} \\ & \hline \end{aligned}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
fresh	23\%	145	4.7\%	9	9	9	8	0.06	1.00	23.94	1.31	251	8.1\%
nonfresh	77\%	492	15.9\%	7	7	6	5	0.01	0.86				
total	3,085	637	20.6\%	16	16	15	13			14.73	1.31	251	8.1\%

p-adc $=$ proportion of sampled fish that were ad-clipped; $p_{-} c w t \mid a d c=$ proportion of ad-clipped fish containing CWTs

Age 2 CWT recoveries																					
Release	Brood	Run	\# CWT	Central Valley total recoveries (CWT samp) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \% \text { CV } \\ & \text { Stray } \end{aligned}$	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100K released			
type	year	type	tagged	Bat Cr	Up Sac	Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
CFHFh	2013	Fall	1,125,706	201									201	0	201	0\%	61	18	0	18	5
CFHFn	2013	Fall	1,810,972	147	112	138	228	309	134	91	14	46	147	1,073	1,220	88\%	736	8	59	67	41
CFHLh	2014	Late	1,056,322	789	15					1			789	16	805	2\%	7	75	1	76	1
FRHFk	2013	Fall	44,127				2						2	0	2	0\%	4	5	0	5	9
FRHFtib	2013	Fall	11,791	5			9			1			9	6	15	40\%	30	76	6	82	255
FRHFb	2013	Fall	300,145	6		8	88		2	2			88	19	106	18\%	33	29	6	35	11
FRHFn	2013	Fall	1,459,468	52	144	77	801	67	27	36	6	7	801	417	1,217	34\%	422	55	29	83	29
FRHFnc	2013	Fall	366,033	44	80	84	607	21	34	35	4	20	607	322	930	35\%	938	166	88	254	256
FRHS	2013	Spr	1,217,640				26		2				26	2	28	7\%	68	2	0	2	6
FRHSn	2013	Spr	997,962				36		4				36	4	40	10\%	105	4	0	4	11

Age 3 CWT recoveries

Release	Brood	Run	\# CWT		Ce	Valley	r	,	WT) by			CV	$\mathrm{WT}_{\text {sa }}$	otals
type	year	type	tagged	Bat Cr	Up Sac	Nat crks ${ }^{\text {a }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total
CFHFh	2012	Fall	2,956,348	1,473	80	90	1						1,473	172	1,645
CFHFn	2013	Fall	1,810,972	147	112	138	228	309	134	91	14	46	147	1,073	1,220
CFHLh	2013	Late	960,075	467					3				467	3	470
FRHFk	2012	Fall	138,888				16						16	0	16
FRHFtib	2012	Fall	9,918			17	14						14	17	31
FRHFb	2012	Fall	293,784	92	546	174	1,057	78	8	1			1,057	899	1,956
FRHFn	2012	Fall	1,453,105	360	2,520	1,080	4,101	162	75	51	18	20	4,101	4,286	8,386
FRHFnc	2012	Fall	649,160	57	465	168	482	111	6	2	6		482	816	1,298
FRHS	2012	Spr	1,106,679				3,495		1				3,495	1	3,496
FRHSn	2012	Spr	1,015,285	2	305	66	4,026	34	20	2			4,026	429	4,455

$\left\lvert\, \begin{aligned} & \% \mathrm{cv} \\ & \text { Stray }\end{aligned}\right.$

| $\%$ cv |
| :--- | :--- |
| Stray |

CV	Ocean $\mathrm{CWT}_{\text {samp }}$	Recovery rate per 100 K released			
tray		In-basin	Stray	CV total	Ocean
0\%	1,418	50	6	56	48
8\%	736	8	59	67	41
1\%	58	49	0	49	6
\%	23	12	0	12	17
4\%	81	141	17	157	817
6\%	2,714	360	306	666	924
1\%	8,957	282	295	577	616
3\%	7,418	74	126	200	1,143
\%	848	316	0	316	77
0\%	1,916	397	42	439	189

Age 4 CWT recoveries

Release type	Brood year	Run type	\# CWT tagged	Central Valley total recoveries (CWT samp) by basin									CV CWT ${ }_{\text {samp }}$ totals			$\begin{aligned} & \text { \% CV } \\ & \text { Stray } \\ & \hline \end{aligned}$	Ocean CWT ${ }_{\text {samp }}$	Recovery rate per 100 K released			
				Bat Cr	Up Sac	Nat crks ${ }^{\text {a/ }}$	Fea	Yub	Ame	Mok	Mer	SJ	In-basin	Stray	CV total			In-basin	Stray	CV total	Ocean
CFHFh	2011	Fall	3,117,042	1,208	465	91	10						1,208	567	1,775	32\%	1,172	39	18	57	38
CFHLh	2012	Late	1,031,419	1,061	166								1,061	166	1,227	14\%	440	103	16	119	43
FRHFtib	2011	Fall	9,933	1									0	1	1	100\%	3	0	12	12	33
FRHFb	2011	Fall	297,089	2	48	33	206		5	1			206	90	296	30\%	354	69	30	100	119
FRHFn	2011	Fall	2,293,211	41	1,011	250	984		16	2			984	1,321	2,304	57\%	2,163	43	58	100	94
FRHFnc	2011	Fall	426,190	27	209	50	220						0	506	506	100\%	1,435	0	119	119	337
FRHS	2011	Spr	1,088,286				2,051		1				2,051	1	2,052	0\%	254	188	0	189	23
FRHSn	2011	Spr	1,125,189		80	17	698		1				698	98	796	12\%	132	62	9	71	12

a/ CFH and FRH releases recovered in the Upper Sacramento River and Yuba River, respectively, considered stray recoveries.
b/ Natural creeks can include Clear Creek, Cow Creek, Cottonwood Creek, Paynes Creek, Mill Creek, Deer Creek and Butte Creek, depending on survey year.

Sacramento River fall Chinook release types (SFC)
CFHFh Coleman National Fish Hatchery fall hatchery releases
CFHFn Coleman National Fish Hatchery fall bay net pen releases
FRHFk Feather River Hatchery fall Knaggs Ranch experimental releases
FRHFtib Feather River Hatchery fall Tiburon net pen releases
FRHFb Feather River Hatchery fall barge study releases
FRHFn Feather River Hatchery fall bay net pen releases
FRHFnc Feather River Hatchery fall coastal net pen releases (Pillar Point)
NIMF Nimbus Hatchery fall in-basin releases
NIMFn Nimbus Hatchery fall bay net pens release
FRHFk Feather River Hatchery fall Knaggs Ranch experimental releases

Other CV Chinook release types (OCV)
FRHS Feather River Hatchery spring in-basin releases
$\begin{array}{ll}\text { FRHSn } & \text { Feather River Hatchery spring bay net pen releases } \\ \text { MOKF } & \text { Mokelumne River Hatchery fall in-basin }\end{array}$
MOKF Mokelumne River Hatchery fall in-basin releases
MOKFb Mokelumne River Hatchery fall barge study releases
MOKFn Mokelumne River Hatchery fall bay net pen releases
MOKFnc Mokelumne River Hatchery fall coastal net pen releases (Santa Cruz
MOKFt Mokelumne River Hatchery fall trucked releases
MERF Merced River Hatchery fall in-basin releases
MERFt Merced River Hatchery fall trucked releases
SacW Livingston Stone Hatchery winter in-basin releases
CFHLh Coleman National Fish Hatchery late fall hatchery releases

Alternative age-2 CWT recovery rate for CFH and FRH releases

Alternative age-4 CWT recovery rate for CFH and FRH releases

Appendix 3. Alternative CWT recovery rates for CFH and FRH releases by age in 2015.

Appendix 4. Sample expansion for CWTs recovered in Yuba River above Daguerre Point Dam (DPD) based on carcass survey vs video data, 2015.

Yuba River natural escapement above DPD: carcass survey (fresh fish only)												
Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc*	$\mathrm{F}_{\text {samp }}$	Avg $\mathrm{F}_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
4,981	148	3\%	28	28	28	28	0.189	1.000	33.66	3.16	2,978	59.8\%
video count												
DPD Vaki video	Total	\% adclip		Estimated average total adclips $p_{-} c w t \mid a d c^{*}$								
no clip	3,877											
adclip	999	20.5\%		999		Estimated total CWTs	CWTs collected	Estimated CWT expansion factor				
unknown clip	105	20.5\%		22								
total	4,981			1,021	0.924	943	28	33.				

*average p_cwt/adc observed for fresh ad-clipped salmon recovered in Feather River and lower Yuba carcass surveys ($n=1,358$)

Appendix 5. Sample expansion for CWTs recovered in Mokelumne River above Woodbridge Dam (WD) based on video data, 2015.

| | Known ad | | |
| ---: | ---: | ---: | ---: | ---: |
| | Total | status | \% adclip |
| | 12,879 | 3,456 | 26.8% |
| Woodbridge Dam video | 12, | 26.8% | |
| MRFI return | 8,298 | 2,227 | 26.8% |

Mokelume River natural escapement above WD: Total video count minus MRFI with supplemental carcass survey CWT data

Escapement N	Chinook sampled (n)	Sample rate	Observed ad-clips	Ad-clips processed	CWTs recovered	Valid CWTs	p_adc	p_cwt\|adc	$\mathrm{F}_{\text {samp }}$	Avg $F_{\text {prod }}$	$\sum_{i=1}^{m} C W T_{\text {total }, i}$	\% hatchery
4,581	4,581	100\%	1,229	194	179	178	0.268	0.923	6.37	3.82	4,329	94.5\%
video count			video count		arcass survey							

[^0]: ${ }^{\text {a/ }}$ Biological sampling ("bio-samples" or "bio-data") of live fish or carcasses may include observed tags or marks, sex, fork length, scales, carcass condition, spawning condition, and heads collected from ad-clipped fish for CWT recovery.

